
Software Architectures of Dependable Systems:
From Closed to Open Systems

Valérie Issarny
INRIA, UR Rocquencourt

 Domaine de Voluceau - B.P. 105 - 78153 Le Chesnay France
Valerie.Issarny@inria.fr

INTRODUCTION
Work in the software architecture domain primarily focuses on
the standard (as opposed to exceptional) behavior of the
software system. However, it is crucial from the perspective of
software system robustness to also account for failure
occurrences. The next section gives an overview of our past
work towards assisting architecting of dependable distributed
systems. It is then followed by a discussion on our current and
future research work towards addressing dependability
requirements of open distributed systems, which are expected to
become a major class of future distributed systems.

AIDING THE ARCHITECTING OF
DEPENDABLE SYSTEMS
Failures may be handled through the integration within the
system architecture of components and connectors that provide
fault tolerance capabilities. Practically, this means that failures
are handled by an underlying fault-tolerance mechanism (e.g.,
transparent replication management) at the middleware level.
Such fault tolerance support must further be coupled with
software fault tolerance that relies at least on an exception
handling mechanism, which enables the software developer to
specify the actions to be undertaken under the occurrence of
application-specific and underlying runtime exceptions. We
have then carried out research in the two following
complementary directions towards assisting architecting of
dependable systems.

Systematic aid in the development of middleware
architectures for dependable systems: The use of middleware
is the current practice for developing distributed systems.
Developers compose reusable services provided by proprietary
or standard middleware infrastructures to deal with non-
functional requirements. However, developers still have to
design and implement middleware architectures combining
available services in a way that best fits the application’s
requirements. In order to ease this task, we have developed an
environment that provides [1]: (i) an ADL for modeling
middleware architectures, (ii) a repository populated with
architectural descriptions of middleware services, and (iii)

automated support for composing middleware architectures out
of available services according to target non-functional
properties, and for quantitatively assessing the composed
architectures in terms of performance and reliability.
Architecture-based exception handling: As previously raised,
it is necessary to complement fault-tolerance support provided
by the underlying middleware architecture, with support for
software fault tolerance so as to enable application-specific
fault-tolerance. We have thus proposed a solution to
architecture-based exception handling [2], which complements
exception handling implemented within components and
connectors. Our solution lies in: (i) extending the ADL so as to
enable the specification of required changes to the architecture
in the presence of failures, and (ii) associated runtime support
for enabling resulting dynamic reconfigurations.

FUTURE RESEARCH DIRECTIONS
The above results have been proven successful for assisting the
architecting of robust distributed systems that are closed, i.e.,
systems whose components depend on a single administrative
domain and are known at design time. However, future
distributed systems will increasingly be open, which raises new
issues for making them dependable. In this context, we are in
particular undertaking research in the following directions: (i)
Architecting open distributed systems in a way that accounts for
mobility, which requires support for the dynamic composition
and quality assessment of architecture instances; and (ii) Design
of fault-tolerance mechanisms for open distributed systems
considering that the systems span multiple administrative
domains and hence cannot accommodate locking-based
solutions as, e.g., enforced by transactional processing [3].

REFERENCES
[1] Issarny, V., Kloukinas, C. and Zarras, A. Systematic Aid in

the Development of Middleware Architectures.
Communications of the ACM. 2002. To appear.

[2] Issarny, V. and Banâtre J-P. Architecture-based Exception
Handling. Proc. of HICSS’34. 2001.

[3] Tartanoglu, F., Issarny, V., Levy, N. and
Romanovsky, A., Dependability in the Web Service
Architecture. Proc. of WADS. 2002.

