
R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 1

Tolerating Architectural Mismatches

Rogério de Lemos
University of Kent at Canterbury, UK

Cristina Gacek, Alexander Romanovsky
University of Newcastle upon Tyne, UK



R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 2

Motivation

System built from existing components (complex glue-code).

Software architectures describe the structure of systems: 
components, connectors and configurations.

Architectural mismatches: assumptions on the services 
provided and required do not match. 

Analysis and removal. But impossible to localise and correct 
all architectural mismatches statically.



R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 3

Motivation

Dependability is a system property. 

Faults can cause errors. Errors can cause failures.

Fault tolerance a means to achieve dependability:
� provision of service in spite of faults;
� error detection, error recovery and fault treatment.

Architectural mismatches are “design faults” at the level of 
integrated systems.



R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 4

Architectural Mismatches

Errors caused by architectural mismatches (ECMs):
� latent or detected;
� can cause system failure when ECMs affect the 

system service.

ECMs Detected 
 ECMs 

Errors 

Detected 
 Errors 



R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 5

Mismatch Tolerance

Mismatch prevention, removal, tolerance.

In tolerating mismatches there are two abstraction levels:
� architectural level where the mismatches are 

introduced;
� execution level where the ECMs are detected and 

recovered from.

Redundancy (e.g. additional information, time) is needed to 
detect an ECM, to associate an ECM with a mismatch (cf
fault diagnosis) and to tolerate it. 



R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 6

Examples

Integration of two complex large-grain (COTS) 
components: C1 and C2. Backtracking-related architectural 
mismatch: C1 backtracks but C2 does not. 

Detection of ECM: need additional information (observer, 
reflection, additional channel, etc.). It can be at the style 
level.

Recover from the ECM: depending on the direction of 
information two types of buffering can be employed, or an 
application-level recovery can be used.



R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 7

Examples

Architectural mismatch: call to a non-re-entrant component. 

In the pipe-filter style filters are non-re-entrant. filterC is 
unable to deal correctly with data from two sources.

filte rA  

filte rB  

filte rC  



R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 8

Examples

Tolerating this mismatch by extending the style.

Detect the ECM: 
� incoming port of filterC has to be made aware of 

more than one connector.

Recover from the ECM:
� queue all the incoming material until the first 

connection is over. Dealing with one connection at a 
time.



R. de Lemos, C. Gacek, A. Romanovsky ICSE WADS – May 2002 – 9

Future Work

� Using an existing ADL for describing architectures and 
for introducing mismatch tolerance.
� Developing typical (re-usable) techniques for tolerating 
typical mismatches.
� Refining existing styles to come up with a set of 
mismatch tolerance styles (incorporating ECM detection 
and recovery).
� Dealing with mismatch tolerance artefacts through 
several phases of software development. 
� Introducing diversity of connectors and components.
� Developing architectures that employ general exception 
handling for mismatch tolerance.


