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Motivation

System built from existing components (complex glue-code).

Software architectures describe the structure of systems: 
components, connectors and configurations.

Architectural mismatches: assumptions on the services 
provided and required do not match. 

Analysis and removal. But impossible to localise and correct 
all architectural mismatches statically.
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Motivation

Dependability is a system property. 

Faults can cause errors. Errors can cause failures.

Fault tolerance a means to achieve dependability:
� provision of service in spite of faults;
� error detection, error recovery and fault treatment.

Architectural mismatches are “design faults” at the level of 
integrated systems.
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Architectural Mismatches

Errors caused by architectural mismatches (ECMs):
� latent or detected;
� can cause system failure when ECMs affect the 

system service.
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Mismatch Tolerance

Mismatch prevention, removal, tolerance.

In tolerating mismatches there are two abstraction levels:
� architectural level where the mismatches are 

introduced;
� execution level where the ECMs are detected and 

recovered from.

Redundancy (e.g. additional information, time) is needed to 
detect an ECM, to associate an ECM with a mismatch (cf
fault diagnosis) and to tolerate it. 
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Examples

Integration of two complex large-grain (COTS) 
components: C1 and C2. Backtracking-related architectural 
mismatch: C1 backtracks but C2 does not. 

Detection of ECM: need additional information (observer, 
reflection, additional channel, etc.). It can be at the style 
level.

Recover from the ECM: depending on the direction of 
information two types of buffering can be employed, or an 
application-level recovery can be used.
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Examples

Architectural mismatch: call to a non-re-entrant component. 

In the pipe-filter style filters are non-re-entrant. filterC is 
unable to deal correctly with data from two sources.

filte rA  

filte rB  

filte rC  
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Examples

Tolerating this mismatch by extending the style.

Detect the ECM: 
� incoming port of filterC has to be made aware of 

more than one connector.

Recover from the ECM:
� queue all the incoming material until the first 

connection is over. Dealing with one connection at a 
time.
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Future Work

� Using an existing ADL for describing architectures and 
for introducing mismatch tolerance.
� Developing typical (re-usable) techniques for tolerating 
typical mismatches.
� Refining existing styles to come up with a set of 
mismatch tolerance styles (incorporating ECM detection 
and recovery).
� Dealing with mismatch tolerance artefacts through 
several phases of software development. 
� Introducing diversity of connectors and components.
� Developing architectures that employ general exception 
handling for mismatch tolerance.


