
Dagstuhl, July 8–10, 2002:

MPC, Dagstuhl
July, 2002 i

Eternity Variables
to Simulate Specifications
Wim H. Hesselink

Email: wim@cs.rug.nl

Aim of the talk ii
How to prove that program K
simulates specification L?

Programs are (executable) specifications

Four kinds of simulations:
functional, forward, backward, eternity

Theorem. Every simulation F : K −. L
that preserves quiescence,
is provable by means of these special ones

A variation of theory of
Abadi and Lamport (1991)

www.cs.rug.nl/~wim/pub/whh275.pdf

Overview iii

1. Temporal Logic of Actions

2. Refinement mappings and
simulations between specs

3. Forward and backward simulations

4. Eternity variables

5. Preservation of quiescence
and Completeness

1. Temporal Logic
of Actions iv
A specification is a 4-tuple K :

X = states(K): the state space
Y = init(K) ⊆ X: set of initial states
N = step(K) ⊆ X2: next-state relation
P = prop(K) ⊆ Xω: (fairness) property

An execution is a list xs of states
with (xsi, xsi+1) ∈ N for all i

• initial iff xs0 ∈ Y .

• a behaviour iff infinite and belongs to P

Beh(K) = [[Y]] ∩ 2[[N]] ∩ P
To allow stuttering N is reflexive
(and P is a “property”).

Example v
Specification L0

var k: Int := 0 ;

do k = 0 -> choose k in Int ;

[] true -> k := k - 2 ;

od ;

prop: infinitely often k = 0.

states(L0) = Int

init(L0) = {0}
prop(L0) = 23[[k = 0]]

step(L0) =
{(k, k′) | k = 0 ∨ k′ = k − 2 ∨ k′ = k}

Every state is reachable

The occurring states have k natural and even

2. Refinement Mappings vi
When does spec K implement spec L?

K : the concrete program
L : the abstract program

A refinement mapping from K to L is
a function f : states(K)→ states(L) such that

x ∈ init(K) ⇒ f(x) ∈ init(L)
(x, x′) ∈ step(K) ⇒ (f(x), f(x′)) ∈ step(L)
xs ∈ Beh(K) ⇒ fω(xs) ∈ Beh(L)

Example K(m)
for m > 1 vii

var j : Nat := 0 ;
do true → j := (j + 1) mod m od ;
prop: j changes infinitely often.

states(K(m)) = IN
init(K(m)) = {0}
prop(K(m)) = 23[[6=]]

(j, j′) ∈ step(K(m)) ≡ j′ ∈ {j, (j + 1) mod m}

1

A refinement mapping f from K(21) to K(14)?
Take f : IN→ IN with f(j) = min(j, 13)

The abstract behaviour stutters
whenever the concrete behaviour proceeds
from 13 to 20

vii.1. – Refinement mappings are not enough.
We sometimes need simulations

Simulations (new) viii

Spec K simulates spec L
via relation F ⊆ states(K)× states(L)
(notation F : K −. L)
≡

for every xs ∈ Beh(K)
there is ys ∈ Beh(L)
with (xsn, ysn) ∈ F for all n

Every refinement mapping
f : states(K)→ states(L)
induces a simulation K −. L
If F : K −. L and F ⊆ G
then G : K −. L
The smaller the simulation,
the more information it carries

Example
with prescience ix

K and L
both with state space X = {0, 1, 2, 3, 4},
initial set {4}, and property 3 [[{0, 1}]].

step(K) = 1X ∪ {(4, 2), (2, 1), (2, 0)}
step(L) = 1X ∪ {(4, 3), (4, 2), (3, 1), (2, 0)}

K : 4 - 2
���

0

@@R
1

L : 4
���

2

@@R
3

-

-

0

1

Simulation F = 1X ∪ {(2, 3)}
Concrete state 2 splits
into abstract states 2 and 3

Visibility x

Visible spec (K, v)
where v is a function on states(K)

The visible behaviours:
Obs(K, v) = {vω(xs) | xs ∈ Beh(K)}

(K, v) implements (L,w) iff . . .
Obs(K, v) ⊆ Obs(L,w)
(differs from Abadi-Lamport)

Theorem (new). (K, v) implements (L,w)
if and only if there is a simulation F : K −. L
with F ⊆ {(x, y) | v(x) = w(y)}.

3. Forward Simulations xi
F ⊆ states(K)× states(L)
is a forward simulation iff

(F0) For every x ∈ init(K),
there is y ∈ init(L) with (x, y) ∈ F
(F1) For every (x, y) ∈ F
and every x′ with (x, x′) ∈ step(K),
there is y′ with (y, y′) ∈ step(L) and (x′, y′) ∈ F
(F2) Every infinite initial execution ys of L
with (xs, ys) ∈ Fω for some xs ∈ Beh(K)
has ys ∈ prop(L)

Theorem.
Every forward simulation is a simulation

Example
Different Periods xii
Specs K(m) and K(2 ·m) as above

Relation F given by

(j, k) ∈ F ≡ k = j ∨ k = j +m .

F is a forward simulation K(m) −. K(2 ·m)

There is no refinement mapping
from K(m) to K(2 ·m).

Backward Simulations xiii
F ⊆ states(K)× states(L)
is a backward simulation (version Jonnson) iff

(B0) Every pair (x, y) ∈ F
with x ∈ init(K) has y ∈ init(L).

(B1) For every pair (x′, y′) ∈ F and
every x with (x, x′) ∈ step(K),
there is y with (x, y) ∈ F and (y, y′) ∈ step(L).

(B2) Every behaviour xs of K has
infinitely many n with
(xsn;F) nonempty and finite.

(B3) Every infinite initial execution ys of L
with (xs, ys) ∈ Fω for some xs ∈ Beh(K)
has ys ∈ prop(L).

Theorem.
Every backward simulation is a simulation

2

xiii.1. –

Every composition of simulations is a simulation.
A composition of forward/backward simulations need
not be a forward/backward simulation.

The example with prescience is a backward simulation.

The finiteness condition in (B2) is inconvenient.
It is needed to apply König’s Lemma.

4. Eternity Variables (new) xiv
Let M be a type for an “eternity” variable m

A relation R ⊆ states(K)×M
is a behaviour restriction over K
≡

for every behaviour xs of K
there exists m ∈M with

(∀ n :: (xsn,m) ∈ R)

Soundness of
Eternity Extension xv
Let R be a behaviour restriction over K.

Construct spec W :
states(W) = R ⊆ states(K)×M
init(W) = R ∩ (init(K)×M)
prop(W) = {ws | fstω(ws) ∈ prop(K)}

((x,m), (x′,m′)) ∈ step(W) ≡
(x, x′) ∈ step(K) ∧ m′ = m

Theorem. F = {(x, (x′,m)) |x = x′}
gives a simulation K −. W .

Proof. Let xs ∈ Beh(K).
Choose m ∈M with (∀ n :: (xsn,m) ∈ R).
Define ysn = (xsn,m) ∈ R = states(W).
Then ys ∈ Beh(W) and all (xsn, ysn) ∈ F .

5. Towards Completeness xvi
We want to write an arbitrary simulation F
as a composition of special ones:

forward simulations
(backward simulations)
eternity extensions

All these “preserve quiescence”

Therefore, F must “preserve quiescence”

Preservation
of Quiescence xvii
For xs ∈ Beh(K)
the set of quiescent indices is

QK(xs) = {n | (xs |n) ++ (xsωn) ∈ Beh(K)}

F : K −. L preserves quiescence
≡

for every xs ∈ Beh(K)
there exists ys ∈ Beh(L)
with (xsn, ysn) ∈ F for all n
and QK(xs) ⊆ QL(ys).

Quiescence
Lost xviii
K and L, with state spaces X = {0, 1, 2}
initial set {1}
property 32 [[{0}]]

step(K) = 1X ∪ {(1, 0), (0, 1)} ,
step(L) = 1X ∪ {(1, 0), (1, 2), (2, 1)} .

The quiescent indices are at the zero elements

Simulation F = {(0, 0), (0, 2), (1, 1)} : K −. L

- 1

?
6

0K L

- 1

?
@
@R

6

2 0

Example: xs = (1, 0, 0, 1, 0ω)
corresponds to ys = (1, 2, 2, 1, 0ω)

Quiescence is lost where 0 becomes 2.

Semantic
Completeness xix
Theorem. Let F : K −. L preserve quiescence.
There is a forward simulation H : K −. K#,
an eternity extension E : K# −. W ,
a refinement mapping g : W −. L
with (H;E; g) ⊆ F .

Sketch of proof.
K# is the “unfolding” of K
with states(K#) the set of
stutterfree initial executions of K.

R ⊆ states(K#)× Beh(L) holds pairs (xs, ys)
with, for some xt ∈ Beh(K),

xs v xt ∧ (xt, ys) ∈ Fω ∧ QK(xt) ⊆ QL(ys)

This gives eternity extension K# −. W .

Function g : R→ states(L)
maps (xs, ys) to ysn−1 where n = #xs

Preservation of quiescence is needed
to make g a refinement mapping W −. L

Comparison xx
This result is simpler than
the Theorem of Abadi-Lamport (1991)

3

with backward simulation
instead of eternity extension

There the concrete specification had to be
“machine-closed”

The abstract specification had to be
of “finite invisible nondeterminism”
and “internally continuous”

These conditions are not unreasonable
but very technical

and therefore inconvenient

Comparison
continued xxi

Internal continuity is replaced by
preservation of quiescence

Finite invisible nondeterminism
is replaced by the condition
that R be a behaviour restriction:

For every behaviour xs of K
there exists m ∈M with

(∀ n :: (xsn,m) ∈ R)

Usually solved by “approximating” m

6. Extended Example xxii

Concrete specification K0

var j : Nat := 0 ;
do true → j := j + 1 ;
[] j > 0 → j := 0 ;
od ;
prop: j decreases infinitely often.

states(K0) = IN
init(K0) = {0}
prop(K0) = 23[[>]]

(i, j) ∈ step(K0) ≡
j = i+ 1 ∨ j = 0 ∨ j = i

Guessing
the jumping points xxiii

Abstract specification K1

var j : Nat := 0 , m : Nat := 0 ;
do j < m → j := j + 1 ;
[] j = m → j := 0 ; m := 0 ;
[] j = 0 → j := 1 ; choose m ≥ 1 ;
od ;
prop: (j, m) changes infinitely often.

states(K1) = IN× IN
init(K1) = {(0, 0)}
prop(K1) = 23[[6=]]

((j,m) , (j′,m′)) ∈ step(K1) ≡
(j < m ∧ j′ = j + 1 ∧ m′ = m)
∨ (j = m ∧ j′ = m′ = 0)
∨ (j = 0 ∧ j′ = 1 ≤ m′)
∨ (j′ = j ∧ m′ = m) .

How to let K0 simulate K1?

Adding
History Variables xxiv
Extend K0 with history variables
n and q to obtain K2

var j : Nat := 0 , n : Nat := 0 ;
q : array Nat of Nat := ([Nat] 0) ;

do true → j := j + 1 ; q[n] := q[n] + 1 ;
[] j > 0 → j := 0 ; n := n + 1 ;
od ;
prop: j decreases infinitely often.

F0,2 : K0 −. K2 , the converse of the projection,
is a forward simulation

Eternity Extension xxv
Extend K2 with eternity variable m

m is an infinite array
with the behaviour restriction (!)

R : j ≤ m[n] ∧ (∀ i : 0 ≤ i < n : m[i] = q[i]) .

This gives spec K3 with

((j, n, q,m) , (j′, n′, q′,m′)) ∈ step(K3) ≡
m = m′ ∧ ((j, n, q) , (j′, n′, q′)) ∈ step(K2)

Define f3,1 : states(K3)→ states(K1) by

f3,1(j, n, q,m) = (j, (j = 0 ? 0 : m[n]))

This is a refinement mapping K3 −. K1
We thus have K0 −. K2 −. K3 −. K1.

4

