Improving the availability of web services

D. Cotroneo, M. Gargiulo, S. Russo, and G. Ventre

University of Naples 'Federico II' & Consorzio CINI – Laboratorio ITEM

Outline

Rationale
Goals
cosSocket middleware description
Experimental results
Conclusions

Rationale

In order to maintain the popularity and reputation of a web site, the *Quality of Service* (QoS) perceived by users, especially the **service availability**, is a success factor.

A service that is frequently unavailable may have negative effects on the *reputation* of the service provider, or may result in loss of *opportunities*.

ICSE-WADS '02

Net Brance Constant Constant State Income Table Constant State Barrier Constant State Constant State Constant S

Improve the availability of a web service

Availability as...

...the readiness for correct service, which quantifies the alternation between deliveries of **correct** service and **incorrect** service.

But...

When is the system unable to deliver a correct service ?

What is a correct service ?

Service availability

The service delivered by a system can be defined in terms of a sequence of service items

 s_i i = 1, 2...

each characterized by a tuple

 $\langle vs_i, ts_i \rangle$

where:

- vs_i is the value of the service item s_i
- *ts_i* is the time interval or instant of observation of service *s_i*

Service availability (2)

A service item s_i is defined correct iff:

 $(vs_i \in SV_i)$ and $(ts_i \in ST_i)$

where SV_i and ST_i (functions of the inputs to the system) are respectively the specified sets of correct values and times for service item s_i .

In the context of modern Web services is this definition still suitable?

Web-service availability

Considering modern Web services implemented over a QoS-enabled infrastructure...

- ...different users want to get services with different quality at different prices (specified in SLA)
- ...to a special group (premium users) the system has to guarantee the service in a certain period of time

Web-service availability (2)

Web-Service item s_i is defined correct iff:

 $(vs_i \in SV^*_{i,j}) and (ts_i \in ST^*_{i,j})$

where:

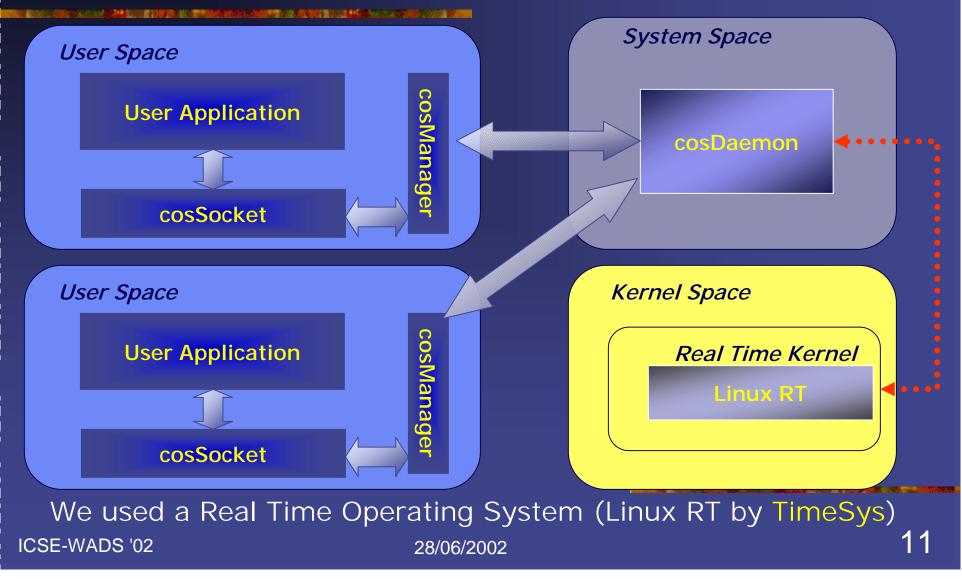
- $SV_{i,j}^* = f(SV_i, CU_j)$
- $ST^*_{i,j} = f(ST_i, CU_j)$

 CU_i is the Class of Users j

Failure mode assumptions

- A system cannot deliver a correct service due to the following reasons:
 - the presence of faults, which cause a system error
 - the presence of overloading condition, i.e. the server is too busy to deliver a correct service
- We investigate only timing failures caused by server overloads conditions
- Effects of value errors are not considered afterwards

Proposal


In order to improve the availability of a webservice we propose an...

...operating system extension for QoS differentiation among classes of communication-bound processes.

Such a middleware allows to define classes of services with different quality attributes concerning the network data delivery behavior.

Middleware description

Class Service model

We defined a class service model which consists of two kinds of service classes:

- Adaptive Class
 - without Admission Control
 - resource sharing in a weighted way
- Guaranteed Class
 - with Admission Control
 - resource assignment with self-regulating control loop

Class of Users

Three Classes of Users:

✓ Normal (Cn)

Medium (Cm)

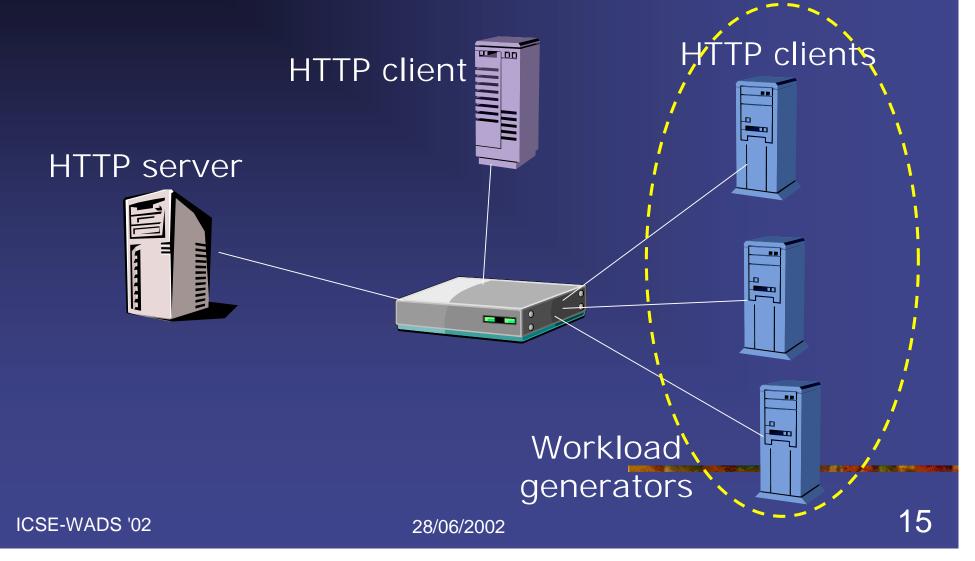
Premium (Cp)

> Adaptative CoS

Guaranteed CoS

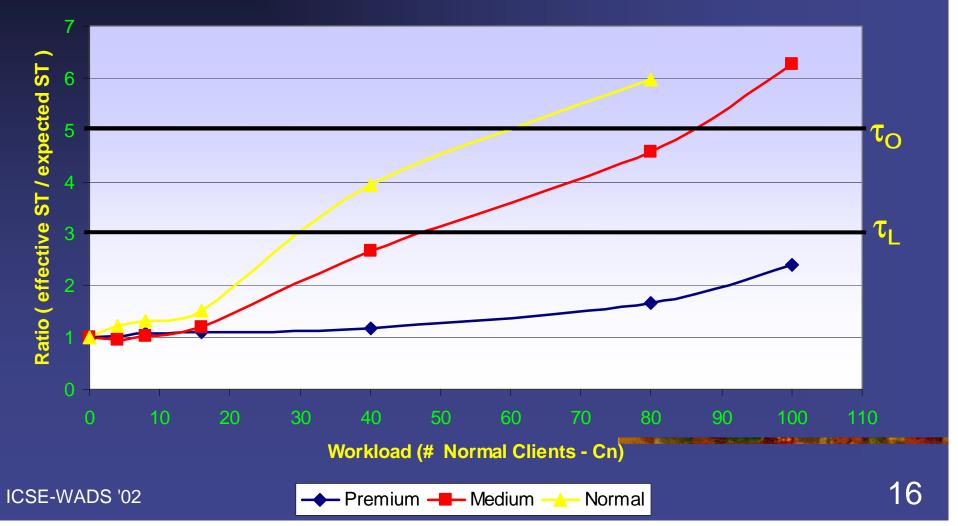
ICSE-WADS '02

13



Timing Errors Assertions

• No timing errors (τ_{none}) Service delivered in ST*_{i,i} • Omission errors (τ_0) Fail silent behavior • Late timing errors (τ_1) Service delivered after a MaxTime threshold depending on user class Possible only for Medium and Premium users


Testbed description

Experimental results

Service Time Ratio

Conclusions

- Our strategy relies on the capability of controlling the number of system calls issued for requesting an I/O task
- The middleware effectively improves the availability of the delivered service for some Classes of Users

• We are currently:

- Refining measurements in order to demonstrate that proposed middleware effectively improves service availability in wide area scenario
- Investigating about a new redundant model which is capable of preventing the system from external faults as well.

Thanks for your attention

Contact info: mgargiul@unina.it

ICSE-WADS '02