Software Architectures of

Dependable Systems:
From Closed to Open Systems

V. Issarny et al.

INRIA
Rocquencourt, France

l
t

« Benefits wrt systems robustness

» Methods and tools supporting analysis,
and the mappings of architectures to their
Implementations

> Focus Is on the standard behaviour of
the software systems

Architecture-based Development
of Complex Software Systems

of fallures in architecture-based
development

= Application-transparent fault tolerance
using middleware infrastructures

* Provide base services for managing failure
detection & error recovery

» Customized middleware architectures wrt
composed services

Supporting the Development of
| Dependable Systems

» Crucilal to account for the occurrence
N

Aiding the Development of
Middleware Architectures

» Middleware infrastructures

» Customized composition of services
through component-based middleware
containers

» Still, there Is the need of supporting the
development of containers
»Right composition of services
»Achieved quality

Systematic Composition of
Middleware Architectures

» A supporting environment [CACM 06/02]

= ADL for modeling middleware architectures

* Repository of architectural descriptions of
middleware infrastructures

= Automated support for:
« Composing middleware services

* Analyzing the quality of composed
architectures

Modeling Middleware
Architectures

« Traditional base modeling elements

= Component, connector, configuration

» Subtypes defining middleware-specific
architectural abstractions (stubs, RPC
connectors, ...)

 UML-based notation
= Component: subsystem
= Connector: association + refinement
= Configuration: collaboration

Tool Support

= Rational Rose tool for the graphical
specification of software architectures

= Implemented an add-in that eases the
specification of architectural descriptions using the
stereotypes discussed so far

= Use of an existing add-in to generate XML textual
specs from ADL specs

= XML specs serve as input to other tools integrated in our
environment

= Implemented in OCAML a verifier of OCL
constraints

Example

%> Rational Roze - middleware repository
File Edt %iew Fomat Browse Heport Tools Addin: Window Help

NEH) =E g R0 pmBEb | e cadE

Fi Collaboration Diagram: Logical Yiew / security

=

': N = (1<} . Skeleton

1.1.1.1?1 l/1_1.1.1. J
= l,m

=, . Decode . Encode - Decode 1.1.1. . Encode

- Interceptor Interceptar Interceptor T Interceptar

0 1_1:} '

7 . . .

‘ — Secure communication using
&

y Encode/Decode

|

. Skeleton

N
—1%“-»: eleton -
e ~“"—— | Fault tolerance using

Interceptor 1.3,

e Skeleton] | Fork/Merge

- “Waran 1.1.1.
° Interceptor 1.2.1.
—

1.3.1.

-

|

For Help, press F1 |Default Language: Analysis [LIR | i

Composing Middleware Services

« Approaches to architecture composition

* Horizontal = parallel composition [Qian et al., 95]
e Secure communication // multi-cast communication

= Serial composition for linear architectures [Steffen
& Beec 97]

 FT architecture is not linear
= EXplicit interposition [Spitznagel & Garlan, 01]

» Need for an automatic solution to identify
Bl \alid interpositions of components

Automating Composition

« Solution [WICSA’01]
= Composition through model checking
= Constrain composition through structure

- Additional benefits

» Allows identifying unexpected
compositions

» Allows understanding interaction of
gualities

R ational Bosze - middleware repository

File Edit “iew Fommat Browse Beport Toole Adddins: ‘Window Help
~u . o ; : 3
DEE| 2E &G R0 BMREBRBE|EE S dE
8 [} ollaboration Diagram: Logical Yiew / compo =
:
H HEC cFork : Stub : herge
Interceptor Interceptar
2.
= 1.1,
1.1.1. 1.1.1.1. 1.1.1.1.1. 111411,
EI:: 1.1.1.1.1.1.1.
: Encode Decode - Skeleton :Encode cDecode e
,/’ Interceptor Interceptor Interceptor Interceptar
n 1.2, 1.2.1. 1.2.1.1. 1.2.1.1.1. 1.2.1.1.1.1.
E—— —_— 1.21.1.1.1.1.
’;ﬁ/ : Encode cDecode - Skeleton :Encode :Decode
,,;;:":’ Interceptor Interceptar Interceptar Interceptar
& Vo 1.2.1. 1211, 13111, 121111, 1214111,
»‘n‘/"’a : Encode 5 Decode - Skeletan :Encode 5 cDecode — =
Interceptar Interceptor Interceptor Interceptor

Ei Collaboration Diagram: Logical Yiew / composition B

: Stub

ol

- Skeleton | ————==
1.
o 1.1. 1.1.1.
_ = —_ T 1.1.1.2.1
:Encode Decode Fak - Skeleton 3__
Interceptor Interceptor Interceptor 111,
__:..
1.1.1.32.1.
: Skheleton
: Decode :Encode s herge 1.1.1.3.
Interceptar Interceptor Interceptor —_—
21 2.
2.1.1.

> [

For Help. press F1

|Default Language: Analysis

| INUM |

Y

Analyzing the Quality of
Middleware Architectures

« Base solution

= ATAM: Architecture Tradeoff Analysis
Method [Kazman et al., 00]

o Attribute-based architectural styles combined
with scenarios

« 25% of ATAM spent for building quality attribute
models

|
‘l

> Need for automated procedures for the
Bl generation of quality models from ADL

l. specifications
|

Automating Quality Analysis

* Modeling support

= Scenarios are specified as UML collaboration diagrams
= Scenarios are associated with quality measures

= Components/Connectors/Nodes are associated with
properties characterizing various guality stimuli and
parameters

* The values of those properties are used to customize the
generation of the traditional quality models.

= Tool support
» Performance: QNAP-2 (SIMULOG)
» Reliability: SURE-ASSIST (NASA)

» Procedures mapping scenarios into models for
QONAP and SURE

Reliability Analysis

UML Collaboration + Deployment

1:
. ADL . = . ADL

~AnnaoactAr

)

. Component Component

range =

f (kind of faults, redundancy)
Generic transition rules for

Components/Connectors/Nodes

€.g. if the collaboration is in a state
where a node n is operational, then it
may get into a state where n is failed
and all components deployed on top

of it are failed.
State Space Model

at Is a state
what is a death state

Example - Specification

ational Roze - middleware repository

File Edt %iew Fomat Browse Heport Tools Addin: Window Help
DEelE fER & RO BemBREB| & @48 @ =

f Iz Fi Collaboration Diagram: Logical Yiew / security

AEC

= — Stub . Skeleton
1_1_1.1?1 l{u.u.
= l,m
= - Decode - Encode - Decode 1'1'1T - Encode
e Interceptor Interceptor Interceptor Interceptaor
; 1'1':_: iw. Aeliability parameters
Y Element Mame;
& - Failure relate
Y 1.1.1.1.1. Bigmmat Ivalue -I

1]

Fault relate

Mature Iaccidental "I Persistence Ipermanent vI
1.1. Phaze Iﬁ Arrrval rate ID.DDDDE
= deszign

. Skeleton

- Stub [= o .
: Boundary Iintemal 'I

- Skeleton

: Fork
Interceptor 1.3. Redundancy parameters

e . Skeleton : : :
L — E rror detection Icumparaisun vl Semwvice delivery Icgn[inugus vl
111 E mecubion I_parallel ,I Fault components num |3

. Merge

Interceptar 121 Lonfidence Irelative vl
-TT Execution on node IEIient Made vI

ok | Close |

|

For Help, press F1 |Default Language: Analysis [[[RLIR | i

Example — Composition

R ational Bosze - middleware repository

File Edit “iew Fommat Browse Beport Toole Adddins: ‘Window Help
o e,] ; ’ ;
DEE| 2E &G R0 BMREBRBE|EE S dE
8 [} ollaboration Diagram: Logical Yiew / compo =
:
H HEC cFork : Stub : herge
Interceptor Interceptar
-~ 2.
= 1.1,
1.1.1. 1.1.1.1. 1.1.1.1.1. 1.1.1.1.1.1.
=, 1.1.1.1.1.4.1.
: Encode Decode - Skeleton :Encode cDecode e
,/’ Interceptor Interceptor Interceptor Interceptar
n 12 1.2.1. 12.1.4. 1.2.1.1.1, 12.1.1.1.1,
 — E — 1.21.1.1.1.1.
’;ﬁ/ : Encode cDecode - Skeleton :Encode :Decode
,,;;:":’ Interceptor Interceptar Interceptar Interceptar
& Vo 1.2.1. 1211, 13111, 121111, 1214111,
»‘n‘/"’a : Encode 5 Decode - Skeletan :Encode 5 cDecode — =
Interceptar Interceptor Interceptor Interceptor
Ei Collaboration Diagram: Logical Yiew / composition B

: Stub

ol

- Skeleton | ————==
1.
o 1.1. 1.1.1.
_ = —_ T 1.1.1.2.1
:Encode Decode Fak - Skeleton 3__
Interceptor Interceptor Interceptor 111,
__:..
1.1.1.32.1.
: Skheleton
: Decode :Encode s herge 1.1.1.3.
Interceptar Interceptor Interceptor —_—
21 2.
2.1.1.

> [

For Help. press F1

|Default Language: Analysis

| INUM |

Y

Example — Analysis results

Cases #transitions Reliability Reliability
(upper (lower
bound) bound)

Composition A 24 0.74 0.72

(Single version

security service)

Composition A 48 0.80 0.79

(n-version
security service)

CompositionB 12 0.70 0.67

Assessment

» Making systems dependable is eased by
middleware infrastructures

» |nfrastructures offer base supporting services
= Service composition may be automated
= But...

= Allows only for backward error recovery and
cannot cope with all failures

» Need for complementary application-specific
forward error recovery

[] » Exception handling as it is the most general

mechanism
I‘.

Architecture-based
Exception Handling

= Exception handling mechanisms

= Serves implementing the system’s exceptional
specification (definition of exceptions & handlers)

» Relies on some model (e.g., termination,
resumption)
= Existing mechanisms are for handling
exceptions within components

» What about exception handling requiring
changes to the architecture [HICSS'01]

Base Solutions to Architectural
Exception Handling

= Exception handling within ADL

* Limited to the specification of signalled/handled
exceptions within the definition of
component/connector interfaces

» Behavioural specification would further improve
correctness checking
* Pre/post as supported by Inscape [Perry, 89]

» Issue of taking into account the exception handling
model

Base Solutions to Architectural
Exception Handling (Cont’d)

= Dynamic reconfiguration

= Determined at runtime
« Reconfiguration manager

* Possibly constrained based on invariant on the
system structure

» Fixed at design time

« Specified in the architecture description (e.g.,
Durra [Barbacci et al., 93])

* Independent of exception handling

» et exceptions flow among the
architectural elements according to the
embedding architectural style

= Exception handling at the
architecture level

* To enable changing the running
configuration

|
i EXxception Handling Model
= Exception handling within
components and connectors
N

Impact on Architecture
Description

= Support for internal exception handling

= Specification of exceptions raised/handled by the
elements

= Support for architectural exception
handling

= Definition of configuration exceptions and

associated handlers using the ADL

» Keep abstract the description of architectures for the
sake of analysis and synthesis

= Mapping to implementation using a service for
dynamic reconfiguration

Assessment

= Architecture-based development can aid
In the construction of dependable systems

= Application-transparent fault tolerance: systematic
aid in the design of customized middleware
architectures

= Application-specific fault tolerance: support for
exception handling at the architectural level

= But...

» EXisting support is mainly aimed at closed
systems

» Need solutions for open systems

Towards Dependable Open
Systems

» |ssues in the development of open
systems

= Composition of autonomous systems

= Highly dynamic systems
* Mobillity,
‘ Evolution,

Towards Dependable Open
Systems

= Ongoing work
= Architecting open systems with mobile

nodes

» Design and analysis of dynamically composed
systems

= Supporting middleware infrastructure
» Fault-tolerance mechanisms for
autonomous systems

» “Dependabillity in the Web Services
Architecture” — Ferda Tartanoglu et al.

For more information...

J » Web page of the ARLES group at
INRIA-Rocquencourt

‘I » Work as part of the following projects
[|

= DSOS

= OZONE:

