Dagstuhl, July 8–10, 2002:

MPC, Dagstuhl July, 2002 ____

Eternity Variables to Simulate Specifications

Wim H. Hesselink Email: wim@cs.rug.nl

Aim of the talk ____

How to prove that program Ksimulates specification L?

Programs are (executable) specifications

Four kinds of simulations:

functional, forward, backward, eternity Theorem. Every simulation $F: K \rightarrow L$

that preserves quiescence,

is provable by means of these special ones

A variation of theory of Abadi and Lamport (1991)

www.cs.rug.nl/~wim/pub/whh275.pdf

Overview ____

_____ iii

_____ iv

_ i

ii

1. Temporal Logic of Actions

- 2. Refinement mappings and simulations between specs
- 3. Forward and backward simulations
- 4. Eternity variables
- 5. Preservation of quiescence and Completeness

1. Temporal Logic of Actions

A specification is a 4-tuple K:

X = states(K): the state space $Y = init(K) \subseteq X$: set of initial states $N = step(K) \subseteq X^2$: next-state relation $P = prop(K) \subseteq X^{\omega}$: (fairness) property An *execution* is a list xs of states

with $(xs_i, xs_{i+1}) \in N$ for all i

• *initial* iff $xs_0 \in Y$.

• a *behaviour* iff infinite and belongs to P $Beh(K) = \llbracket Y \rrbracket \cap \Box \llbracket N \rrbracket \cap P$ To allow stuttering N is reflexive (and P is a "property").

v

____ vi

Example ____

```
Specification L0
```

var k: Int := 0; do $k = 0 \rightarrow$ choose k in Int ; [] true \rightarrow k := k - 2 ; od ; prop: infinitely often k = 0. states(L0) = Int $init(L0) = \{0\}$ $prop(L0) = \Box \diamondsuit \llbracket \mathbf{k} = 0 \rrbracket$ step(L0) = $\{(k,k') \mid k = 0 \lor k' = k - 2 \lor k' = k\}$ Every state is reachable The occurring states have k natural and even

2. Refinement Mappings ____

When does spec K implement spec L? K : the concrete program L: the abstract program A refinement mapping from K to L is a function $f : states(K) \rightarrow states(L)$ such that $x \in init(K) \Rightarrow f(x) \in init(L)$ $(x, x') \in step(K) \implies (f(x), f(x')) \in step(L)$

 $xs \in Beh(K) \Rightarrow f^{\omega}(xs) \in Beh(L)$

Example K(m)

for m > 1 _____ _____ vii **var** j: Nat := 0; do true \rightarrow j := (j + 1) mod m od ; prop: j changes infinitely often. $states(K(m)) = \mathbb{N}$

 $init(K(m)) = \{0\}$ $prop(K(m)) = \Box \diamondsuit \llbracket \neq \rrbracket$ $(j,j') \in step(K(m)) \equiv j' \in \{j, (j+1) \mod m\}$ A refinement mapping f from K(21) to K(14)? Take $f : \mathbb{N} \to \mathbb{N}$ with $f(j) = \min(j, 13)$

The abstract behaviour stutters whenever the concrete behaviour proceeds from 13 to 20

vii.1. – Refinement mappings are not enough.We sometimes need simulations

Simulations (new) _

 $\begin{array}{l} \operatorname{Spec} K \ simulates \ \operatorname{spec} L \\ \operatorname{via} \ \operatorname{relation} \ F \subseteq states(K) \times states(L) \\ (\operatorname{notation} \ F : K \to L) \\ \equiv \\ \operatorname{for} \ \operatorname{every} \ xs \in Beh(K) \\ \operatorname{there} \ \operatorname{is} \ ys \in Beh(L) \\ \operatorname{with} \ (xs_n, ys_n) \in F \ \operatorname{for} \ \operatorname{all} \ n \\ \operatorname{Every} \ \operatorname{refinement} \ \operatorname{mapping} \\ f : states(K) \to states(L) \\ \operatorname{induces} \ \operatorname{a} \ \operatorname{simulation} \ K \to L \\ \operatorname{If} \ F : K \to L \ \operatorname{and} \ F \subseteq G \\ \operatorname{then} \ G : K \to L \end{array}$

The smaller the simulation, the more information it carries

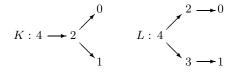
Example

with prescience ____

K and L both with state space $X = \{0, 1, 2, 3, 4\}$, initial set $\{4\}$, and property $\Diamond [\![\{0, 1\}]\!]$.

$$step(K) = 1_X \cup \{(4,2), (2,1), (2,0)\}$$

$$step(L) = 1_X \cup \{(4,3), (4,2), (3,1), (2,0)\}$$



Simulation $F = 1_X \cup \{(2,3)\}$

Concrete state 2 splits into abstract states 2 and 3

Visibility ____

Visible spec (K, v)where v is a function on states(K)

The visible behaviours: $Obs(K, v) = \{v^{\omega}(xs) \mid xs \in Beh(K)\}$ (K, v) implements (L, w) iff ... $Obs(K, v) \subseteq Obs(L, w)$ (differs from Abadi-Lamport)

Theorem (new). (K, v) implements (L, w)if and only if there is a simulation $F : K \rightarrow L$ with $F \subseteq \{(x, y) | v(x) = w(y)\}.$

3. Forward Simulations ______ xi

 $F \subseteq \text{states}(K) \times \text{states}(L)$ is a forward simulation iff (F0) For every $x \in \text{init}(K)$, there is $y \in \text{init}(L)$ with $(x, y) \in F$ (F1) For every $(x, y) \in F$ and every x' with $(x, x') \in \text{step}(K)$, there is y' with $(y, y') \in \text{step}(L)$ and $(x', y') \in F$ (F2) Every infinite initial execution ys of Lwith $(xs, ys) \in F^{\omega}$ for some $xs \in Beh(K)$ has $ys \in prop(L)$ **Theorem.**

Every forward simulation is a simulation

Example

___ viii

ix

Different Periods ____

Specs K(m) and $K(2 \cdot m)$ as above Relation F given by $(j,k) \in F \equiv k = j \lor k = j + m$. F is a forward simulation $K(m) \Rightarrow K(2 \cdot m)$ There is no refinement mapping from K(m) to $K(2 \cdot m)$.

Backward Simulations

____ xiii

_ xii

 $F \subseteq \text{states}(K) \times \text{states}(L)$ is a backward simulation (version Jonnson) iff (B0) Every pair $(x, y) \in F$ with $x \in \text{init}(K)$ has $y \in \text{init}(L)$. (B1) For every pair $(x', y') \in F$ and every x with $(x, x') \in \text{step}(K)$, there is y with $(x, y) \in F$ and $(y, y') \in \text{step}(L)$. (B2) Every behaviour xs of K has infinitely many n with $(xs_n; F)$ nonempty and finite. (B3) Every infinite initial execution ys of Lwith $(xs, ys) \in F^{\omega}$ for some $xs \in Beh(K)$ has $ys \in prop(L)$.

Theorem.

Every backward simulation is a simulation

_ X

xiii.1. –

Every composition of simulations is a simulation. A composition of forward/backward simulations need not be a forward/backward simulation.

The example with prescience is a backward simulation.

The finiteness condition in (B2) is inconvenient. It is needed to apply König's Lemma.

4. Eternity Variables (new) _____ xiv

Let M be a type for an "eternity" variable m A relation $R \subseteq states(K) \times M$ is a *behaviour restriction* over K \equiv

for every behaviour xs of K there exists $m \in M$ with

 $(\forall n :: (xs_n, m) \in R)$

Soundness of Eternity Extension _

Let R be a behaviour restriction over K.

Construct spec W: $states(W) = R \subseteq states(K) \times M$ $init(W) = R \cap (init(K) \times M)$ $prop(W) = \{ws | fst^{\omega}(ws) \in prop(K) \}$ $((x,m), (x',m')) \in step(W) \equiv$ $(x,x') \in step(K) \land m' = m$ **Theorem.** $F = \{(x, (x',m)) | x = x'\}$ gives a simulation $K \rightarrow W$. Proof. Let $xs \in Beh(K)$. Choose $m \in M$ with $(\forall n :: (xs_n, m) \in R)$. Define $ys_n = (xs_n, m) \in R = states(W)$. Then $ys \in Beh(W)$ and all $(xs_n, ys_n) \in F$.

5. Towards Completeness	xvi
We want to write an arbitrary simulation F as a composition of special ones:	
forward simulations (backward simulations) eternity extensions	
All these "preserve quiescence"	
Therefore, F must "preserve quiescence"	

Preservation

of Quiescence ____

For $xs \in Beh(K)$ the set of quiescent indices is

 $Q_K(\mathbf{xs}) = \{ n \mid (\mathbf{xs} \mid n) + (\mathbf{xs}_n^{\omega}) \in Beh(K) \}$

 $F: K \to L \text{ preserves quiescence}$ \equiv for every $xs \in Beh(K)$ there exists $ys \in Beh(L)$ with $(xs_n, ys_n) \in F$ for all nand $Q_K(xs) \subseteq Q_L(ys)$.

Quiescence Lost _____

K and L, with state spaces $X = \{0, 1, 2\}$ initial set $\{1\}$ property $\bigcirc \Box \llbracket \{0\} \rrbracket$

$$step(K) = 1_X \cup \{(1,0), (0,1)\}, step(L) = 1_X \cup \{(1,0), (1,2), (2,1)\}$$

The quiescent indices are at the zero elements

Simulation $F = \{(0,0), (0,2), (1,1)\} : K \to L$

$$\begin{array}{c} \longrightarrow 1 \\ \downarrow \uparrow \\ K & 0 \end{array} \qquad \begin{array}{c} \longrightarrow 1 \\ \downarrow \uparrow \\ L & 2 \end{array}$$

Example: $xs = (1, 0, 0, 1, 0^{\omega})$ corresponds to $ys = (1, 2, 2, 1, 0^{\omega})$ Quiescence is lost where 0 becomes 2.

Semantic Completeness _

_ xv

Theorem. Let $F: K \to L$ preserve quiescence. There is a forward simulation $H: K \to K^{\#}$, an eternity extension $E: K^{\#} \to W$, a refinement mapping $g: W \to L$ with $(H; E; g) \subseteq F$. Sketch of proof. $K^{\#}$ is the "unfolding" of Kwith $states(K^{\#})$ the set of stutterfree initial executions of K. $R \subseteq states(K^{\#}) \times Beh(L)$ holds pairs (xs, ys)with, for some $xt \in Beh(K)$, $xs \sqsubseteq xt \land (xt, ys) \in F^{\omega} \land Q_K(xt) \subseteq Q_L(ys)$ This gives eternity extension $K^{\#} \to W$. Function $g: R \to states(L)$ maps (xs, ys) to ys_{n-1} where n = #xs

Preservation of quiescence is needed to make g a refinement mapping $W \twoheadrightarrow L$

Comparison ____

This result is simpler than the Theorem of Abadi-Lamport (1991)

_ xvii

_ XX

_ xviii

_ xix

with backward simulation instead of eternity extension

There the concrete specification had to be "machine-closed"

The abstract specification had to be of "finite invisible nondeterminism" and "internally continuous"

These conditions are not unreasonable but very technical

and therefore inconvenient

Comparison continued

Internal continuity is replaced by preservation of quiescence

Finite invisible nondeterminism is replaced by the condition that R be a behaviour restriction:

For every behaviour xs of Kthere exists $m \in M$ with

 $(\forall n :: (xs_n, m) \in R)$

Usually solved by "approximating" m

6. Extended Example _____ xxii

Concrete specification K0

var j: Nat := 0; $do true \rightarrow j := j + 1;$ $\| j > 0 \rightarrow j := 0;$ od; prop: j decreases infinitely often. $states(K0) = \mathbb{N}$ $init(K0) = \{0\}$ $prop(K0) = \Box \Diamond [\![>]\!]$ $(i, j) \in step(K0) \equiv$

 $j = i + 1 \quad \lor \quad j = 0 \quad \lor \quad j = i$

Guessing

the jumping points _	xxiii
Abstract specification $K1$	

 $\begin{array}{l} \operatorname{var} \mathbf{j} : Nat := 0, \quad \mathbf{m} : Nat := 0; \\ \operatorname{do} \quad \mathbf{j} < \mathbf{m} \quad \rightarrow \quad \mathbf{j} := \mathbf{j} + 1; \\ \| \quad \mathbf{j} = \mathbf{m} \quad \rightarrow \quad \mathbf{j} := 0; \quad \mathbf{m} := 0; \\ \| \quad \mathbf{j} = 0 \quad \rightarrow \quad \mathbf{j} := 1; \quad choose \quad \mathbf{m} \ge 1; \\ \operatorname{od}; \\ \mathbf{prop:} \quad (\mathbf{j}, \mathbf{m}) \text{ changes infinitely often.} \\ states(K1) = \mathbb{N} \times \mathbb{N} \\ init(K1) = \{(0, 0)\} \\ prop(K1) = \Box \diamond \llbracket \neq \rrbracket \\ ((j, m), (j', m')) \in step(K1) \equiv \\ (j < m \land j' = j + 1 \land m' = m) \\ \lor \quad (j = m \land j' = m' = 0) \\ \lor \quad (j = 0 \land j' = 1 \le m') \\ \lor \quad (j' = j \land m' = m). \\ \end{array}$ How to let K0 simulate K1?

Adding

 $\mathbf{x}\mathbf{x}\mathbf{i}$

History Variables ______ xxiv Extend K0 with history variables n and q to obtain K2 var j: Nat := 0, n: Nat := 0; q: array Nat of Nat := ([Nat] 0); do true \rightarrow j := j + 1; q[n] := q[n] + 1; $\|$ j > 0 \rightarrow j := 0; n := n + 1; od; prop: j decreases infinitely often. $F_{0,2}: K0 \rightarrow K2$, the converse of the projection, is a forward simulation

Eternity Extension _____ xxv

Extend K2 with eternity variable m m is an infinite array with the behaviour restriction (!) $R: \mathbf{j} \leq \mathbf{m}[\mathbf{n}] \land (\forall i: 0 \leq i < \mathbf{n}: \mathbf{m}[i] = \mathbf{q}[i])$. This gives spec K3 with $((j, n, q, m), (j', n', q', m')) \in step(K3) \equiv m = m' \land ((j, n, q), (j', n', q')) \in step(K2)$ Define $f_{3,1}: states(K3) \rightarrow states(K1)$ by $f_{3,1}(j, n, q, m) = (j, (j = 0? \ 0: m[n]))$ This is a refinement mapping $K3 \rightarrow K1$ We thus have $K0 \rightarrow K2 \rightarrow K3 \rightarrow K1$.