Dagstuhl, July 8-10, 2002:

MPC, Dagstuhl

July, 2002 \qquad i

Eternity Variables

to Simulate Specifications
Wim H. Hesselink
Email: wim@cs.rug.nl

Aim of the talk

\qquad ii

How to prove that program K simulates specification L ?
Programs are (executable) specifications
Four kinds of simulations:
functional, forward, backward, eternity
Theorem. Every simulation $F: K \rightarrow L$
that preserves quiescence,
is provable by means of these special ones
A variation of theory of
Abadi and Lamport (1991)
www.cs.rug.nl/~wim/pub/whh275.pdf

Overview

\qquad iii

1. Temporal Logic of Actions
2. Refinement mappings and simulations between specs
3. Forward and backward simulations
4. Eternity variables
5. Preservation of quiescence and Completeness

1. Temporal Logic

 of Actions \qquad ivA specification is a 4 -tuple K :
$X=\operatorname{states}(K)$: the state space
$Y=\operatorname{init}(K) \subseteq X$: set of initial states
$N=\operatorname{step}(K) \subseteq X^{2}:$ next-state relation
$P=\operatorname{prop}(K) \subseteq X^{\omega}:$ (fairness) property
An execution is a list xs of states
with $\left(\mathrm{xs}_{i}, \mathrm{Xs}_{i+1}\right) \in N$ for all i

- initial iff $\mathrm{xs}_{0} \in Y$.
- a behaviour iff infinite and belongs to P
$\operatorname{Beh}(K)=\llbracket Y \rrbracket \cap \square \llbracket N \rrbracket \cap P$
To allow stuttering N is reflexive (and P is a "property").

Example

\qquad v

Specification LO

```
var k: Int := 0 ;
do k = 0 -> choose k in Int ;
[] true -> k := k - 2 ;
od ;
prop: infinitely often k = 0.
states(LO) = Int
init(LO) ={0}
prop(L0)}=\square\diamond\llbracket\textrm{k}=0
step(LO) =
```


Every state is reachable
The occurring states have k natural and even

2. Refinement Mappings

When does spec K implement spec L ?
K : the concrete program
L : the abstract program
A refinement mapping from K to L is
a function $f: \operatorname{states}(K) \rightarrow \operatorname{states}(L)$ such that

$$
\begin{aligned}
& x \in \operatorname{init}(K) \Rightarrow \\
& \left(x, x^{\prime}\right) \in \operatorname{step}(K) \quad \Rightarrow(x) \in \operatorname{init}(L) \\
& x s \in \operatorname{Beh}(K) \Rightarrow \\
& \Rightarrow \\
& \left.f^{\omega}(x s) \in \operatorname{Beh}(x), f\left(x^{\prime}\right)\right) \in \operatorname{step}(L)
\end{aligned}
$$

Example $K(m)$

for $m>1$
var $\mathrm{j}:$ Nat: $=0$;
do true $\rightarrow \mathrm{j}:=(\mathrm{j}+1) \bmod m$ od ;
prop: j changes infinitely often.
$\operatorname{states}(K(m))=\mathbb{N}$
$\operatorname{init}(K(m))=\{0\}$
$\operatorname{prop}(K(m))=\square \diamond \llbracket \neq \rrbracket$
$\left(j, j^{\prime}\right) \in \operatorname{step}(K(m)) \equiv j^{\prime} \in\{j,(j+1) \bmod m\}$

A refinement mapping f from $K(21)$ to $K(14)$?
Take $f: \mathbb{N} \rightarrow \mathbb{N}$ with $f(j)=\min (j, 13)$
The abstract behaviour stutters
whenever the concrete behaviour proceeds from 13 to 20
vii.1. - Refinement mappings are not enough.

We sometimes need simulations

Simulations (new)

\qquad viii
Spec K simulates spec L
via relation $F \subseteq \operatorname{states}(K) \times \operatorname{states}(L)$
(notation $F: K \rightarrow L$)
三
for every xs $\in \operatorname{Beh}(K)$
there is ys $\in \operatorname{Beh}(L)$
with $\left(\mathrm{xs}_{n}, y s_{n}\right) \in F$ for all n
Every refinement mapping
$f: \operatorname{states}(K) \rightarrow \operatorname{states}(L)$
induces a simulation $K \rightarrow L$
If $F: K \rightarrow L$ and $F \subseteq G$
then $G: K \rightarrow L$
The smaller the simulation, the more information it carries

Example

with prescience \qquad ix
K and L
both with state space $X=\{0,1,2,3,4\}$,
initial set $\{4\}$, and property $\diamond \llbracket\{0,1\} \rrbracket$.
$\operatorname{step}(K)=1_{X} \cup\{(4,2),(2,1),(2,0)\}$
$\operatorname{step}(L)=1_{X} \cup\{(4,3),(4,2),(3,1),(2,0)\}$

Simulation $F=1_{X} \cup\{(2,3)\}$
Concrete state 2 splits
into abstract states 2 and 3

Visibility

 xVisible spec (K, v)
where v is a function on $\operatorname{states}(K)$
The visible behaviours:
$\operatorname{Obs}(K, v)=\left\{v^{\omega}(\mathrm{xs}) \mid \mathrm{xs} \in \operatorname{Beh}(K)\right\}$
(K, v) implements (L, w) iff \ldots
$\operatorname{Obs}(K, v) \subseteq \operatorname{Obs}(L, w)$
(differs from Abadi-Lamport)
Theorem (new). (K, v) implements (L, w)
if and only if there is a simulation $F: K \rightarrow L$
with $F \subseteq\{(x, y) \mid v(x)=w(y)\}$.

3. Forward Simulations

 xi$F \subseteq \operatorname{states}(K) \times \operatorname{states}(L)$
is a forward simulation iff
(F0) For every $x \in \operatorname{init}(K)$,
there is $y \in \operatorname{init}(L)$ with $(x, y) \in F$
(F1) For every $(x, y) \in F$
and every x^{\prime} with $\left(x, x^{\prime}\right) \in \operatorname{step}(K)$,
there is y^{\prime} with $\left(y, y^{\prime}\right) \in \operatorname{step}(L)$ and $\left(x^{\prime}, y^{\prime}\right) \in F$
(F2) Every infinite initial execution ys of L
with $(x s, y s) \in F^{\omega}$ for some $x s \in \operatorname{Beh}(K)$
has $y s \in \operatorname{prop}(L)$

Theorem.

Every forward simulation is a simulation

Example

Different Periods
Specs $K(m)$ and $K(2 \cdot m)$ as above
Relation F given by

$$
(j, k) \in F \equiv k=j \quad \vee \quad k=j+m
$$

F is a forward simulation $K(m) \rightarrow K(2 \cdot m)$
There is no refinement mapping from $K(m)$ to $K(2 \cdot m)$.

Backward Simulations

$F \subseteq \operatorname{states}(K) \times \operatorname{states}(L)$
is a backward simulation (version Jonnson) iff
(B0) Every pair $(x, y) \in F$
with $x \in \operatorname{init}(K)$ has $y \in \operatorname{init}(L)$.
(B1) For every pair $\left(x^{\prime}, y^{\prime}\right) \in F$ and every x with $\left(x, x^{\prime}\right) \in \operatorname{step}(K)$,
there is y with $(x, y) \in F$ and $\left(y, y^{\prime}\right) \in \operatorname{step}(L)$.
(B2) Every behaviour xs of K has infinitely many n with $\left(\mathrm{xs}_{n} ; F\right)$ nonempty and finite.
(B3) Every infinite initial execution ys of L
with $(x s, y s) \in F^{\omega}$ for some $x s \in \operatorname{Beh}(K)$
has $y s \in \operatorname{prop}(L)$.
Theorem.
Every backward simulation is a simulation

xiii.1. -

Every composition of simulations is a simulation.
A composition of forward/backward simulations need not be a forward/backward simulation.
The example with prescience is a backward simulation.
The finiteness condition in (B2) is inconvenient.
It is needed to apply König's Lemma.

4. Eternity Variables (new)

 xivLet M be a type for an "eternity" variable m
A relation $R \subseteq \operatorname{states}(K) \times M$
is a behaviour restriction over K \equiv
for every behaviour xs of K
there exists $m \in M$ with

$$
\left(\forall n::\left(x s_{n}, m\right) \in R\right)
$$

Soundness of

Eternity Extension xV
Let R be a behaviour restriction over K.
Construct spec W :
$\operatorname{states}(W)=R \subseteq \operatorname{states}(K) \times M$
$\operatorname{init}(W)=R \cap(\operatorname{init}(K) \times M)$
$\operatorname{prop}(W)=\left\{\mathrm{ws} \mid \mathrm{fst}^{\omega}(\mathrm{ws}) \in \operatorname{prop}(K)\right\}$
$\left((x, m),\left(x^{\prime}, m^{\prime}\right)\right) \in \operatorname{step}(W) \equiv$

$$
\left(x, x^{\prime}\right) \in \operatorname{step}(K) \wedge m^{\prime}=m
$$

Theorem. $F=\left\{\left(x,\left(x^{\prime}, m\right)\right) \mid x=x^{\prime}\right\}$ gives a simulation $K \rightarrow W$.
Proof. Let $x s \in \operatorname{Beh}(K)$.
Choose $m \in M$ with $\left(\forall n::\left(x s_{n}, m\right) \in R\right)$.
Define $y s_{n}=\left(x s_{n}, m\right) \in R=\operatorname{states}(W)$.
Then $y s \in \operatorname{Beh}(W)$ and all $\left(x s_{n}, y s_{n}\right) \in F$.

5. Towards Completeness

\qquad xvi
We want to write an arbitrary simulation F
as a composition of special ones:
forward simulations
(backward simulations)
eternity extensions
All these "preserve quiescence"
Therefore, F must "preserve quiescence"

Preservation
 of Quiescence

\qquad xvii
For $x s \in \operatorname{Beh}(K)$
the set of quiescent indices is

$$
Q_{K}(x s)=\left\{n \mid(x s \mid n)+\left(x s_{n}^{\omega}\right) \in \operatorname{Beh}(K)\right\}
$$

$F: K \rightarrow L$ preserves quiescence
\equiv
for every $x s \in \operatorname{Beh}(K)$
there exists ys $\in \operatorname{Beh}(L)$
with $\left(x s_{n}, y s_{n}\right) \in F$ for all n
and $Q_{K}(x s) \subseteq Q_{L}(y s)$.

Quiescence

Lost

K and L, with state spaces $X=\{0,1,2\}$
initial set $\{1\}$
property $\diamond \square \llbracket\{0\} \rrbracket$

$$
\begin{aligned}
& \operatorname{step}(K)=1_{X} \cup\{(1,0),(0,1)\}, \\
& \operatorname{step}(L)=1_{X} \cup\{(1,0),(1,2),(2,1)\}
\end{aligned}
$$

The quiescent indices are at the zero elements
Simulation $F=\{(0,0),(0,2),(1,1)\}: K \rightarrow L$

Example: $x s=\left(1,0,0,1,0^{\omega}\right)$
corresponds to ys $=\left(1,2,2,1,0^{\omega}\right)$
Quiescence is lost where 0 becomes 2 .

Semantic
 Completeness

Theorem. Let $F: K \rightarrow L$ preserve quiescence.
There is a forward simulation $H: K \rightarrow K^{\#}$,
an eternity extension $E: K^{\#} \rightarrow W$,
a refinement mapping $g: W \rightarrow L$
with $(H ; E ; g) \subseteq F$.
Sketch of proof.
$K^{\#}$ is the "unfolding" of K with $\operatorname{states}\left(K^{\#}\right)$ the set of stutterfree initial executions of K.
$R \subseteq \operatorname{states}\left(K^{\#}\right) \times \operatorname{Beh}(L)$ holds pairs (xs, ys)
with, for some $x t \in \operatorname{Beh}(K)$,

$$
x s \sqsubseteq x t \wedge(x t, y s) \in F^{\omega} \wedge Q_{K}(x t) \subseteq Q_{L}(y s)
$$

This gives eternity extension $K^{\#} \rightarrow W$.
Function $g: R \rightarrow \operatorname{states}(L)$
maps (xs, ys) to $y s_{n-1}$ where $n=\# x s$
Preservation of quiescence is needed to make g a refinement mapping $W \rightarrow L$

Comparison

This result is simpler than
the Theorem of Abadi-Lamport (1991)
with backward simulation instead of eternity extension
There the concrete specification had to be "machine-closed"

The abstract specification had to be of "finite invisible nondeterminism" and "internally continuous"

These conditions are not unreasonable but very technical
and therefore inconvenient

Comparison

continued

Internal continuity is replaced by preservation of quiescence

Finite invisible nondeterminism
is replaced by the condition
that R be a behaviour restriction:
For every behaviour xs of K
there exists $m \in M$ with

$$
\left(\forall n::\left(\mathrm{xs}_{n}, m\right) \in R\right)
$$

Usually solved by "approximating" m

6. Extended Example

Concrete specification K0

var $\mathrm{j}:$ Nat $:=0$;
do true $\rightarrow \mathrm{j}:=\mathrm{j}+1$;
$j>0 \rightarrow j:=0 ;$
od;
prop: j decreases infinitely often.
$\operatorname{states}(K 0)=\mathbb{N}$
$\operatorname{init}(K 0)=\{0\}$
$\operatorname{prop}(K 0)=\square \diamond \llbracket>\rrbracket$

$$
\begin{aligned}
& (i, j) \in \operatorname{step}(K 0) \quad \equiv \\
& j=i+1 \quad \vee \quad j=0 \quad \vee \quad j=i
\end{aligned}
$$

Guessing

the jumping points \qquad xxiii
Abstract specification K1

$$
\begin{aligned}
& \text { var } \mathrm{j}: \mathrm{Nat}:=0, \mathrm{~m}: N a t:=0 ; \\
& \text { do } \mathrm{j}<\mathrm{m} \rightarrow \mathrm{j}:=\mathrm{j}+1 ; \\
& \rrbracket \mathrm{j}=\mathrm{m} \rightarrow \mathrm{j}:=0 ; \mathrm{m}:=0 ; \\
& \mathrm{j}=0 \rightarrow \mathrm{j}:=1 ; \quad \text { choose } \mathrm{m} \geq 1 ; \\
& \text { od } ; \\
& \text { prop: }(\mathrm{j}, \mathrm{~m}) \text { changes infinitely often. } \\
& \text { states }(K 1)=\mathbb{N} \times \mathbb{N} \\
& \text { init }(K 1)=\{(0,0)\} \\
& \operatorname{prop}(K 1)=\square \diamond \llbracket \neq \rrbracket \\
& \quad\left((j, m),\left(j^{\prime}, m^{\prime}\right)\right) \in \operatorname{step}(K 1) \equiv \\
& \left(j<m \wedge j^{\prime}=j+1 \wedge m^{\prime}=m\right) \\
& \vee\left(j=m \wedge j^{\prime}=m^{\prime}=0\right) \\
& \vee\left(j=0 \wedge j^{\prime}=1 \leq m^{\prime}\right) \\
& \vee \quad\left(j^{\prime}=j \wedge m^{\prime}=m\right) .
\end{aligned}
$$

How to let $K 0$ simulate $K 1$?

Adding

History Variables

\qquad xxiv
Extend K0 with history variables
n and q to obtain $K 2$

```
var \(\mathrm{j}:\) Nat \(:=0, \mathrm{n}:\) Nat \(:=0\);
    \(\mathrm{q}:\) array \(N a t\) of \(N a t:=([N a t] 0)\);
do true \(\rightarrow \mathrm{j}:=\mathrm{j}+1 ; \mathrm{q}[\mathrm{n}]:=\mathrm{q}[\mathrm{n}]+1\);
』 \(\mathrm{j}>0 \rightarrow \mathrm{j}:=0 ; \mathrm{n}:=\mathrm{n}+1\);
od ;
prop: j decreases infinitely often.
```

$F_{0,2}: K 0 \rightarrow K 2$, the converse of the projection, is a forward simulation

Eternity Extension

\qquad $\mathbf{x x v}$

Extend K2 with eternity variable m
m is an infinite array
with the behaviour restriction (!)

$$
R: \quad \mathrm{j} \leq \mathrm{m}[\mathrm{n}] \quad \wedge \quad(\forall i: 0 \leq i<\mathrm{n}: \mathrm{m}[i]=\mathrm{q}[i]) .
$$

This gives spec $K 3$ with

$$
\begin{aligned}
& \left((j, n, q, m),\left(j^{\prime}, n^{\prime}, q^{\prime}, m^{\prime}\right)\right) \in \operatorname{step}(K 3) \equiv \\
& \quad m=m^{\prime} \wedge\left((j, n, q),\left(j^{\prime}, n^{\prime}, q^{\prime}\right)\right) \in \operatorname{step}(K 2)
\end{aligned}
$$

Define $f_{3,1}: \operatorname{states}(K 3) \rightarrow \operatorname{states}(K 1)$ by

$$
f_{3,1}(j, n, q, m)=(j,(j=0 ? 0: m[n]))
$$

This is a refinement mapping $K 3 \rightarrow K 1$
We thus have $K 0 \rightarrow K 2 \rightarrow K 3 \rightarrow K 1$.

