
RAIC: Architecting Dependable Systems 
Through Redundancy and Just-In-Time Testing

Chang Liu, Debra J. Richardson
Information And Computer Science

University of California, Irvine
{liu,djr}@ics.uci.edu

May 25, 2002

For The ICSE 2002 Workshop 
on Architecting Dependable Systems

Orlando, Florida, USA



Outline

l RAIC overview.
l An example of dependable application 

in the RAIC architectural style.
l Conclusions and related work.

2



RAIC Overview

l Redundant Arrays of Independent 
Components

l A redundant software component array is 
a group of independent software 
component that provide identical, similar, 
or related functions. 

[Liu, Richardson (2002)] UCI-ICS-TR-02-09.
[Liu, Richardson (2002)] COMPSAC 2002 Workshop of 

Dependable On-line Upgrading of Distributed Systems, 
Oxford.

3



The RAIC Architectural Style

lGoal: to reduce component 
integration cost.

[Liu, Richardson (2002)] Submitted to FSE-10.



RAIC Details

l Component Array Types
– Component Types
– Component Relations

l RAIC Controllers
l RAIC Levels
l RAIC Invocation Models



Array Types

l Static
l Dynamic

– UDDI
– Jini lookup service



Component Types

l Stateless
l Stateful

– State-preserving function calls
– State-changing function calls
– State-defining function calls

– State-independent return values
– State-dependent return values



Component Relations

l Interface relations
l Functionality relations
l Domain relations
l Snapshot relations
l Relations on security, invocation 

prices, or other aspects



RAIC Levels

l RAIC-1: Exact mirror redundancy
l RAIC-2: Approximate mirror redundancy
l RAIC-3: Shifting lopsided redundancy
l RAIC-4: Fixed lopsided redundancy
l RAIC-5: Reciprocal redundancy
l RAIC-6: Reciprocal domain redundancy
l RAIC-0: No redundancy



RAIC Invocation Models

l RAIC-a: Sequential invocation 
l RAIC-b: Synchronous parallel invocation
l RAIC-c: Asynchronous parallel invocation

[Liu, Richardson (2002)] Preparing for Foclasa (Czech).



Light Component Code Segment (in C#)



Light Application 1 Code (in C#)



Light Application 2 Code



The Light Components With Versions

l Light version 1.0.0.1
– Allows arbitrary calls to all three 

methods

l Light version 1.0.0.2
– Must call TurnOn() before calling 

SetIntensity() or TurnOff()
– Cannot call TurnOff() if the light is 

already off.



LightApp1, LightApp2, the Light 
Components, and LightRAIC



LightApp1 enjoys Light:1.0.0.2



LightApp2 reverts to Light:1.0.0.1



Just-In-Time Component Testing

l JIT component testing versus 
traditional software testing.

l JIT component testing versus 
perpetual testing. 
[Osterweil, L. J., L. A. Clarke, et al. (1996)]

l JIT component testing versus 
self-checking software or components. 
[Yau, S. S. and R. C. Cheung (1975)] 
[Liu, C. and D. J. Richardson (1998)]



JIT Testing VS Traditional Testing

l Happens even after application 
deployment. 

l Uses heuristics and other means in 
place of traditional test oracles.

l Uses mostly live input data. 
l Efficiency extremely important for 

predetermined test inputs.
l Should not change component 

states.



JIT Testing VS Perpetual Testing

l Perpetual testing is optional and 
removable.

l JIT testing in conjunction with the 
RAIC controller is an integral part of 
the final product.



JIT Testing VS Self-Checking 
Components

l JIT testing mechanisms are part of 
the RAIC controller.

l Self-checking mechanisms are part 
of the component.



Component State Recovery

l Snapshot-based
l Invocation-history-based

– Method properties
– Invocation history trimming

l Could be enhanced with component 
dependency information

[Liu, Richardson (2002)] ICSE02/CBSE5.



Related Work

l Barga and Lomet: Phoenix
l Cook and Dage: Hercules
l S. S. Yau and R. C. Cheung: Self-

checking software



Conclusions

l Dependability-through-redundancy 
can be achieved by adopting the 
RAIC architecture style.

l Just-in-time component testing and 
component state recovery 
techniques support RAIC to achieve 
the above goal.


