Using Architectural Properties to Model and Measure
System-Wide Graceful Degradation

Charles P. Shelton
ECE Department
Carnegie Mellon University
Pittsburgh, PA, USA

cshelton@cmu.edu

ABSTRACT

System-wide graceful degradation may be a viable approach to
improving dependability in computer systems. In order to evaluate
and improve system-wide graceful degradation we present initial
work on a component-based model that will explicitly define
graceful degradation as a system property, and measure how well a
system gracefully degrades in the presence of multiple
combinations of component failures. The system’s software
architecture plays amajor role in this model, because the interface
and component specifications embody the architecture's
abstraction principle. We use the architecture to group components
into subsystems that enable reasoning about overall system utility.
We apply this model to an example distributed embedded control
system and report on initia results.

1. INTRODUCTION

Dependability isaterm that covers many system properties such as
reliability, availability, safety, maintainability, and security [4].

System dependability is especially important for embedded com-
puter control systems, which pervade everyday life and can have se-
vere consequences for failure. These systems increasingly
implement a significant portion of their functionality in software,
making software dependability a major issue.

Graceful degradation may be a viable approach to achieving better
software dependability. If asoftware system can gracefully degrade
automatically when faults are detected, then individual software
component failureswill not cause complete systemfailure. Rather,
component failures will remove the functionality derived from that
component, while still preserving the operation of the rest of the
system. Specifying and achieving system-wide graceful degrada-
tion is a difficult research problem. Current approaches require
specifying every system failure mode ahead of time, and designing
aspecific response for each such mode (e.g., [2]). Thisisimpracti-
cal for acomplex software system, especially afine grained distrib-
uted embedded system with hundreds or thousands of software and
hardware components.

In order to evaluate and improve system-wide graceful degradation,

Philip Koopman
ECE Department
Carnegie Mellon University
Pittsburgh, PA, USA

koopman@cmu.edu

we present a component-based system model that providesameans
for evaluating and predicting how well a system should gracefully
degrade, as well as how graceful degradation influences depend-
ability properties. We base the model on using the system’s inter-
face definitions and component connections to group the system’s
components into subsystems. We hypothesize that the software ar-
chitecture, responsible for the overall organization of and connec-
tions among components, can facilitate the system’s ability to
implicitly provide the property of graceful degradation, without
specifying aresponse to each possible failure mode at design time.
We define a failure mode to be a set of system components failing
concurrently. By using the model to measure how gracefully asys-
tem degrades, we predict that we can identify what architectural
propertiesfacilitate and impede system-wide graceful degradation.

Related to our concept of graceful degradation is the term surviv-
ability. Survivability is another property of dependability that has
been proposed to explicitly define how systems will degrade func-
tionality in the presence of failures[3]. Our work differs from sur-
vivability specifications in that we are interested in building
implicit graceful degradation into systems without specifying fail-
ure scenariosa priori, and having the system “do theright thing” in
the presence of component failures. Also, we are focusing on dis-
tributed embedded systems rather than on large-scale critical infra-
structure information systems.

The remainder of this paper is organized as follows. Section 2 de-
scribesour initial system model and key assumptions. Section 3 de-
scribes our representative distributed embedded system and its
architecture, and applies our model to this architecture. Section 4
includes discussion about the model’s predictions, and how they
compare to initial fault injection tests we ran with a simulated ver-
sion of the control system. Section 5wraps up with conclusions and
future work.

2. SYSTEM MODEL

As afirst step, we are concentrating on software architecture at a
high level of abstraction. Our system model initially focuses on the
“functionality” components of the system: software, sensors, and
actuators. We maketheinitial assumptionsthat individual software
components each have their own processing elements, that thereis
enough network bandwidth to transmit all needed sensor values,
and that there are enough system resources to satisfy rea-time re-
quirements. These system aspects will al influence system-wide
graceful degradation, but we are planning to include them in the
model at later stages.

We consider asystem as aset of software, sensor, and actuator com-
ponents. We usetheinterfaces among componentsto define aset of
system variables through which all components communicate.

These variables can represent any communication structure in the

software implementation. Actuators receive input variables and
output to the environment, while sensorsreceive input from the en-
vironment and output system variables. We assume that compo-
nents can either bein one of two states: working or failed. Working
means that the component has enough resources to output its speci-
fied system variables. Failed meansthe component cannot produce
its specified outputs.

The fault model for our system uses the traditional fail-fast, fail si-
lent assumption. All faultsare manifested astheloss of system vari-
able communication among components. Components either
provide their output variables or do not. Thus, failures can be de-
tected when components do not provide their outputs when speci-
fied. Thisdoesnot account for more complex types of failures such
as providing invalid but syntactically correct information, and as-
sumes component failures can be quickly detected. Fault detection
and propagation issues are challenging research areas in and of
themselves, and are outside the scope of this work. Additionally,
since software component failure rates are difficult to identify, we
make an initial assumption that all components have approximately
equal failurerates.

A key concept in our model isthe notion of utility. Utility isamea
sure of how much benefit can be gained from the entire system, a
certain subsystem, or an individual component. For the entire sys-
tem, the overall utility is determined by a nonlinear function of its
individual subsystem utilities. Each subsystem’s utility is deter-
mined by anonlinear function of itsindividual component utilities.
For individual components, we define a component’ s utility to be 1
when working and O when failed. Weassumethat if all components
are working the system will be at its maximum utility, and if al
components are failed, the system will have an overal utility of
zero. Thus, a system gracefully degrades if individual component
and subsystem failures reduce system utility gradually.

In our model, we initially concentrate on measuring whether the
system has zero or positive overall utility by identifying how resis-
tant critical subsystemsareto component failures. Determining the
functionsthat quantitatively measure how working componentsim-
prove subsystem and system utility valuesisachallenging problem.
However, without knowing these functions we can initially make a
distinction between a system that is working and has positive but
not necessarily maximum utility, and a failed system that has zero
utility. Inorder to make thisdistinction we must have aclear defini-
tion of what “working” meansfor the entire system. In other words,
we must specify what features of the system are necessary for the
system to complete its primary functions. In most cases, thisis not
all the features available in the system. For example, the primary
function of a car isto provide transportation. Critical features nec-
essary for the car to continue working include engine and transmis-
sion control, brakes, and steering. The power windows, emissions
control, air conditioning, and radio provide auxiliary functionality
not necessary for the car to complete its primary task, and can be
lost without causing a catastrophic failure.

The system can have many different component configurations
based on which components are working or failed. If nisthe num-
ber of componentsin the system, then there are 2" different configu-
rations that can be considered. The system’s component
configuration determines the utility of all its subsystems, and thus
the utility of the entire system. Anideal gracefully degrading sys-
tem isone where alarge fraction of these 2" configurationsresultin
a system with overall positive utility; i.e., the system can tolerate
multiple combinations of component failures and still provide use-
ful functionality.

Our first metric for graceful degradation is the system’s resistance
to complete failure (zero system utility). We determine this value
by looking at how many configurations result in asystem with posi-
tiveutility. Theratio of log, [number of valid component configura-
tions] / n givesameasure of how many configurations will provide
utility relative to the total number of system configurations. This
valueis O (only one valid configuration) for a brittle system, and 1
for a perfect system where any component configuration can pro-
vide some utility (ignoring thetrivial configuration of zero compo-
nents that resultsin no system at al).

Clearly, if we had to consider the utility of every possible compo-
nent configuration individually, then specifying graceful degrada-
tion becomes exponentialy difficult as the number of components
increases. However, we can use the system’ s software architecture,
which defines system software components, input and output inter-
faces, and connections among components, to group components
into subsystems according to the system variablesthey provide, and
thus reduce complexity.

We define these subsystemsin our component model as feature sub-
sets. A feature subset isaset of components (software components,
sensors, actuators, and possibly other feature subsets) that work to-
gether to provide a set of output variables. Feature subsets may or
may not be disjoint and can share components across different sub-
sets. Feature subsets have utility values based on which of their
componentsareworking, and contributeto overall system utility. A
feature subsetiscritical if itsfunctionality isrequired by the system;
i.e., thetotal system utility iszerowhenever any critical feature sub-
set has zero utility. Thus, the system will have positive utility if and
only if all of itscritical feature subsets have positive utility. If we
view the system as a set of feature subsets rather than individual
components, then we should only need to consider valid component
configurations of critical feature subsets rather than configurations
of all system components to determine how well the system grace-
fully degrades.

In addition to grouping componentsinto feature subsets, we definea
set of dependency relationships between feature subsets and their
components. A feature subset may have strong dependence on
some of its components, weak dependence on others, and some of
its components may be completely optional. A feature subset
strongly depends on one of its componentsif theloss of that compo-
nent resultsin thefeature subset’ shaving zero utility. A feature sub-
set weakly depends on one of its components if the loss of that
component reduces the feature subset’s utility to zero in some, but
not all, configurations in which that component was working. For
example, if there are two components that output arequired system
variable, loss of both will result in the feature subset having zero
utility, but loss of only one or the other will not. If acomponent is
optional to a feature subset, then it may provide enhancements to
the feature subset’ s utility, but is not critical to the operation of the
feature subset. Every valid component configuration of the feature
subset where that component isworking still provides positive (but
possibly lower) utility when that component is broken. These de-
pendency relationships can also exist among individual compo-
nents as well, based on their input and output interfaces. A
component that requires a certain system variable as an input will
depend on the components that provide it as an output.

We can use this model to develop a space of systems with varying
degrees of graceful degradation. At one end of the spectrum, we
have extremely “brittle” systemsthat are not capable of any grace-
ful degradation at all. In these systems, any one component failure
will result in acomplete system failure. In our model, thiswould be
asystem where every component iswithin acritical feature subset,

Tablel. Sensors, Actuators, and Software Componentsin the Elevator Architecture

Sensor Type # Output Variable Actuator Type # Input Variable Software Component # Output Variable
DriveSpeed 1 | DriveSpeed Drive Motor 1 | DriveMotor Drive Control 1 | DriveMotor
CarPosition 1 | CarPosition Door Motor 1 | DoorMotor Door Control 1 | DoorMotor
AtFloor f | AtFloor(f] Emergency Brake 1 | EmergencyBrake Safety 1 | EmergencyBrake
HoistwayLimit 2 | HoistwayLimit[d] Car Lanterns 2 | CarLantern[d] Dispatcher 1 | DesiredFloor
DoorClosed 1 | DoorClosed Car Position Indicator 1 | CarPositionIndicator | VirtualAtFloor f | AtFloor
DoorOpened 1 | DoorOpened Car Button Lights f | CarLight[f] Lantern Control 2 | CarLantern[d]
DoorReversal 1 | DoorReversal Hall Button Lights 2f-2 | HallLight]f,d] Car Position Indicator Control 1 | CarPositionindicator
Car Buttons f | CarCall[f] Car Button Control f CarLight[f]

Hall Buttons 2f-2 | HallCall[f,d] Hall Button Control 2f-2 | HallLight[f,d]

and each feature subset strongly depends on all of its components.
Therefore, every component must be functioning to have positive
system utility.

Similarly, any modular redundant system can be represented as a
collection of severa critical feature subsets, where each feature sub-
set contains multiple copies of acomponent plusavoter. Thevalid
configurations that provide positive utility for each feature subset
arethose that contain the voter plus one or more component copies.
This redundant system can tolerate multiple failures across many
feature subsets, but cannot tolerate the failure of any one voter or all
the component copiesin any one feature subset.

At the other end of the spectrum, an ideal gracefully degrading sys-
tem is one where any combination of component failures will still
leave asystem with positiveutility. Inour model, thissystem would
be onewhere none of itsfeature subsetswould belabeled ascritical,
and every component would be completely optional to each feature
subset in which it was a member. The system would continue to
have positive utility until every component failed.

3. EXAMPLE SYSTEM: A DISTRIBUTED
ELEVATOR CONTROL SYSTEM

To illustrate how we can apply our system model to a control sys-
tem, we will use amodel of arelatively complex distributed eleva-
tor control system. The complete details of the model have been
publishedin [6], but wewill describe aportion of the system and the
software architecture here for clarity.

The general requirement for an elevator isthat it must safely trans-
port people among floorsin abuilding. The control system has a set
of sensors (door opened/closed, el evator speed, button sensors, etc.)
for determining the current environment and passenger requests, a
set of actuators (door motor, drive motor, emergency brake, lights,
etc.) for performing tasks and informing passengers about system
state, and a set of software objects (door controller, drive controller,
dispatcher, etc.) that implement the control logic to perform the ele-
vator’s functions.

Table 1 summarizesthelist of sensors, actuators, and software com-
ponentsin the elevator control system. Inthetable, f representsthe
number of floors in the elevator’s building, and d represents a
choice of two directions, up or down. For example, there aref floor
sensors and f car button sensors (one for each floor), two hoistway
limit sensors (the “up” sensor is at the top of the hoistway, and the
“down” sensor is at the bottom), and 2f - 2 hall button sensors (two

per floor in each direction, except for the top and bottom floors,
which only have one button). In the table each sensor has a speci-
fied output variable, and each actuator has a specified input vari-
able. The software components have severa inputs and a few
outputs. There are atotal of 14 + 11f componentsin the system.

The system’ s software architecture defines each component’ s input
and output interface, as well as connections among components,
which can be used to construct the system’ sfeature subsets. Figure
1 showsthecritical feature subsets of the system, and the dependen-
ciesbetween the feature subsets and components. Each arrow inthe
figure represents a system variable being communicated between
components. In an elevator control system, the only critical func-
tionsof theelevator arethat it must be ableto serviceall floors, open
and close the doors, and ensure the safety of the passengers. All
other functionality, such as responding to passenger requests, pro-
viding passenger feedback, and minimizing wait time and travel
time, are enhancements over the basic elevator requirements.
Therefore, the critical feature subsets for this system are only the
feature subsets that are required to operate the drive motor, door
motor, and emergency brake actuators.

The software components are designed to have a default behavior
based on their required inputs, and to treat optional inputs as “ad-
vice” to improve functionality when those inputs are available. For
example, the Door Control and Drive Control components can lis-
ten to each other’s command output variables in addition to the
Drive Speed and Door Closed sensorsto synchronizetheir behavior
(openthe doorsmore quickly after the car stops), but only the sensor
valuesare necessary for correct behavior. Likewise, the Drive Con-
trol component has a default behavior that stops the elevator at ev-
ery floor, but if the DesiredFloor variable is available from the
Dispatcher component, then it can use that value to skip floors that
do not have any pending requests. Also, the Door Control compo-
nent normally opens the door for a specified dwell time, but can re-
spond to button presses to reopen the doors if a passenger arrives.
We &l so enumerated the other non-critical feature subsetsin the ele-
vator system such asthe various passenger feedback lightsin theel-
evator, but we omit them here for the sake of brevity.

4, ANALYSIS

In order to derive the graceful degradation metric for our elevator
control system, we need only consider the critical feature subsets
and the components upon which they depend. Therefore, all config-
urations containing enough components to provide working Drive

‘W Emergency Brake W Drive Motor

Drive Control
Feature

Drive Control
Component - ..

Safety
Feature

Safety
Component

W' Door Motor

Door Control
Feature

Desired Floor
Feature

Door Control T
Component

----- Drive Control
Feature

Y

Desired Floor] Drive . "HallButtons

Feature Speed

/

Drive Door Hoistway
Speed Closed Limits

At Floor
Feature

Drive Door Car
Speed Closed Position

[Feature Subset
Software Component
A Sensor 4
/

w Actuator
«— Strong Dependence (Necessary for all configurations) ‘
<« — Weak Dependence (Necessary for some configurations)
< - - - Optional (Provides non-critical utility enhancement)

At Floor
Sensors

. ..
Iy Sel Sea
* ~ ~ -
. ..
.
‘.| Door Control
N
At Floor . Feature
A Feature .

At Floor
Feature

Position Speed

. Feature
Door Door Car Buttons
Closed Opened Door Feature

Reversal
I Hall Button

Sensors
Car Button
Sensors

S Virtual At Floor
- Components Diagram uses multiple identical components in different

places for clarity. Components/Feature subsets with the same

name actually represent only one component or feature subset

in the system.

Optional feature subsets not shown:
Car Button Lights, Hall Button Lights, Car Position Indicator,
Car Lanterns

Car Drive

Figure 1. Critical Feature Subsetsin the Elevator Control System

Control, Door Control, Safety, and AtFloor feature subsets are
valid, and can contain any arbitrary combination of other optional
system components. There are 1 + 9f optional system components
(which can be arranged in 2* * ¥ different arbitrary combinations),
leaving 13 + 2f critical components (componentswithin critical fea-
ture subsets) that have configurations that require examining (and
28+ 2 component combinations |eft to consider individually).

By examining the critical feature subsets, we can see that they are
strongly dependent on the Drive Speed, Door Closed, Door Opened,
Door Reversal, and Hoistway Limits sensors, the Drive Control,
Door Control, and Safety software components, and the Drive Mo-
tor, Door Motor, and Emergency Brake actuators. Any valid con-
figuration must have al of these twelve components present.
Therefore, we can restrict the number of configurations we calcu-
late by not considering any configurations in which these compo-
nents are broken.

Thisleaves1+ 2f components (the Car Position sensor, the AtFloor
sensors, and the VirtualAtFloor software components) in the
AtFloor feature subset to be considered. By examining the critical
feature subsets, we have systematically reduced the graceful degra-
dation calculation from considering 2 * ** combinations to 2+ * #
combinations. Now we can determine the number of valid configu-
rations for the AtFloor feature by noting that all floors must be ser-
viced by the elevator. Therefore, on each floor there must be a
working AtFloor sensor or a working Virtual AtFloor component
with a working Car Position sensor. If the Car Position sensor
breaks, then all AtFloor sensors must work. Since al the AtFloor
sensorsmust work inthissituation, they are fixed and have one con-
figuration. However, the Virtua AtFloor components can either
work or not work sincetheir failurewill not affect the availability of
the AtFloor system variables, making 2" valid combinations for the
various Virtua AtFloor components. If the Car Position sensor
works, then one or both AtFloor sensor and Virtual AtFloor compo-
nent must work for each floor, so the only invalid combinations are
when both have failed for at least onefloor. Thismeansthereare 3
valid combinations per floor, making 3 valid combinations out of
thepossible 2%, Thusthereare 2"+ 3'valid combinations of compo-
nents in the AtFloor feature subset.

Multiplying thiswith the number of combinations of optional com-
ponentsresultsin atotal of (2 + 3(2** * valid component config-
urations. Taking the base 2 log of this and dividing it by the total
number of system components (14 + 11f) gives usour graceful deg-
radation metric. If we calculatethisvaluefor an elevator that serves
seven floors, we get 0.83.

For comparison, we also consider an elevator system that does not
contain any VirtualAtFloor software components. The
Virtual AtFloor componentsimproved the system’ s ability to grace-
fully degrade because they provided a way to compensate for
AtFloor sensor failures by using information provided by other sys-
tem sensors to synthesize AtFloor sensor values. Therefore, if we
removethe Virtual AtFloor components, the resultant system should
also receive alower graceful degradation value.

In our model, the removal of the VirtualAtFloor components re-
duces the AtFloor feature subset to being strongly dependent on all
of the AtFloor sensors. Thereforethereisonly onevalid configura-
tion for the AtFloor feature subset in which every AtFloor sensor
must work. Since thisis a critical feature subset, all valid system
configurations must contain aworking AtFloor feature subset. Ad-
ditionally, the Car Position sensor becomesan optional system com-
ponent because the AtFloor feature subset no longer depends on it.
This results in there being only 22* ¥ valid system configurations
since most of the components in the critical feature subsets must
work and only the optional components can have multiple valid
configurations. The total number of system componentsis also re-
duced by the removal of the f Virtual AtFloor components, leaving
14 + 10f total system components. For a seven-floor elevator, this
results in a graceful degradation score of 0.77.

The graceful degradation metric provides a concrete comparison
among similar systems. \We can quantitatively assess how adding or
subtracting componentsto the system affectsitsability to gracefully
degrade. However, this metric may be misleading when comparing
two systemsthat are substantially different in terms of functionality
and number and type of system components.

We have developed a discrete event simulator that implements our
elevator architecture, and have run some initial fault injection ex-

periments to evaluate whether the implemented system actually
gracefully degrades. So far, every test we have run with one of the
possible valid configurations was able to successfully deliver all
passengers to their destination floors, including atest that failed all
components but the critical ones and the AtFloor sensors.

5. CONCLUSIONSAND FUTURE WORK
We have demonstrated a component-based system model that can
provideinsight into how well asystem will perform graceful degra-
dation in the presence of multiple component failures. We devel-
oped an initial metric for graceful degradation that indicates how
many combinations of component failures can be tolerated by ex-
amining critical subsystem configurations rather than considering
every possible system component configuration. In someinitial ex-
periments on a simulated implementation of the example control
system studied, we found that the architecture described was resis-
tant to certain combinations of component failures, as predicted by
the model.

Wedid not incorporate failure recovery scenariosfor every possible
combination of component failures, but rather built the software
components to the architectural specification. Theindividua com-
ponents were designed to ignore optional input variables when they
were not available and follow a default behavior. Thisis afunda-
mentally different approach to system-wide graceful degradation
than specifying all possible failure combinations to be handled
ahead of time.

Properties of the software architecture such as the component inter-
faces and the identification and partitioning of critical system func-
tionality from the rest of the system seem to be key to achieving
system-wide graceful degradation. The model we developed illus-
trates how well a system can gracefully degrade by using the soft-
ware architecture’s component connections to decompose the
system. We are also exploring how to use an architectural descrip-
tion language such as Acme [1] to provide rigorous component in-
terface specifications and facilitate development of our system
model.

For this particular system, it isrelatively easy to calculate the possi-
ble valid configurations by examining the software architecture
without the model. However, the model provides a systematic
framework for partitioning the system based on its software archi-
tecture, and we hypothesize that it will be useful in evaluating any
architectural specification that has a well-defined component inter-
face. Thisframework allowsusto measurethegraceful degradation
properties of individual feature subsets with respect to their compo-
nentsaswell. Thearchitectureand model also identify aset of criti-
cal system components within the critical feature subsets that must
continueto operateto provide any system functionality. Thiscanbe
used to determine on which system components to spend effort en-
suring component reliability through redundancy and other fault
tolerance measures.

Our next step isto extend thismodel to incorporate the all ocation of
the software componentsto hardware units. Inadistributed system,
componentsthat communicate viathe network are strongly depend-
ent on the network for their required input variables, making the
network a single point of failure. Also, software components are
strongly dependent on the hardware node on which they are hosted.
These constraints will surely influence a system’s ability to grace-
fully degrade (hardware failures might remove multiple compo-
nents simultaneously), but may be ameliorated by system-wide
reconfiguration as proposed in [5]. Additionally, wewant to further
develop the concept of system utility to not only distinguish be-
tween when the system is“broken” or “not broken,” but also differ-
ent levels of functionality avalable in different system
configurations. We have identified which configurations result in
systems with positive utility, but we also need to quantitatively de-
termine which of those configurations have higher utility than oth-
ers. This will be based on determining which features are more
useful than others based on measures such as performance and func-
tionality.

6. ACKNOWLEDGMENTS

Thiswork was supported by the General Motors Satellite Research
Lab at Carnegie Mellon University, and Lucent Technologies.
Thanksto Beth Latronico, Bill Nace, OrnaRaz, and Yang Wang for
their help in devel oping the ideas presented.

7. REFERENCES

[1] Garlan, D., Monroe, R.T., Wile, D., “Acme: Architectural
Description of Component-Based Systems,” Foundations of
Component-Based Systems, Leavens, G.T., Sitaraman, M.
(eds), Cambridge University Press, 2000, pp. 47-68.

[2] Herlihy, M. P., Wing, J. M., “ Specifying Graceful
Degradation,” |EEE Transactions on Parallel and
Distributed Systems, vol.2, no.1, pp. 93-104, 1991.

[3] Knight, J.C., Sullivan, K.J., "On the Definition of
Survivability," University of Virginia, Department of
Computer Science, Technical Report CS-TR-33-00, 2000.

[4] Laprie, J.-C., "Dependability of Computer Systems:
Concepts, Limits, Improvements”, Proceedings of the Sxth
International Symposium on Software Reliability
Engineering, Toulouse, France, Oct. 1995, pp. 2-11.

[5] Nace, W., Koopman, P., “A Product Family Approach to
Graceful Degradation,” Distributed and Parallel Embedded
Systems (DIPES), October 2000.

[6] Shelton, C., Koopman, P., “Developing a Software
Architecture for Graceful Degradation in an Elevator Control
System,” Workshop on Reliability in Embedded Systems (in
conjunction with Symposium on Reliable Distributed
Systems/SRDS-2001), October 2001, New Orleans, LA.

