
Layered Dependability Modeling of an Air Traffic Control System

Olivia Das, C. Murray Woodside
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

email: odas@sce.carleton.ca, cmw@sce.carleton.ca
Abstract

Quality attributes, such as performance and depend-
ability of a software-intensive system are constrained
by its software architecture. The combined performance
and dependability (called performability) effects of an
architecture can be evaluated by constructing a per-
formability model that considers the failure/repair
behavior and performance attributes of its components,
interactions among the components and the fault toler-
ant approaches adopted. This paper constructs and
analyzes a Dependable Layered Queueing Network
(Dependable-LQN) performability model for a large-
scale Air Traffic Control system. It demonstrates the
capability of the appraoch, for evaluating the perform-
ability of a large-scale software architecture.

1. Introduction

The Dependable Layered Queueing Network
(Dependable-LQN) model is a performability model
for fault-tolerant distributed applications with a layered
software architecture and a separate architecture for
failure detection and reconfiguration. It considers the
failures (repairs) of its application and management
components, management connections and the
application’s layered failure dependencies together
with the application performance. It combines Fault-
Tolerant Layered Queueing Networks (FTLQN) and
the Model for Availability Management Architecture
(MAMA) [1]. FTLQN in turn extends the Layered
Queueing Network model [2] (a pure performance
model) with dependability related components and
attributes. This paper describes its application to an Air
Traffic Control (ATC) system.

An ATC system [3, 4, 5] is a large-scale complex
distributed system which demands high availability and
high performance. Its software architecture plays a key
role in achieving its high quality requirements; we

consider the architecture described in [3]. This is an en
route system which controls aircraft from soon after
takeoff until shortly before landing. Its end users are
the air traffic controllers. It has a layered software
architecture with one subsystem depending on another
for services and it uses a separate management
architecture for automatic failure detection and
recovery. It is an important case study for us because
Dependable-LQN model perfectly fits the choice for
modeling such a complicated and large system.

The goal of this paper is to demonstrate the use of
the Dependable-LQN model on a substantial system
with strong requirements for performance and
dependability. It also describes the use and scalability
of a tool [6] that takes the layered software description
and the management component interactions as input
and solves the model analytically to generate results.

2. The Dependable-LQN Model

2.1. First part: FTLQN Model

Figure 1 illustrates an example of an FTLQN model
with an example of a layered console application.
There are seven tasks (concurrent operating system
processes, represented as rectangles), “Console”,
“Application Server”, “Console Server”, “Log Server”,
“Database-A”, “Database-B” (backup of “Database-
A”) and “Data Server”. Each task runs on a processor
represented by an ellipse. The task “Application
Server” creates a report which involves reading from
the database, requesting some kind of application data
from the “Data Server” and then logging the report to
the “Log Server”. Tasks have one or more entries
which are service handlers embedded in them (“Data
Server” has “Get Application Data” and “Get Console
Data”). A service request (represented by a rounded
rectangle) has a single target server if there is no server
redundancy, or it may have a set of redundant target

servers with a policy on how to use them.

The different redundancy policies supported for a
service request are:

• Primary-Standby Redundancy (PSR) with load
sent only to the primary target

• Active Redundancy (AR) with load replicated and
sent to all working targets

• Primary-Standby Active Redundancy (PSAR) with
load replicated and sent to all the working targets
where a designated primary does exist. This redun-
dancy policy has been introduced in this paper. It is
useful in cases where a client sends a service
request to all the redundant servers (in Layer i) for
close synchronization, however only the primary
server of Layer i would send the service request to
Layer i+1 in order to decrease the number of repli-
cated requests to Layer i+1.

• Load-Balanced Redundancy (LBR) with load
equally divided among all working targets

In Figure 1, “dbService” is a service requested by
the entry “Create Report” for reading from the
database. It has PSR policy where the priority of the
target servers are labelled “#n” on the arcs going out
from the service to the server(s). In this model, all the

service requests are synchronous where the sender is
blocked until the receiver replies. The model is
restricted to being acyclic in order to avoid cycles of
mutual waiting that may lead to deadlock.

Asynchronous service requests can also be
accommodated where a client does not block after
sending a request to the server. In Figure 1, “serv5”
represents an asynchronous service request. In contrast
to a synchronous service request where the failure of a
client directly depends on the failure of the servers, an
asynchronous service request does not add any failure
dependencies. In order to add additional failure
dependencies that cannot be represented by service-
based dependencies, another abstraction called depends
relationship (of types “AND” or “OR”) can exist
between any two entries (illustrated in Section 3).

The performance parameters for the FTLQN model
are the mean total demand for execution on the
processor by each entry and the mean number of
requests for each interaction. The availability related
parameters for this model are the probabilities of being
in failed state for each component (either a task or a
processor) of the application. The performance
measures are usually associated with the tasks that only
originate requests (e.g. “Console” task), also called
reference tasks.

The FTLQN model shows the policy for redundant
servers but the decision about where to forward the
request is made by the fault management sub-system
(not visible in this model) based on its knowledge of
the state of the application components. This resolution
of requests gives different operational configurations of
the application. The probabilities of the operational
configurations now depend on the fault management
architecture, management subsystem failures, and as
well as on the application.

The FTLQN model can be solved to compute
steady-state measures, e.g. mean throughput of the
system in presence of failures. The general strategy of
the analysis is to compute the performance for each
reachable configuration that has different choices of
alternative targets for requests and combine it with the
probability of each configuration occurring, to find the
measures. For example, in Figure 1 if all the tasks are
operational, then the configuration is the system as
shown, but with Database-B, and its service requests
(labelled #2) removed as they are not used. This
configuration is a pure Layered Queueing Network

ConsoleUI

serv1 serv2

CreateReport Fetch
Console
Server

Application
Server

Processor1

Read-B Database-B Read-A Database-A

LogReport

serv5 dbService serv3 serv4

G etA pp lic -
a tio n D ata

G etC on so le
D ata

Data
Server

Processor4P S R

Processor3
Processor2

Figure 1. An FTLQN model

Log
Server

#1
#2

(LQN) performance model [2]. Each LQN model can
be solved for different performance measures by the
LQNS tool[2], based on extended queueing
approximations. This strategy is similar to the Dynamic
Queueing Network approach given in [7, 8] for
queueing network models.

The next section describes the management
components, their connections and how they are related
to the application components.

2.2. Second part: MAMA Model

MAMA model has four classes of components:
application tasks, agent tasks, manager tasks and the
processors hosting them. They are connected using
three different classes of connector:

• Alive-watch connector: This connector is used
between two components in cases where the desti-
nation component would like to be able to detect
whether the source component is alive or not. This
may be achieved by periodic polls or “i-am-alive”
messages. Usually, the source of this connector are
the manageable application components.

• Status-watch connector: In cases where a destina-
tion component would like to know about the live-
ness of the source component and also wants to
collect failure data about other components in the
system that has been gathered by the source com-
ponent, this connector is used. An example would
be a connector from an agent task to a manager
task.

• Notify connector: This connector is used for cases
where the source component would like to send or
forward reconfiguration commands to its sub-ordi-
nate destination component (for example, a man-
ager sending commands to an agent or an agent
forwarding a command to an application task) or
conveying management information to its peer (for
example, a manager sending information about the
domain it manages to another manager).

Cycles may occur in a MAMA model; we assume
that the flow of information is managed in a way so as
not to cycle or ping-pong. It is also assumed that if a
task watches a remote task, then it also watches the
processor executing the remote task in order to
differentiate between a task failure and a processor
failure.

Figure 2 shows the graphical notation used in this

work for MAMA components and connectors.

For this model, the failure probabilities can be
provided for all management components and the
connectors between them.

3. Dependable-LQN Model of an ATC En
Route System

An airspace controlled by a single ATC facility is
administratively divided into sectors. For example, US
airspace is serviced by 20 facilities each with a
maximum of 118 sectors per facility. Each facility
receives aircraft surveillance and weather data from
radars and communicates with other external
subsystems such as other en route facilities. Inside each
facility, air traffic services are divided among four
subsystems: Surveillance Processing Service (that
receives radar data and correlates it with individual
aircraft tracks) is provided by Radar subsystem directly
connected to radars, Flight Plan processing and
Conflict Alert services is provided by Central
subsystem, Display service (which displays aircraft
position information obtained from radars and allows
inputs from air traffic controllers to modify flight plan
data or change display format) is hosted by the Console
subsystem, Monitoring service (which provides the
monitoring and control service for other ATC services
ensuring their availability policies) is hosted by the
Monitor and Control subsystem. There are up to four

type

name

A task with name and its type,
where type = {MT, AT |
MT = Manager Task,
AT = Application Task,
AGT = Agent Task}

Status_watch connector

Notify connector

name

Alive_watch connector

 A processor with name

Figure 2 Notation used here for the MAMA model

consoles allocated for handling each sector. Fault-
tolerance is achieved by software server groups. For
example, there are up to four Display Management
primary/standby active redundant servers per sector,
three primary/standby active redundant Surveillance
Processing servers, two primary/standby Flight Plan
Management servers.

All the three redundant Surveillance Processing
servers receive the raw radar data from the radars in
parallel, however, only the primary would send the
processed radar data to the Display Management
servers running in the consoles. A PSAR redundancy
policy have to be used to model this case.

Figure 3 shows some parts of a Dependable-LQN

model based loosely on the description in [3]. Each
bubble represents a process group with replication; the
service nodes and redundant servers are not shown.
The communications with replicas is made transparent
by a process-to-process session manager (P2PSM) in
each host (not shown here).

Some failure dependencies are implicit in the server
request-reply dependencies. Others can be made
explicit with a depends relationship, for instance that
“display radar data” depends on “process radar data”,
even though the communications is asynchronous. This
would be an OR depends relationship on the three radar
processing replicas, since any one is sufficient.

The fault management architecture depends on a
group availability management server (gSAM) on each
processor which monitors all the software servers in its
own processor and also monitors the other processors
in its software server group. In MAMA terms, the
gSAM servers maintain an alive-watch. This is
supported by three redundant name servers which
maintain a list of primary host processors for each

server group. When a failure of a software server
occurs in its processor, a gSAM server notifies other
gSAM servers in its own group. Similarly, the failure
of a processor is detected by the other gSAM servers in
a group. Whenever a failure is detected, the gSAM
server notifies the name servers which in turn notify
the relevant P2PSM’s so that they can retarget their
service requests.

Controller

UI

Display
Management modify

Display
modify
FlightPlan

display
Flight Plan

user
Interface

display
Radar data

conflict
Alert

Console
subsystem

modify
flightPlan

get flight
Plan

detect and resolve
conflicts

Conflict
Resolution

Flight Plan
Management

modify
trajectory

get traje-
ctory

Trajectory
Management

read
Flight
Plan

update
Flight
Plan

Flight Plan
Database

Central
subsystem

process
radar
data

Surveillance
Processing

Radar
subsystem

(four active replicas)

(two primary-standby
replicas)

(three active
replicas)

(four
controllers)

Radars
(two
radars)

Figure 3 A Dependable-LQN model for an ATC en route system. Redundant server groups are not shown here.

Figure 4 shows a portion of the MAMA model for
Figure 3, including one replica of the Monitor and
Control subsystem. The redundant servers and the

interactions among the gSAM servers in a group are
not shown here.

A model for a sector has around 13 processors and
41 tasks (including the P2PSM and gSAM tasks). This
is comparable to the other models that have been
solved with the Dependable-LQNS tool [6]. The
analysis results will be described at the workshop.

4. Conclusion

This paper described a Dependable-LQN model for
evaluating performability of a large-scale Air Traffic
Control system. The value of the work lies in showing
how the Dependable-LQN model can be used to
evaluate whether an architecture meets its
performability goals or not and also to demonstrate the
scalability of the model solving tool. Our future
research includes considering the detection and
recovery delays in addition to the management
architectural limitations and its failures into the
analysis.

5. References

[1] O. Das and C. M. Woodside, “Modeling the coverage and
effectiveness of fault-management architectures in layered
distributed systems”, IEEE International Conference on
Dependable Systems and Networks (DSN'2002), June 2002,
pp. 745-754.
[2] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia,
and M. Woodside, “Performance Analysis of Distributed
Server Systems”, in the Sixth International Conference on
Software Quality (6ICSQ), Ottawa, Ontario, 1996, pp. 15-26.
[3] F. Cristian, B. Dancey and J. Dehn, “Fault-Tolerance in
Air Traffic Control Systems”, ACM Transactions on
Computer Systems, 14(3), August 1996, pp.265-286.
[4] L. Bass, P. Clements and R. Kazman, Software
Architecture in Practice, Addison-Wesley, 1998.
[5] A. S. Debelack, J. D. Dehn, L. L. Muchinsky and D. M.
Smith, “Next generation air traffic control automation”, IBM
Systems Journal, 34(1), 1995, pp. 63-77.
[6] O. Das and C. M. Woodside, “Dependable LQNS: A

gSAM

UI

Console
Processor

AT

AT

MT

Name
Server

MT

Display
Mgmt

AT

P2PSM

gSAM

UI Central
ProcessorAT

AT

MT

Display
Mgmt

AT

P2PSM

gSAM

Radar
Processor

AT

MT

AT

P2PSM

Surveillance
Processing

Monitor
and Control
subsystem

Name
Server
Processor

Alive_watch connector
Notify connector

Figure 4. Portion of MAMA model for Figure 3. Redundant server groups and interactions among the
gSAM servers in a group are not shown here.

performability modeling tool for layered systems”, submitted
for IEEE International Conference on Dependable Systems
and Networks (DSN’2003).
[7] B. R. Haverkort, I. G. Niemegeers and P. Veldhuyzen van
Zanten, “DYQNTOOL: A performability modelling tool
based on the Dynamic Queueing Network concept”, in Proc.
of the 5th Int. Conf. on Computer Perf. Eval.: Modelling

Techniques and Tools, G. Balbo, G. Serazzi, editors, North-
Holland, 1992, pp. 181-195.
[8] B. R. Haverkort, “Performability modelling using
DYQNTOOL+”, International Journal of Reliability, Quality
and Safety Engineering., 1995, pp. 383-404.

	Layered Dependability Modeling of an Air Traffic Control System
	Olivia Das, C. Murray Woodside
	Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
	email: odas@sce.carleton.ca, cmw@sce.carleton.ca
	1. Introduction
	2. The Dependable-LQN Model
	2.1. First part: FTLQN Model

	Figure 1. An FTLQN model
	2.2. Second part: MAMA Model

	A task with name and its type,
	where type = {MT, AT |
	MT = Manager Task,
	AT = Application Task,
	AGT = Agent Task}
	3. Dependable-LQN Model of an ATC En Route System

	Figure 3 A Dependable-LQN model for an ATC en route system. Redundant server groups are not shown...
	Figure 4. Portion of MAMA model for Figure 3. Redundant server groups and interactions among the ...
	4. Conclusion
	5. References

