RAIC: Architecting Dependable Syste
Through Redundancy and Just-In-Time Testing™

]

o
i

For The CSE 2002 Workshop = &8
on Architecting Dependable Systems &8
| Orlando, Florida, USA o

Chang Liu, Debra J. Richardson
Information And Computer:Science
University of California, Irvine

{liu,djr} @ics.uci.edu

May 25, 2002




. @ RAIC overview.

e An example of dependable application
In the RAIC architectural style.

® Conclusions and related work.




e Redundant Arrays of Independent
Components

e A redundant software component array IS
a group of independent software

component that provide identical, similar,
or related functions.

[Liu, Richardson (2002)] UCI-ICS-TR-02-09.

[Liu, Richardson (2002)] COMPSAC 2002 Workshop of
Dependable On-line Upgrading of Distributed Systems,
Oxford.




Component Componenti

Application Application

Component2 S — Componant2

e Goal: to reduce component
“Integration cost.

¢ . [Liu, Richardson (2002)] Submitted to FSE-10.-




Detalls

e Component Array Types
— Component Types
— Component Relations

RAIC Controllers
RAIC Levels
RAIC Invocation Models




b
S

lookup serv

e Static

e Dynamic
— UDDI
— Jini




e Stateless

e Stateful |
— State-preserving function calls

— State-changing function calls
— State-defining function calls

— State-independent return values
— State-dependent return values




Component Relations

e Interface relations

e Functionality relations
e Domain relations

e Snapshot relations

e Relations on security, invocation
prices, or other aspects




RAIC Levels

RA
RA
RA
RA
RA
RA

£-1
C-2
E:5

C-4.
C-3:
C-06.
C-0:

. Exact mirror redundancy
. Approximate mirror redundancy
. Shifting lopsided redundancy

Reciproca
Reciproca
No redunc

~i1xed lopsided redundancy

redundancy
domain redundancy




RAIC Invocation Models

RA
RA
RA

C-a: Sequential invocation
C-b: Synchronous parallel invocation
C-c: Asynchronous parallel invocation

[Liu, Richardson (2002)] Preparing for Foclasa (Czech).




using
using = { ding:
using stem. Funtime.

public

public cl Light: HMars

[MethodProperty (EnumMethodProperty. enwur
public int Turnoni)

[MethodProperty (EnumMethodProper
Ly(int intemn:

[MechodProperty (EnumMethodPrope




; = using
= Lusing

public static woid Main(string[] args) l;ﬂ

int number of pa

Light light = new Light(): Tt Ch

for (int i=1; i<=number of

light.Turnoni() :

Thread.3leep (pause _in 3 ® 1000) St

light.
Thres ause in : 1000)

light.Turnoff () ;

Thread.3leep (pause in s 1000) ;




TR Husing
L Lusing e

public static void Main(string[] args) an ::-ﬁ

int number of pa R

Light light = new Lighti{): ) :ﬂ: 3
for f{int i=1; i<=numwher of e
{ _' =

- Find, 4 =

i

1000)
R light.TurnQff ) ;
Thread.3leep (pause in s 1000) ;
-'\\.




e Light version 1.0.0.1

— Allows arbitrary calls to all three
methods

e Light version 1.0.0.2

— Must call TurnOn() before calling
Setintensity() or TurnOff()

— Cannot call TurnOff() if the light is
already off.




+ Turnoff { )
+ Setlnt
enumtetlload
dorm
-"'\.




The Light component is |
ded online.

TumOn()

Setintensity(30)

TurnCH()

TurmOff()




Setintensity(50)

Setlntensity(50)

The Light component is :
upgraded onling.

Setintensity(50)
Exception

TumOff)

Return

Setintensity(50)

Setlntensity(50)




e JIT component testing versus
traditional software testing.

e JIT component testing versus

perpetual testing. |
[Osterwell, L. J., L. A. Clarke, et al. (1996)]

e JIT component testing versus

self-checking software or components.
~[Yau, S. S. and R. C. Cheung (1975)]
[Liu, C. and D. J. Richardson (1998)]




JIT Testing VS Traditional Testing

Happens even after application
deployment.

Uses heuristics and other means in
place of traditional test oracles.

Uses mostly live input data.

Efficiency extremely important for
predetermined test inputs.

Should not change component
states.




JIT Testing VS Perpetual Testing

e Perpetual testing Is optional and
removable.

e JIT testing In conjuhction with the
RAIC controller is an integral part of
the final product.




JIT Testing VS Self-Checking
Components

e JIT testing mechanisms are part of
the RAIC controller.

e Self-checking mechanisms are part

of the component.




Component State Recovery

e Snapshot-based

e Invocation-history-based
— Method properties '
— |Invocation history trimming

e Could be enhanced with component
dependency information

[Liu, Richardson (2002)] ICSE02/CBSES.




e Barga and Lomet: Phoenix
e Cook and Dage: Hercules

e S. S. Yau and R. C. Cheung: Self-
checking software




e Dependabllity-through-redundancy
can be achieved by adopting the
RAIC architecture style.

e Just-in-time component testing and
component state recovery
techniques support RAIC to achieve

- the above goal. |




