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ABSTRACT 
Component-based systems built from existing software 

components are being used in a wide range of applications that 
have high dependability requirements. In order to achieve the 
required levels of reliability and availability, it is necessary to 
incorporate into these complex systems means for coping with 
software faults. However, the problem is exacerbated if we 
consider the current trend of integrating third-party software 
components, which  allow neither code inspection nor changes. 
To leverage the reliability properties of these systems, we need 
solutions at the architectural level that are able to guide the 
structuring of unreliable components into a fault tolerant 
architecture. In this paper, we present an approach for structuring 
fault tolerant component-based systems based on the C2 
architectural style. 

1. INTRODUCTION 
Modern computer systems require evolving software that is 

built from existing software components, developed by 
independent sources [6]. Instead of relying on traditional software 
assurance technology that has shown not to be effective for this 
kind of systems [24], alternative approaches have to be sought in 
order for obtaining trustworthy systems. One of these approaches 
is fault-tolerance, which is associated with the ability of a system 
to deliver services according with its specification in spite the 
presence of faults [12]. In this paper, we employ the concept of 
idealized fault tolerant component [1] for describing fault-tolerant 
component-based systems, at the architectural level. 

For representing software systems at the architectural level, 
we have chosen the C2 architectural style for its ability to 
incorporate heterogeneous off-the-shelf components [15]. 
However, this ability of combining existing components is 
achieved through rules on topology and communication between 
the components (communication through broadcasting of 
asynchronous messages) that complicate the incorporation of 
fault-tolerance mechanisms into C2 software architectures, 
especially those mechanisms for error detection and fault 
containment [6, 9]. 

Research into describing software architectures with respect to 
their dependability properties has gained attention recently 
[17,20,21]. Nonetheless, rigorous specification of exception 
handling models and of exception propagation at the architecture 
level remains an open issue [11]. 

Particularly related to the architectural approach presented in 
this paper, there has been work on exception handling and 
software fault tolerance. The work on exception handling has 
focused on configuration exceptions, which are exceptional events 
that have to be handled at the configuration level of architectures  
[11]. In terms of software fault tolerance, the principles used for 
obtaining software diversity have also been employed in the 
reliable evolution of software systems, specifically, the upgrading 
of software components. While the core idea of the Hercules 
framework [8] is derived from concepts associated with recovery 
blocks [17], the notion of multi-versioning connectors (MVC) 
[16], in the context of C2 architectures, is derived from concepts 
associated with N-version programming [3]. The architectural 
approach presented in this paper is distinct from the work referred 
above since its focus is on structuring concepts to be applied in a 
broader class of exceptional conditions and fault-tolerance 
mechanisms. The aim is to structure, at the architecture level, 
fault-tolerant component-based systems that use off-the-shelf 
components. For that, we define an idealized C2 component with 
structure and behaviour equivalent to the idealized fault-tolerant 
component [1]. This idealized C2 component can then be used as 
a building block for a system of design patterns that implement 
the idealized fault-tolerant component for concurrent distributed 
systems [5]. 

The rest of this paper is structured as follows. Section 2 gives 
a brief overview of fault-tolerance and the C2 architectural style. 
Section 3 describes the proposed architectural solution of the 
idealized component, along with an small illustrative example. 
Final conclusions are given in section 4. 

2. BACKGROUND 
The capability of a system to tolerate faults is highly 

dependent on the software architecture [4]. Though, the structure 
of the system should allow fault tolerant mechanisms to operate in 
an orchestrated way with the system functions, without 
unnecessarily increasing the complexity of the system [17].  

2.1. Fault Tolerance 
The basic strategy to achieve fault tolerance in a system can be 

divided into two steps [13]. The first step, called error processing, 
is concerned with the system internal state, aiming to: detect 
errors that are caused by activation of faults, the diagnosis of the 

 



 

erroneous states, and recovery to error free states. The second 
step, called fault treatment, is concerned with the sources of faults 
that may affect the system and includes: fault localization, and 
fault removal. 

Our work mainly concentrates on providing error processing 
at the architectural level of software systems. The idealized fault-
tolerant component [1] is a structuring concept for the coherent 
provision of fault tolerance in a system (Figure 1). Through this 
concept, we can allocate fault-tolerance responsibilities to the 
various parts of a system in an orderly fashion, and model the  
system recursively, such that each: component can itself be 
considered as a system on its own, which has an internal design 
containing further sub-components [1].  

The communication between idealized fault-tolerant 
components is only through request/response messages. Upon 
receiving a request for a service, an idealized component will 
react with a normal response if the request is successfully 
processed or an external exception, otherwise. This external 
exception may be due to an invalid service request, in which case 
it is called an interface exception, or due to a failure in processing 
a valid request, in which case it is called a failure exception. 
Internal exceptions are associated with errors detected within a 
component that may be corrected, allowing the operation to be 
completed successfully; otherwise, they are propagated as  
external exceptions. 

An idealized component must provide appropriate handlers 
for all exceptions it may be exposed to. Thus, the internal 
structure of an idealized component has two distinct parts: one 
that implements its normal behaviour, when no exceptions occur, 
and another that implements its abnormal behaviour, which deals 
with the exceptional conditions. This separation of concerns, 
applied recursively to components, subsystems and the overall 
system, greatly simplifies the structuring of fault tolerance 
systems, allowing their complexity to be manageable. 

2.2. The C2 Architectural Style 
The C2 architectural style is a component-based style directed 

at supporting large grain reuse and flexible system composition, 
emphasizing weak bindings between components [23]. In this 
style components of a system may be completely unaware of each 
other, as when one integrates various commercial off-the-shelf 
components (COTS), which may have heterogeneous style and 
implementation language. These components communicate only 
through asynchronous messages mediated by connectors that are 
responsible for message routing, broadcasting and filtering. 
Interface and architectural mismatches are dealt with by using 
wrappers for encapsulating each component [9].  

Both components and connectors in the C2 architectural style 
(Figure 2) have a top interface and a bottom interface. Systems 
are composed in a layered style, where the top interface of a 
component may be connected to the bottom interface of a 
connector and its bottom interface may be connected to the top 
interface of another connector. Each side of a connector may be 
connected to any number of components or connectors. 

There are two types of messages in C2: requests and 
notifications. Requests flow up through the system's layers and 
notifications flow down. In response to a request, a component 
may emit a notification back to the components below, through its 
bottom interface. Upon receiving a notification, a component may 
react, as if a service was requested, with the implicit invocation of 
one of its operations. 

3. PROPOSED ARCHITECTURE 

3.1. Overall Structure of the Idealized C2 
Component 

The objective of this section is to define an idealized C2 
component (iC2C), which should be equivalent, in terms of 
behaviour and structure, to the idealized fault-tolerant component 
(iFTC) [1]. The implementation of an iC2C should be able to use 
any C2 component without any restrictions. Furthermore, it 
should also be possible for integrating idealized C2 components 
into any C2 configurations, thus allowing the interaction of iC2Cs 
with other idealized and/or regular C2 components. 

The first task was to extend the C2 message type hierarchy to 
allow for the various message types defined for the iFTC. This 
was a relatively simple task, since service requests and normal 
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responses of an iFTC were directly mapped as requests and 
notifications in the C2 architecture. As interface and failure 
exceptions of an iFTC flow in the same direction as a normal 
response, they were considered subtypes of notifications in the C2 
architecture.  

In order to minimize the impact of fault tolerance provisions 
on the system complexity we have decoupled the normal activity 
and abnormal activity parts of the idealized component. This 
outcome has lead to an overall structure for the iC2C that has two 
distinct components and three connectors, as shown in Figure 3.  

The iC2C NormalActivity component implements the normal 
behaviour, and is responsible for error detection during normal 
operation, and the signalling of interface and internal exceptions. 
The iC2C AbnormalActivity component is responsible for error 
recovery, and the signalling of failure exceptions. For consistency, 
the signalling of an internal exception by an iFTC was mapped as  
a subtype of notification, and, the “return to normal” , flowing in 
the opposite direction, was mapped as a request. In the course of 
error recovery, the AbnormalActivity component may also emit 
requests and receive notifications, which are not represented in 
Figure 3. More specifically, this design allows the 
AbnormalActivity component to be notified about state changes 
of the NormalActivity component and request operations which 
may change that state.    

The connectors of our iC2C shown in Figure 3 are 
specialized, reusable, C2 connectors with the following roles: 

(i) The iC2C_bottom connector connects the iC2C with 
the lower components of a C2 configuration, and serializes the 
requests received. Once a request is accepted, this connector 
queues new requests that are received until completion of the first 
request. When a request is completed, a notification is sent back, 

which may be a normal response, an interface exception or a 
failure exception. 

(ii) The iC2C_internal connector controls message flow 
inside the iC2C, selecting the destination of each message 
received based on its originator, the message type and the 
operational state of the iC2C (either  under normal or abnormal 
operation). 

(iii) The iC2C_top connector connects the iC2C with the 
upper components of a C2 configuration, which may provide 
services to the NormalActivity and/or AbnormalActivity 
components. 

The overall structure defined for the idealized C2 component 
makes it fully compliant with the component's rules of the C2 
architectural style. This allows an iC2C to be integrated into any 
C2 configuration and interact with components of a larger system. 
When this interaction establishes a chain of iC2C components the 
external exceptions raised by a component can be handled by a 
lower level component (in the C2 sense of “upper” and “lower”) 
allowing hierarchical structuring of error recovery activities. An 
iC2C may also interact with a regular C2 component, either 
requesting or providing services. 

3.2. Structuring the Normal Activity 
Component 

In this section, we describe in more detail how the 
NormalActivity component can be implemented from existing C2 
components.  

As previously mentioned, the NormalActivity component is 
responsible for the implementation of the normal behaviour of the 
idealized C2 component, and the detection of errors that may 
affect the normal behaviour. Since a NormalActivity component 
should be built from existing C2 components, and these 
components might not have error detection capabilities, there is 
the need to add error detection capabilities to the existing C2 
component. The architectural solution for implementing a 
NormalActivity component is shown in Figure 4, for a particular 
configuration of two components. The existing C2 component, 
identified as the BasicNormal component, and any other 
component required for the provision of additional error detection 
capabilities, are wrapped by a pair of special-purpose connectors 
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Figure 3. Idealized C2 Component (i2C2) 
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(normal_top and normal_bottom), following the pattern of the 
multi-versioning connector (MVC) [16]. These connectors 
coordinate the collaboration between the components, and provide 
the NormalActivity component with the capabilities for error 
detection. These capabilities can be associated to the operations 
provided either by the BasicNormal component or the other 
collaborating components. Errors are detected by checking the 
pre- and post-conditions, and invariants associated to the 
operations [21]. The proposed approach was inspired by the 
concepts of coordination contracts [2] and co-operative 
connectors [14]. 

On top of the above architecture for an ideal C2 component 
(iC2C), the Normal Activity component could also interact with 
other components outside the scope of the iC2C. In this case, the 
component should be placed higher in the C2 configuration, and 
the normal_top connector should act as a proxy of the component 
in the context of the NormalActivity component.  

Another special case is when components placed at lower 
levels of a C2 architecture require to access services provided by 
other collaborating components wrapped into the NormalActivity 
component. In this case, the interface of the iC2C can extend that 
of the BasicNormal for including the required services. 

3.3. A Small Example 
In order to illustrate the structuring concepts presented in this 

paper, we refer to a small example extracted from the Mine Pump 
Control System [20]. The subsystem that we consider is 
responsible for draining the sump of the mine, and contains the 
following existing C2 components: 

(i) PumpControlStation - controls the draining of the 
sump by turning on/off a physical pump according to the level of 
the water in the sump. 

(ii) LowWaterSensor - signals when the level of water is 
low. 

(iii) Pump - commands the pump to be turned on/off. 

(iv) WaterFlowSensor - signals whether water flows from 
the sump. 

The fault model for the above subsystem assumes that 
transient faults can affect the operation of the physical pump when 
reacting to commands from Pump. 

The C2 architecture of the subsystem is shown in Figure 5, 
where the IdealPump is implemented as an idealized C2 
component (iC2C). The NormalActivity component of 
IdealPump, which is PumpNormal, consists of components 
Pump and WaterFlowSensor that are joined into a collaboration 
that is coordinated by the PumpNormal_bottom connector. This 
same connector is responsible for detecting errors in IdealPump, 
checking the WaterFlowSensor status after a pump on/off 
requested, and raising an internal exception when the expected 
condition is not met. 

The AbnormalActivity component (PumpAbnormal) is 
responsible for processing the error, by issuing retry requests to 
the Pump until either the normal operation is resumed or the 
exception is propagated to PumpControlStation. 

4. CONCLUSIONS 
In this paper, we have investigated the structuring of fault-

tolerant component-based systems, at the architectural level. For 
the purpose of our work we have employed the C2 architectural 
style [23], which is a style that promotes the development of 
component-based systems using off-the-shelf components. The 
intent was to provide an idealized C2 component with structure 
and behaviour equivalent to the idealized fault-tolerant 
component [1]. 

The communication rules between components in the C2 
style, namely the synchronicity and broadcasting of messages, 
although desirable from the point of view of component-based 
design, they complicate the incorporation of fault-tolerance 
mechanisms into architectures that are instantiations of this style 
[6, 9]. Another difficulty that we encountered was the restrictions 
imposed by the C2 topology rules. For solving these problems we 
employed constructs similar to multi-versioning connector [16], 
consisting of pairs of collaborating connectors to define fault 
containment boundaries within the system, and synchronized 
communications within the idealized C2 component using 
notifications as acknowledgments of requests. In addition to the 
work describe above, we have also defined an idealized C2 
connector. This fault tolerant architectural element is especially 
useful considering that connectors in the C2 architectural style are 
more than simple communication primitives, and that the 
architectural approach advocated in this paper requires connectors 
to be also a place of computation. 

Our results demonstrate the feasibility of the proposed 
approach for the C2 architectural style, and suggest their 
application to other architectural styles also belonging to the 
interacting processes style category, which are styles dominated 
by communication patterns among independent, usually 
concurrent, processes [19]. 
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