
The Role of Event Description in
Architecting Dependable Systems

ABSTRACT
Software monitoring is a well-suited technique to support the
development of dependable systems, and has been widely applied
not only for this purpose, but also for others such as debugging,
security, performance, etc. Software monitoring consists of
observing the dynamic behavior of programs when executed, by
detecting particular events and states of interest, and analyzing
this information for specific purposes.

There is an inherent gap between the levels of abstraction the
information is collected (the implementation level) and the
software architecture level. Unless there is an immediate one-to-
one architecture to implementation mapping, we need a
specification language to describe how low-level events are
related to higher-level ones. Although some event specification
languages for monitoring have been proposed in the literature,
they do not provide support up to the software architecture level.

In this paper, we discuss the importance of event description as
an integration element for architecting dependable systems. We
also present how our current work in defining an interchangeable
description language for events can support the development of
such complex systems.

1. INTRODUCTION
As stated in the workshop call, "architectural representations of
systems have shown to be effective in assisting the understanding
of broader system concerns by abstracting away from details of
the system". The software architecture level of abstraction helps
the developer in dealing with system complexity, and is the
adequate level for analysis, since components, connectors, and
their configuration are better understood and intellectually
tractable [16].

When building dependable systems, additional management
services are required and they impose even more complexity to
the system [14]. Some of these services are fault-tolerance [5] and
safety, as well as security (intrusion detection) and resource
management, among others. An underlying service to all these

services is the software monitoring.

Software monitoring is a well-known technique for observing and
understanding the dynamic behavior of programs when executed,
and can provide for many different purposes [13][15]. Besides
dependability, other purposes for applying monitoring are: testing,
debugging, correctness checking, performance evaluation and
enhancement, security, control, program understanding and
visualization, ubiquitous user interaction and dynamic
documentation.

Software monitoring consists in collecting information from the
system execution, detecting particular events or states using the
collected data, analyzing and presenting relevant information to
the user, and possibly taking some (preventive or corrective)
actions. As the information is collected from the execution of the
program implementation, there is an inherent gap between the
level of abstraction of the collected events (and states) and of the
software architecture. Unless the implementation was generated
from the software architectural description, or there is an easily
identifiable one-to-one architecture to implementation mapping
[1][10][16], we need to describe how those (primitive) events are
related to higher-level (composed) events.

Many monitoring systems were developed so the user could
specify composed events from primitive ones, using provided
specification languages. However, in general, these specification
languages are either restricted to a single monitoring system, not
generic for many different purposes, or cannot associate specified
events to the software architecture.

There is no monitoring system able to provide for all different
purposes. One problem occurs when a user is interested in
applying monitoring for more than one purpose (for instance,
dependability, performance evaluation, and program
visualization). In this case, he or she would probably run different
monitoring systems and, consequently, need to describe the same
events multiple times using different specification languages.

To put it simple, software monitoring is a well-suited technique to
support the development of dependable systems, and has been
widely applied for this purpose. However, monitoring systems
suffer in the ability to associate collected information to software
architecture level.

In this position paper, we discuss how software monitoring can be
applied at the software architectural level to support
dependability. In this context, we present some requirements for
event description languages, and our ongoing work on xMonEve,
an XML-based language for describing monitoring events.

 Marcio S Dias Debra J Richardson
 Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

{mdias,djr}@ics.uci.edu

2. EVENT MONITORING
There are basically two types of monitoring systems based on the
information collection: sampling (time-driven) and tracing (event-
driven). By sampling, information about the execution state is
collected synchronously (in a specific time rate), or
asynchronously (through direct request of the monitoring system).
By tracing, on the other hand, information is collected when an
event of interest occurs in the system [11].

Tracing allows a better understanding and reasoning of the system
behavior than sampling. However, tracing monitoring generates a
much larger volume of data than sampling. In order to reduce this
data volume problem, some researchers have been working on
encoding techniques [12]. A more common and straightforward
way to reduce data volume is to collect interesting events only,
and not all events that happen during a program execution [7][9].
This second approach may limit the analysis of events and
conditions unforeseen previously to the program execution,
though.

Both state and event information is important to understand and
reason about the program execution [14]. Since tracing
monitoring collects information when events occur, state
information can be maintained by collecting the events associated
to state changes. With a hybrid approach, the sampling
monitoring can represent the action of collecting state information
into an event for the tracing monitoring. Like any other event, not
all events with state information should be collected, but only
those events of interest. Integrating sampling and tracing
monitoring and collecting the state information through events
reduce the complexity of the monitoring task.

The monitoring system needs to know what are the events of
interest, i.e. what events should be collected. Therefore, it
provides an event specification language to the user. Additionally,
it needs to know what kind of analysis it should perform over the
collected information. The user may provide a specification of the
correct behavior of the system and the monitoring checks for its
correctness, showing when the system did not perform
accordingly to the specification. Another approach is to have the
user specifying the conditions of interest, and the monitoring
system identifying and notifying him/her when these conditions
are detected. A third approach, not frequently used by monitoring
systems, is to characterize (build a model of) the system behavior
from the program execution, mainly for program understanding
and dynamic documentation.

Since analysis is so intrinsic to the monitoring activity, it became
normal to have monitoring specification languages where the user
describes not only the events, but also the analysis to be
performed. As a consequence, monitoring specification languages
are biased to the kind of analysis performed by the monitoring
system. To the best of our knowledge, there is no monitoring
specification language that separates the concerns of “what are
the events of the system?” (describing the events of interest only),
“what is(are) the purpose(s) for monitoring the system?”
(performance, reliability, etc), and “what kinds of analysis should
be performed?” (i.e. condition detection; correctness checking or
comparison; or model characterization).

In the current step of our research, we are focusing on the first
question for monitoring specification languages, i.e. “what are the

interesting events of the system?”. We are defining an extendable
and flexible language (xMonEve) for describing monitoring
events independently of the system implementation, the purpose
of analysis, and the monitoring system.

2.1 Requirements for xMonEve
Initially, we identified new requirements for event description
languages. Some of the requirements that guide us through the
development of xMonEve are:

• general purpose: need to be flexible enough to accommodate
event description for multiple monitoring purposes (i.e.
independent of the analysis to be performed);

• independence of monitoring system: must allow generic
description of events, both primitive and composed, not
restricted to a specific monitoring system (or environment);

• implementation independence: need to provide mechanisms
that separate the conceptual event to the implementation
mapping;

• reusable: event description should be reusable independently
of the implementation and monitoring system;

• extensible: extension of event description should be
supported, so more specific information can be associated to
the events. For instance, one extension can be the association
of monitoring events to software architectural elements.

Like most monitoring specification languages, xMonEve can
represent both primitive and composed events. Primitive events
are events that occur in a specific moment in time, i.e. an
instantaneous occurrence. Composed events are events composed
of other events (primitive or composed ones), and have a specific
moment of start and end. While its starting time is defined by the
first event to happen, the last event determines its ending time.

Composed events provide a higher-level abstraction for the
system execution. Primitive events may be filtered out and
abstracted into composed events, having unneeded details thrown
away.

One important advantage of event description is that it is well
suited to bridge the gap between software architecture and
implementation (mapping). For multiple reasons (such as reuse,
maintainability, performance, fault-tolerance, security, etc), the
implementation structure may not exactly correspond to the
conceptual architectural structure. Events imply in a functional
mapping for associating architecture and implementation, instead
of a structural mapping. A functional mapping between
implementation and any previous software specification document
(software architecture, requirements, etc) should be always
possible. If a system functionality cannot be associated to
implementation actions (independently of how hard it may be for
a human being to do this association), than this functionality was
not implemented at first place.

Therefore, although events play an important role in the mapping
between architecture and implementation, event specification
languages have often ignored this importance, and not provided
any mechanism to associate these different abstraction levels.

2.2 Describing Events with xMonEve
The purpose of this paper is not to provide a complete discussion
about the xMonEve language, but to give an overview of its
concepts and emphasize some specific details relevant for the
context of architecting dependable systems.

In xMonEve, every event type has ID, name, description,
attributes, and abstraction. The abstraction field is used to
associate the event to a context. For instance, while a primitive
event “open” may be associated to the “File” abstraction, a
composed event “open” may be associated to the
”CheckingAccount” abstraction. It is important to note here that
CheckingAccount may or may not represent a structure (e.g., class
or subsystem) of the system implementation. This mechanism
allows multiple levels of abstraction, from the implementation
level to the requirement level, passing through design and also
software architecture. In the previous example, CheckingAccount
may be a component abstraction at the software architectural
level.
<event name=open type=primitive ID=#>
 <abstraction>File</abstraction>
 <description>opening file</description>
 <attributes>
 <field name=filename type=string>
 <thread_id>
 <timestamp>
 </attributes>
 <...>
</event>

Figure 1. Example showing common features to every event.

Additionally to the features that are common to every event,
primitive and composed events have other distinct characteristics.

2.2.1 Primitive Events
A primitive event may be in more than one system, and with
different implementations. In order to have a reusable definition
for this event, multiple implementation mappings should be
allowed. So, primitive events may have zero, one, or multiple
mappings. These events will typically have no mapping until the
programmer specify them, since he is the one with the right
knowledge.
<event name=open type=primitive ID=#>
 <...>
 <mapping>
 <system ref=java_library/>
 <language name=java/>
 <class name=java.io.File/>
 <type name=operation>File(String pathname)
 </type>
 <when type=method_exit/>
 <assignments>
 <set field=filename parameter=pathname>
 </assignments>
 </mapping>
 <...>
</event>

Figure 2. Example mapping a primitive event to the
implementation. In this example, the event open occurs when the
“method” (actually the constructor) of java.io.File class returns,
and the event field filename has its value assigned from the
pathname parameter.

2.2.2 Composed Events
When defining composed events, no mapping is needed, since it
is composed of other events. Besides the common event fields,
composed events have three extra sections: composition,
correlation and conditions. In composition, it is described what
are the event types that compose this event. In correlation, the
sequence or order of these events to generate the abstract event.
The condition section describes the conditions that have to be
satisfactory between these events so the composed event can be
identified.
<event name=AccountTranfer type=composite ID=#>
<abstraction>Client</abstraction>
<composition>
 <alias name=before event=Bank.TransferRequest/>
 <alias name=withdraw event=Account.Withdraw/>
 <alias name=deposit event=Account.Deposit/>
 <alias name=after event=Bank.Tranfer/>
</composition>
<attributes>
 <field name=client value=before.client/>
 <field name=from value=withdraw.account/>
 <field name=to value=deposit.account/>
 <field name=amount value=withdraw.amount/>
 <timestamp start=before.timestamp.start
 end=after.timestamp.end/>
</attributes>
<correlation method=regexp>
 <sequence min=1 max=1>
 <event alias=before min=1 max=1/>
 <parallel min=1 max=1>
 <event alias=withdraw/>
 <event alias=deposit/>
 </parallel>
 <event alias=after min=1 max=1/>
 </sequence>
</correlation>
<condition>
 <and>
 <exp> before.client = withdraw.client =
 deposit.client = after.client </exp>
 <exp> withdraw.amount = deposit.amount </exp>
 </and>
</condition>
<...>
</event>

Figure 3. Example of the composed event “AccountTransfer”. In
this example we can see what events compose this one
(composition), what is the correlation between these events, and
what conditions should be satisfied between those events.

3. ARCHITECTING DEPENDABLE
SYSTEMS
With xMonEve, events can be described in both top-down and
bottom-up approaches, since the language is independent of the
development process. However, in the context of architectural
development of dependable software, a top-down approach would
be more natural (but not the only possible approach). The
architect would describe (incomplete composed) events at the
architectural level, while the designer and/or programmer would
decompose these events into lower-level events, until they could
be completely defined in terms of primitive events only.

First, in this section, we discuss the role of events as the
integration element for the development of dependable systems
from software architecture to program execution. Afterwards, we
briefly present a top-down approach for architecting such systems.

3.1 Event as the Integration Element
According to Hofmann et al. [4], both monitoring and modeling
rely on a common abstraction of a system’s dynamic behavior, the
event, and therefore can be integrated to one comprehensive
methodology for measurement, validation and evaluation.

When considering modeling and analysis techniques that have
been applied for designing dependable (reliable) system, Markov
models and simulations stand out [8]. It is important to note that
the event abstraction is also common to these techniques. A
Markov model has a state changed with the occurrence of an
event, which time to occurrence is often modeled with a random
exponential distribution. During simulation execution, event
traces are generated, over which analyses are performed.

Therefore, the event abstraction can act as the basic element for
integrating: reliability models, architecture designs, system
implementation, and analyses. In order to have this integration, an
interchangeable (shared and canonical) representation of events
should be available during the whole software development
process. In this context, xMonEve represents an important step
towards this integration.

3.2 Top-Down Approach
Here, we informally and briefly describe a top-down approach for
architecting dependable systems by using events as basic
elements of integration.

When building Markov models for reliability analysis, architects
and designers may associate information about the model to the
events. In this case, the event would include the information about
the state change, and also the random distribution of its
occurrence. This event definition could be used for running
reliability analysis prior to the system development.

<event name=enter_overload_state type=composite …>
 <abstraction>ComponentA</abstraction>
 <markov_model>
 <transition from=“overload_state”
 to=“failure_state”/>
 <distribution (...) />
 <...>
 </markov_model>
 <...>
</event>

Figure 4. Extension of an event description with information for
the Markov model.

Independently of having or not Markov (or others) extensions to
an event definition, software architects, designers and
programmers may compose (or decompose) an event from (into)
other events, by defining and associating these new events. Thus,
multiple levels of event abstraction can be created, from
requirements and software architecture abstractions to
implementation primitive events.

<event name=overload_timeout type=composite …>
 <abstraction>ComponentA</abstraction>
 <markov_model>...</markov_model>
 <composition>
 <alias name=eos event=enter_overload_state />
 <alias name=avg event=loadAverageSampling.../>
 </composition>
 <attributes>
 <field name=status .../>
 <field name=loadaverage value=avg.la .../>

 <...>
 </attributes>
 <...>
 <condition>
 <and>
 <exp>status = ”running”</exp>
 <exp>loadaverage > 10</exp>
 <exp>ellapsedtime(eos.timestamp.end)>5</exp>
 </and>
 </condition>
</event>

Figure 5. Event definition of Figure 4 with the information added
by software architects, designers and/or programmers.

After the implementation of the application, with the event
description represented in xMonEve, a monitoring system can
observe the application execution and analyze its behavior at
multiple abstraction levels, depending on the purpose and interest
of the user. For instance, analysis can happen at the
implementation level for debugging, performance, testing etc, as
well as at the architectural level for dependability, performance,
validation etc.

4. RELATED WORK
Many specification languages have been proposed in the literature
for describing events (and states) for monitoring technique. The
definition of xMonEve is influenced by characteristics present in
most of them.

Some specification languages were developed based upon
extended regular expressions, such as EBBA [1]. These languages
put more emphasis in temporal ordering, and, in general, have
limited capability to specify states, and events are assumed to
occur instantaneously. These languages influenced xMonEve in
the specification of the correlation of composed events, although
in xMonEve we also consider non-instantaneous events.

Snodgrass [15] developed a query language for a history database,
using it to specify events and states. Although this work has a
large influence in monitoring techniques, the language has a
limited set of operators from relational algebra with a limited
representation power. One important influence of this work in
ours is that, in this work, with relational algebra, the language
expresses what derived information is desired, and not how it is
derived.

PMMS [9] uses a specification language based on relational
calculus to for description of events and user questions. A big
contribution of this work is in providing an automatic technique
for instrumenting the program code to collect only the events
needed to answer explicit user questions. This technique removes
the burden of code instrumentation from the programmer. This
specification language has limitations to specify events, and this
is linked to the fact that PMMS supports tracing monitoring only,
and no sampling.

Shim et al. [14] proposed a language based on classical temporal
logic for specifying event and states. This work influenced us in
considering non-instantaneous events. However, they do not
provide any mechanism to create different levels of abstraction (to
associate, for instance, events to software architecture elements),
neither an extensible way to associate more semantics to the event
specification.

With FLEA [3], user expresses his/her requirements and
assumptions for monitoring. The main idea behind it is to be able
to monitor programs that were not developed with monitoring in
mind, and to check software requirements though events. In a
similar way, xMonEve is meant to be independent of
implementation, and this also includes its structure. Additionally,
we also think it is important to bridge different abstractions, such
as requirements and implementation, and any other possible
abstraction.

Another kind of related work is the application of software
monitoring at the architecture level[1][16]. It is worth to mention
that both works consider the instrumentation of connectors for
collecting the information, instead of the components, and the
basic element for analysis is the event at the architectural level. In
these works, the mapping problem between software architecture
and implementation is simplified since the implementation and
software architecture design presents a one-to-one structural
correspondence.

5. CONCLUSIONS AND CURRENT WORK
The event and its definition play a major role in the integration of
development techniques for architecting dependable systems,
since it is a common abstraction to multiples techniques.
However, to have an effective integration, events also have to be
described in a common way. xMonEve is an event description
language for this integration purpose. We are currently working
on xMonEve definition and refinement. xMonEve does not
describe how the event is going to be collected, but what that
event is or represents. xMonEve is not intended to be a substitute
for other event specification languages, but to promote integration
of techniques by providing an interchangeable description for
events.

In this position paper, we present the problem of mapping
implementation to software architecture; discuss the importance
of the event description in the context of developing complex and
reliable systems; present requirements for event description
languages; presented our current work in xMonEve; show how
xMonEve can support integration of reliability techniques and
software architectures; propose a top-down approach for
reliability; and compare our work with other specification
languages from the literature.

Inside this paper, in many occasions we say “the developer would
describe the event”, or similar. However, this is a hard task by
itself and should be supported by tools. Event definitions could
and should be generated from other system documents, such as
requirement specifications, architectural and design models,
testing documents, etc. This type of tool support is also an
important step towards the usefulness and success of monitoring
techniques, as well as such event specification languages.

At this step, we have not gotten yet to analysis description, i.e.,
how to describe what types of analyses a monitoring system
should perform, and for what purpose. Now, it is important for us
to understand better how each different purpose may affect
monitoring systems. Since a major part of the functionality of
monitoring systems is the same in multiple occasions, we
probably need a family of monitoring systems with customizable
components, so the configuration of a monitoring systems could
go one step forward. Instead of configuring sensors and probes,

configuration would represent the tailoring of the whole
monitoring system to attend specific developer needs.

6. REFERENCES
[1] R. Balzer, “Instrumenting, Monitoring, & Debugging

Software Architectures”, 1997.
[http://citeseer.nj.nec.com/411425.html]

[2] P. C. Bates, "Debugging heterogeneous distributed systems
using event-based models of behavior", ACM Trans
Computer System, vol. 13, n. 1, Feb. 1995, pp. 1 – 31

[3] D. Cohen, M. Feather, K. Narayanaswamy, and S. Fickas,
“Automatic Monitoring of Software Requirements”, Proc Int'l
Conf Software Engineering (ICSE) 1997, pp. 602-603.

[4] R. Hofmann, R. Klar, B.Mohr, A. Quick, and M. Siegle,
“Distributed Performance Monitoring: Methods, Tools, and
Applications”, IEEE Trans. Parallel and Distributed
Systems, vol. 5, n. 6, June 1994, pp.585-598.

[5] Y. Huang and C. Kintala, “Software Implemented Fault
Tolerance: Technologies and Experience”, Proc. 23rd Int’l
Symp on Fault Tolerance Computing, 1993, pp. 2-9.

[6] C. Jeffery, “Program Monitoring and Visualization: An
Exploratory Approach”, Springer-Verlag, 1999.

[7] J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring
Distributed Systems. ACM Transactions on Computer
Systems, vol. 5, no. 2, May 1987.

[8] J. F. Kitchin, “Practical Markov Modeling for Reliability
Analysis”, Proc Annual Reliability and Maintainability
Symposium, 1988, Jan. 1988, pp. 290-296.

[9] Y. Liao and D. Cohen, “A Specification Approach to High
Level Program Monitoring and Measuring”, IEEE Trans.
Software Engineering, vol. 18, n. 11, Nov. 1992.

[10] N. Medvidovic, D. Rosenblum, and R. Taylor, “A Language
and Environment for Architecture-Based Software
Development and Evolution”, Proc Int’l Conf on Software
Engineering, May 1999, pp. 44 -53

[11] D. M. Ogle, K. Schwan, and R. Snodgrass, “Application-
Dependent Dynamic Monitoring of Distributed and Parallel
Systems”, IEEE Trans. Parallel and Distributed Systems, vol.
4, n. 7, July 1993, pp. 762-778.

[12] S. Reiss, and M. Renieris, “Encoding Program Executions”,
Proc Int’l Conf Software Engineering, May 2001.

[13] B. Schroeder, “On-Line Monitoring: A Tutorial”, IEEE
Computer, vol. 28, n. 6, June 1995, pp.72-77.

[14] Y. C. Shim and C.V. Ramamoorthy, “Monitoring and
Control of Distributed Systems”, Proc. 1st Int’l Conf on
System Integration, Apr. 1990, pp. 672-681.

[15] R. Snodgrass, “A Relational Approach to Monitoring
Complex Systems”, ACM Trans. Computer Systems, vol. 6,
n. 2, May 1988, pp.156-196.

[16] M. Vieira, M. Dias, D. Richardson, “Analyzing Software
Architecture with Argus-I”, Proc Int’l Conf on Software
Engineering, June 2000, pp. 758 –761.

