
A Framework for Using Component Redundancy for
self-Optimising and self-Healing Component Based Systems

Ada Diaconescu*, John Murphy*

Performance Engineering Laboratory, Dublin City University
{diacones,murphyj}@eeng.dcu.ie

* The authors’ work is funded by Enterprise Ireland Informatics Research Initiative 2001

Abstract

The ever-increasing complexity of software systems
makes it progressively more difficult to provide
dependability guarantees for such systems, especially
when they are deployed in unpredictably changing
environments. The Component Based Software
Development initiative addresses many of the complexity
related difficulties, but consequently introduces new
challenges. These are related to the lack of component
intrinsic information that system integrators face at
system integration time, as well as the lack of information
on the component running-context that component
providers face at component development time.

We propose an addition to existing component models,
for enabling new capabilities such as adaptability,
performance optimisation and tolerance to context-driven
faults. The concept of ‘component redundancy’ is at the
core of our approach, implying alternate utilisation of
functionally equivalent component implementations, for
meeting application-specific dependability goals.

A framework for implementing component redundancy
in component-based applications is described and an
example scenario showing the utility of our work is given.

1. Introduction

Extensive employment of software systems in various
domains raised the concern for the dependability
guarantees provided by such systems (e.g. performance,
reliability, robustness). Nevertheless, the ever-increasing
size and complexity of modern software systems leads to
more complicated and expensive system design, testing
and management processes, decreasing system flexibility
and making it difficult to control dependability
characteristics of such systems [1].

In this context, Component Based Software
Development (CBSD) has emerged as a new solution that
promises to increase the reliability, maintainability and
overall quality of large-scale, complex software
applications. In the CBSD approach, software applications
are developed by assembling made or bought (i.e.

commercial off-the-shelf - COTS) components, according
to a well-defined software architecture.

Consequently, the dependability of component-based
software applications is determined by both the
dependability of the individual components involved, as
well as by the adopted software architecture. Considerable
research efforts towards determining optimal software
architectures ([2], [3], [4]) with respect to the system
quality attributes [5], as well as towards achieving
dependability guarantees for COTS components ([6], [7]),
support this idea. The impact software architecture has on
the overall software system performance is also
demonstrated in [8]. In this paper, it is shown how
different software architectures, providing the same
functionalities, yielded different performance results while
running in identical environmental conditions.

Information on the context in which a software
component or application will run (e.g. hardware and
software resources, workloads and usage patterns) is vital
when taking architectural, or design decisions. At software
development or integration time though, it is impossible to
predict with sufficient accuracy, the environmental
conditions in which software components or applications
will be deployed. In addition, the initial deployment
conditions can dynamically change at runtime. Using
COTS components exacerbates the problem, by increasing
the level of indetermination and making it hard to provide
dependability guarantees for the running system [6], [7].

Assuming that different architectural, design and
implementation-related choices proved optimal in
different environmental circumstances, we argue that it
would be beneficial for system quality if the software
application could accordingly adapt at runtime, when
accurate information were available. We propose the use
of redundancy in order to enable such capabilities for
component-based software systems. Our intent is to
enhance one of the existing component platforms (e.g.
EJB, .NET, or CCM) with support for software
component redundancy. The predicted benefits of this
approach include constant, automatic performance
optimisation for running applications, as well as tolerance
to certain categories of non-functional, integration-
specific faults (e.g. deadlocks, data corruption). By non-

functional faults, we mean faults that are not related to an
application’s expected functionality and therefore do not
imply any application-specific behavioural knowledge or
extra implementation effort to detect.

The rest of the paper is structured as follows. Section 2
provides an overview of our research proposal. An
example scenario, indicating the benefit of our work, is
presented in Sections 3. A general architecture for our
proposed framework is described in Section 4. Section 5
places our approach in the context of similar work in the
area. We conclude and present future work in Section 6.

2. Research overview

Our research goal is to enable dynamic adaptability
capabilities in complex, component-based software
systems, running in unpredictably changing environments,
in order to automatically optimise and maintain their
dependability characteristics.

Central to our solution is the concept of (software)
component redundancy. By this concept, we mean that a
number of component implementation variants, providing
the same or similar services, are available at runtime. We
refer to these component variants as redundant
components and say that a set of redundant components
providing an equivalent service constitutes a redundancy
group (with respect to that service). Any component
variant in a certain redundancy group can be functionally
replaced with any other component variant in the same
redundancy group.

Only one of the redundant components providing a
service is assigned, at any moment in time, for handling a
certain client request for that service (i.e. an instance of
that component is forwarded the client request). This
differs from other approaches (e.g. N-version
programming; agent-based systems [9]), where a number
of the available redundant variants work in parallel,
towards a common result. We refer to a component
variant that the application is currently using (i.e. sending
client requests to instances of that component version) as
an active component variant. Component variants that are
not currently considered for handling client requests are
referred to as passive component variants.

If instances of an active component variant fail, or
perform poorly in a certain context, the component variant
can be deactivated and replaced with an alternative
member of the same redundancy group. This is the main
means by which redundancy groups continually optimise
themselves, while dealing with changing execution
contexts, or context-driven faults.

We do not constrain the component redundancy
concept to the level of atomic components [10] [Figure 1-
a]. This concept can also be applied to composite
components [Figure 1-b] (i.e. composites [10],

‘containing’ a number of sub-components) or to
component sets, or groups (i.e. components ‘using’ other
components) [Figure 1 – c]. Therefore, through the rest of
the paper, references to redundant components can imply
atomic, composite, or sets of components.

Figure 1: Redundancy granularities

We intend to implement all functionalities that are
required to support and benefit from component
redundancy at the component platform level. No
development effort overhead is to be placed on the
developers of software components that are to be
deployed and run on such platforms. Of course, in order
for redundancy to be enabled, alternative variants would
have to be provided. However, our approach does not
require that multiple redundant components be available
at software application deployment or runtime. The only
constraint is that at least one component version must be
available for each external interface, at all times. While
complying with this constraint, redundant components can
be dynamically added or removed from the software
system, at runtime.

We propose that a formal component description be
available for every deployed component variant. The
description includes information on both functional (e.g.
provided and required services) and non-functional (e.g.
quality attributes, recommended resources) characteristics
of the component (e.g. similar to contracts as in [10], or
[11]). Most system quality characteristics depend upon the
execution context (e.g. response time is influenced by
workload and available resources). These variations are
represented in component descriptions as a list of
[environment related parameters, corresponding values]
pairs. Initially, component non-functional characteristics
can optionally be provided by component developers,
based on estimations, test results, or previous experience
with the supplied components. While a component variant
is active, its initial quality description is updated with run-
time monitoring information, for the precise application
configuration and execution environment.

3. Example

In this section, we provide an example of a possible
scenario in which our approach proves to be beneficial.
For this example, we opted for the EJB component

technology. However, we believe our framework is
generic enough to be applied to other component models.

The example involves two different component
implementations providing the same functionality:
repeatedly retrieving information from a remote database.
The two components differ at the design level. The first
design variant involves a single Session Bean, containing
SQL code for directly accessing the database. We will
refer to this variant as the Direct DB variant. In the second
design variant, a Session Bean uses an Entity Bean as
means of interacting with the database. We will refer to
this variant as the Using Entity Bean variant. A client
Session Bean is used for calling these two variants,
repeatedly requesting information.

We deployed our EJB example on an IBM WebSphere
application server, on Windows2000, running on an Intel
Pentium4, with 1.6GHz CPU and 512 MB RAM. We used
a DB2 database, running on Windows2000, Intel Pentium
4, 1.6 GHz CPU and 256 MB RAM. A third machine was
used for generating traffic and loading the network link to
the remote database, to various degrees. We used the
Tfgen traffic generator for this purpose. The three
machines were connected through a switched 100 Mbps
Ethernet LAN, completely separated from other traffic.

We measured the response delays for each version, in
different environmental conditions (i.e. available
bandwidth on the network links) and usage patterns (i.e.
number of repetitive read requests per client transaction).

When the network is lightly loaded, we experience
smaller delays in the Direct DB variant than in the Using
Entity Bean variant, regardless of the number of repetitive
client requests (e.g. 1, 10, 100, 1000 [requests per
transaction]). This can be accounted for by the overhead
incurred (in the Using Entity Bean variant) by the extra
inter-process communication and Entity EJB management.

However, increasing the load on the network link to the
remote database has significant impact on the Direct DB
approach, while hardly affecting the Using Entity Bean.
This can be explained by the fact that the Direct DB
variant needs to access the database for each individual
(client) read request. The Using Entity Bean variant,
involves a single database access per client transaction
(i.e. only for the first read request in the transaction), as
the data is then locally stored at the Entity Bean instance
level and retrieved from there for subsequent requests.
Therefore, for increased network loads (e.g. 90% load)
and number of read requests, the Direct DB design choice
produces higher delays than the Using Entity Bean does.
Using an Entity Bean to read from the database becomes,
in these circumstances, the optimal choice.

The optimal variant switching point between the two
implementations is reached when the inter-process
communication and CPU overhead (i.e. in the Using
Entity Bean variant) is exceeded by the repeated remote

database access overhead (i.e. in the Direct DB variant).
Figure 2 shows the response-time curves corresponding to
the two redundant variants, for various network loads,
when 1000 read requests were made per client transaction.
For obtaining these curves, we repeatedly measured the
response delays of such repetitive client requests, for
different network loads. We then calculated the average
delay value, for each network load.

Figure 2: response-time curves

Even though simple, this example shows how
alternating the activation of two redundant variants can
ensure better performance than either variant could, at all
times. We argue that it is hard, if not impossible to devise
a component version that exhibits optimal characteristics
in all possible running contexts. The optimal component
variant depends on the component execution environment,
which can frequently change. Our focus is on the
adaptation logic for automatically determining optimal
component variants and optimal combinations of
component variants, in different running contexts.

4. Framework general architecture

We propose implementing component redundancy as a
new service provided by component platforms (i.e.
besides already provided services, such as security,
transaction support, or life-cycle management). Three
main functionalities were identified as needed for the
support, utilization and management of redundant
components and were associated with three logical tiers in
our framework [Figure 3]: i) Monitoring tier; ii)
Evaluation tier and iii) Action tier. In this section, we
present the main roles and functionalities of each of these
tiers and discuss the way they interact in order to provide
the component redundancy service.

The Monitoring tier is concerned with acquiring run-
time information on the software application as well as on
its execution environment. Run-time monitoring implies
that information is collected exclusively for the active
component variants. It is also the responsibility of the
Monitoring tier to analyse the collected information and
identify any potential ‘problem’ components [1], [12].

The Evaluation tier is responsible for determining the
optimal redundant component variant(s) in certain
contexts, using adaptation logic, component descriptions
and monitoring information on the current environment
and application state. It also updates the descriptions of
active component variants, with runtime information from
the Monitoring tier. This helps the Evaluation tier to
‘learn’ in time about the performance characteristics of the
software application it has to manage.

Adaptation logic, for deciding which redundant
component(s) to activate (and deactivate respectively), is
reified in the Evaluation tier in the form of decision
policies. These are sets of rules, dictating the actions to be
taken in case certain conditions are being satisfied.
Decision policies can be customised for each deployed
application (e.g. requested quality attributes values,
default redundant components to activate) in order to
serve the specific application goals and can be
dynamically added, modified or deleted at runtime.

We split decision policies into two layers, based on
their complexity. The bottom layer comprises basic
decision policies, of the condition-action type. These
policies are used to remedy poor performance or critical
situations (e.g. response time thresholds are being
exceeded) and take immediate effect. The top layer is
reserved for decision policies concerned with application
optimisations, in conditions in which the application is not
necessarily evaluated as under-performing or faulty. These
policies are designed for activities such as reasoning,
predicting, planning, or scheduling, in order to optimise
application performance, anticipate and prevent failures or
emergencies. Policies in the top layer are also used to

control the adaptation process. They can decide when to
stop an optimisation evaluation or enforcement operation,
in case it becomes too costly (e.g. in time, or resources),
or it seems to have entered an infinite loop (e.g.
oscillating state, chain reaction).

The Action tier encompasses the actual software
application and a component-swapping mechanism. Based
on optimisation decisions, the Evaluation tier sends
corresponding configuration commands to the Action tier,
indicating the redundant component variant(s) to be
activated or deactivated respectively. The component-
swapping mechanism performs the requested operations.
As stated in related research on component hot swapping,
two main issues occur when replacing component variants
at runtime. One issue is concerned with state transfer from
an executing component instance to a replacement
component instance. This is only needed in case instances
of different component variants handled the same client
request or session, one after the other. Since in the
targeted problem domain client calls are usually short-
lived, we believe such action would bring little
performance benefit to requests already being handled
(when component replacement occurred). Therefore, in a
first phase, we do not attempt to transfer state between
instances of different component variants. Rather,
incoming client calls are directed to an instance of the
appropriate component variant, upon arrival. Instances of
component variants to be deactivated finish handling
current requests before being removed. This allows for
instances of different redundant components to coexist. In
a future phase, we will consider one of the solutions
proposed in the ongoing research in this area (e.g. [13],

Figure 3: Framework architecture

[14]). The other issue is maintaining client references
consistency. We adopt a proxy-based solution to address
this issue. Component technologies based on contextual
composition frameworks [10] provide a straightforward
way of implementing this. That is because clients can only
call component instances through the component
container, in which the component was deployed and run.
The component container can consequently be modified
so that to transparently (re)direct client requests to
instances of active component variants. In brief, in a first
phase of our research, we adopt a client request
indirection strategy for implementing the component hot-
swapping mechanism.

In our framework, the three presented tiers operate in
an automated, feedback-loop manner [Figure 3]: the
application performance is monitored and evaluated, the
optimal redundant component(s) are identified and
activated and the resulting application is monitored and
(re-)evaluated. Decision policies at both layers can be
dynamically tuned in effect. It is important to note that as
these are logical tiers, the boundaries between them may
not be as clearly marked when implemented.

4.1. Hierarchical adaptation mechanism

When considering large-scale component-based
applications, global optimisations may not always be
desirable. Evaluating an overall application, potentially
consisting of hundreds of components, whenever an
individual component or a group of components does not
behave as expected, might induce unnecessary overhead
and not scale well. We propose distributing the adaptation
mechanism. That is, if a problem is detected at an
individual component level, the problem is dealt with
locally, by means of redundant component replacement.
Nevertheless, exclusively concentrating on local
optimisations might not globally optimise the system.
Therefore, our framework employs (three-tiered)
adaptation mechanisms with different scopes (e.g. local,
group, global), organised in a hierarchal manner. Detected
problems can be dealt with locally or/and signalled
upwards the hierarchical tree, up to the global level.
Adaptation mechanisms can be dynamically activated or
deactivated, in order to reduce overhead, when possible.
This idea is also presented in [12], in the context of non-
intrusive, EJB system monitoring.

5. Related Work

Redundancy for increased robustness or reliability has
been successfully used in various domains (e.g. hardware,
mechanics, or constructions). The same concept was
introduced in the software domain (e.g. [9], or as ‘design

diversity’ in [6], [15]), in order to achieve fault-tolerance
capabilities for software systems. A few examples of fault
tolerant schemes implementing this concept are N-version
programming, N self-checking software, recovery blocks
[16], or exception handling approaches. However, as these
schemes target system fault tolerance, they imply both the
presence of knowledge of the correct system behaviour, as
well as of methods for assessing system behaviour at
runtime, in order to detect faults. We target a different
problem domain, encompassing performance-related
problems and non-functional faults, which can generally
be detected without needing application semantics
information. Our framework can consequently be
implemented as part of the component platform layer, for
the benefit of all applications deployed on such platforms.

Similar to our performance optimisation related intent,
the Open Implementation initiative [17] allows clients to
decide which implementation variant to use (i.e.
instantiate) for optimal performance, in a specific context.
We propose that the component platform automatically
take such decisions. In our view, it is very expensive, or
even impossible for a system manager to optimally
perform such activities in due time, in the case of complex
systems or frequent environmental changes.

Redundancy as a means of achieving dependability for
Internet systems (i.e. Web Services based) is proposed in
the RAIC [13] project. The addressed problem domain in
this case however, is different in scope from our work.
This is because such systems rely on Internet services
offered by different providers, from different locations.
No single authority owns, or has complete control over the
entire system. The Internet system developer has no
knowledge of, or access to the implementation,
deployment platform, or supporting resources of the
services it needs to use. Redundancy support cannot be
implemented in this case at the component deployment
platform level. Instead, redundancy support for the
services that Internet systems use is implemented at the
software application level of such systems.

Research in the area of dynamic component versioning
presents certain similarities to our work. However, the
main intent of the two research directions is different,
emphasising different aspects. Component versioning is
concerned with verifying whether new versions are better
than old ones, before dynamically upgrading the system.
In [14] for example, the best component version is
determined by means of online testing. Even though the
possibility of multiple versions being kept is considered,
the way such versions are to be used is not elaborated.

A significant research area, closely related to our work,
is concerned with specifying and building dynamic
adaptability capabilities for self-repairing systems.
Mostly related to our work are approaches based system
architectural models [18], [19]. A feedback-loop

mechanism (separated from system business logic) is
employed for adapting running systems to changing
requirements, or environmental conditions. This
mechanism is designed in a centralised manner.
Monitoring information is centralised, evaluated using
analytical methods (e.g. queuing theory) and the system is
globally optimised. Our approach adopts a hierarchical
adaptation approach, where global system optimisation
can generally be avoided. We focus on adaptation
operations related to redundant component replacements.

An important aspect of our research is the fact that we
exclusively target component-based applications based on
contextual composition frameworks [10]. The unique
nature of such applications (e.g. soft inter-component
bindings; unpredictable number of component instances)
might make approaches devised for component-based
systems in general (i.e. in which ‘components’ can mean
clients, servers, or software modules), difficult to apply.

6. Conclusions and Future Work

This paper proposed the use of component redundancy
for enabling self-optimisation, self-healing and dynamic
adaptation capabilities in component-based software
systems. A component redundancy related terminology
was defined. We argued that system complexity, lack of
sufficient information and changing execution conditions
make it impossible to create and ascertain components
that exhibit optimal dependability characteristics at all
times. An example was presented to support this idea. In
this example, different strategies were selected for
implementing two distinct component variants providing
the same functionality. Each implementation variant
proved optimal (with respect to response delays) in
different environmental conditions. As these results
indicate, knowledgeably alternating the usage of
redundant components, optimised for different running
contexts, ensures better overall performance than either
component variant could provide.

A framework for implementing the component
redundancy concept was described. We identified the
main roles and functionalities this framework needs to
provide and categorised them into three logical tiers:
monitoring, evaluation and action. We proposed
distributing the three logical tiers, organising them (each)
in a hierarchical manner, in order to reduce overhead.

As future work, we intend to provide a proof-of-
concept implementation of our framework and test it
against our example scenario. In addition, further
scenarios and case studies will be identified and
documented. The cost of acquiring multiple redundant
components, as well as the impact of using redundant
components on the overall application performance and
resource usage will have to be analysed.

7. References

[1] J. O. Kephart, D. M. Chess, “The Vision of Autonomic
Computing”, IEEE Computer, January 2003
[2] C. U. Smith, L. G. Williams, “Software Performance
Engineering: A Case Study with Design Comparisons”, IEEE
Trans. Software Eng., Vol. 19, No 7, July 1993
[3] F. Aquilani, S. Balsamo, P. Inverardi, “Performance
Analysis at the Software Architectural Design Level”,
Performance Evaluation, Volume 45, Number 2-3, July 2001
[4] J. Bosch, P. Molin, “Software Architecture Design:
Evaluation and Transformation”, IEEE Conference and
Workshop on Engineering of Computer-Based Systems,
Nashville, Tennessee, March 1999
[5] M. Klein et al., “Attribute-Based Architecture Styles”, in
Proceedings of the First Working IFIP Conference on Software
Architecture (WICSA1), San Antonio, TX, 1999, pp 225-243
[6] P. Popov, L. Strigini, A. Romanovsky, “Diversity for Off-
The-Shelf Components”, International Conference on
Dependable Systems&Networks, NY, USA, 2000, pp. B60-B61
[7] P. A. C. Guerra, C. M. F. Rubira, R. de Lemos, “An
Idealized Fault-Tolerant Architectural Component”, Workshop
on Architecting Dependable Systems, Orlando, FL, May 2002
[8] E. Cecchet et al., “Performance and Scalability of EJB
Applications”, Proc of 17th ACM Conference on Object-
Oriented Programming, Seattle, Washington, 2002, pp 246-261
[9] M.N. Huhns, V.T. Holderfield, "Robust Software", Agents
on the Web, IEEE Internet Computing, March/April 2002
[10] C. Szyperski, with D. Gruntz and S. Murer, “Component
Software: Beyond Object-Oriented Programming”, Second
Edition, Addison-Wesley Pub Co, 1 November 2002
[11] B. Meyer, C. Mingins, H. Schmidt: Trusted Components
for the Software Industry. IEEE Computer 5/1998, pp. 104-105
[12] A. Mos, J. Murphy, “Performance Management in
Component-Oriented Systems using a Model Driven
Architecture Approach”, The 6th IEEE International Enterprise
Distributed Object Computing Conference (EDOC), Lausanne,
Switzerland, September 2002
[13] C. Liu, D. J. Richardson, “RAIC: Architecting Dependable
Systems through Redundancy and Just-In-Time Testing”, ICSE,
Workshop on Architecting Dependable Systems (WADS),
Orlando, Florida, 2002
[14] M. Rakic, N. Medvidovic, “Increasing the Confidence in
Off-the-Shelf Components: A Software Connector-Based
Approach”, Symposium on Software Reusability: putting
software reuse in context, Toronto, Ontario, Canada, 2001
[15] B. Littlewood et al., “Modeling software design diversity: a
review”, ACM Press, New York NY, USA, 2001, pp 177-208
[16] B.Randell and J.Xu, “The Evolution of the Recovery Block
Concept”, Software Fault Tolerance, JohnWiley&SonsLtd, 1995
[17] G. Kiczales, “Beyond the Black Box: Open
Implementation”, IEEE Software, January 1996
[18] S. Cheng et al., “Using Architectural Style as a Basis for
Self-repair”, Proc. Working IEEE/IFIP Conference on
Software Architecture, Montreal, August, 2002
[19] P. Oriezy et al., “An Architecture-Based Approach to
Self-Adaptive Software”, IEEE Intelligent Systems,
May/June 1999, p. 54-62

