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Abstract 

The ever-increasing complexity of software systems 
makes it progressively more difficult to provide 
dependability guarantees for such systems, especially 
when they are deployed in unpredictably changing 
environments. The Component Based Software 
Development initiative addresses many of the complexity 
related difficulties, but consequently introduces new 
challenges. These are related to the lack of component 
intrinsic information that system integrators face at 
system integration time, as well as the lack of information 
on the component running-context that component 
providers face at component development time.  

We propose an addition to existing component models, 
for enabling new capabilities such as adaptability, 
performance optimisation and tolerance to context-driven 
faults. The concept of ‘component redundancy’ is at the 
core of our approach, implying alternate utilisation of 
functionally equivalent component implementations, for 
meeting application-specific dependability goals.  

A framework for implementing component redundancy 
in component-based applications is described and an 
example scenario showing the utility of our work is given.  

1. Introduction  

Extensive employment of software systems in various 
domains raised the concern for the dependability 
guarantees provided by such systems (e.g. performance, 
reliability, robustness). Nevertheless, the ever-increasing 
size and complexity of modern software systems leads to 
more complicated and expensive system design, testing 
and management processes, decreasing system flexibility 
and making it difficult to control dependability 
characteristics of such systems [1]. 

In this context, Component Based Software 
Development (CBSD) has emerged as a new solution that 
promises to increase the reliability, maintainability and 
overall quality of large-scale, complex software 
applications. In the CBSD approach, software applications 
are developed by assembling made or bought (i.e. 

commercial off-the-shelf - COTS) components, according 
to a well-defined software architecture.  

Consequently, the dependability of component-based 
software applications is determined by both the 
dependability of the individual components involved, as 
well as by the adopted software architecture. Considerable 
research efforts towards determining optimal software 
architectures ([2], [3], [4]) with respect to the system 
quality attributes [5], as well as towards achieving 
dependability guarantees for COTS components ([6], [7]), 
support this idea. The impact software architecture has on 
the overall software system performance is also 
demonstrated in [8]. In this paper, it is shown how 
different software architectures, providing the same 
functionalities, yielded different performance results while 
running in identical environmental conditions. 

Information on the context in which a software 
component or application will run (e.g. hardware and 
software resources, workloads and usage patterns) is vital 
when taking architectural, or design decisions. At software 
development or integration time though, it is impossible to 
predict with sufficient accuracy, the environmental 
conditions in which software components or applications 
will be deployed. In addition, the initial deployment 
conditions can dynamically change at runtime. Using 
COTS components exacerbates the problem, by increasing 
the level of indetermination and making it hard to provide 
dependability guarantees for the running system [6], [7].  

Assuming that different architectural, design and 
implementation-related choices proved optimal in 
different environmental circumstances, we argue that it 
would be beneficial for system quality if the software 
application could accordingly adapt at runtime, when 
accurate information were available. We propose the use 
of redundancy in order to enable such capabilities for 
component-based software systems. Our intent is to 
enhance one of the existing component platforms (e.g. 
EJB, .NET, or CCM) with support for software 
component redundancy. The predicted benefits of this 
approach include constant, automatic performance 
optimisation for running applications, as well as tolerance 
to certain categories of non-functional, integration-
specific faults (e.g. deadlocks, data corruption). By non-



functional faults, we mean faults that are not related to an 
application’s expected functionality and therefore do not 
imply any application-specific behavioural knowledge or 
extra implementation effort to detect. 

The rest of the paper is structured as follows. Section 2 
provides an overview of our research proposal. An 
example scenario, indicating the benefit of our work, is 
presented in Sections 3. A general architecture for our 
proposed framework is described in Section 4. Section 5 
places our approach in the context of similar work in the 
area. We conclude and present future work in Section 6.  

2. Research overview  

Our research goal is to enable dynamic adaptability 
capabilities in complex, component-based software 
systems, running in unpredictably changing environments, 
in order to automatically optimise and maintain their 
dependability characteristics.  

Central to our solution is the concept of (software) 
component redundancy. By this concept, we mean that a 
number of component implementation variants, providing 
the same or similar services, are available at runtime. We 
refer to these component variants as redundant 
components and say that a set of redundant components 
providing an equivalent service constitutes a redundancy 
group (with respect to that service). Any component 
variant in a certain redundancy group can be functionally 
replaced with any other component variant in the same 
redundancy group.  

Only one of the redundant components providing a 
service is assigned, at any moment in time, for handling a 
certain client request for that service (i.e. an instance of 
that component is forwarded the client request). This 
differs from other approaches (e.g. N-version 
programming; agent-based systems [9]), where a number 
of the available redundant variants work in parallel, 
towards a common result. We refer to a component 
variant that the application is currently using (i.e. sending 
client requests to instances of that component version) as 
an active component variant. Component variants that are 
not currently considered for handling client requests are 
referred to as passive component variants.  

If instances of an active component variant fail, or 
perform poorly in a certain context, the component variant 
can be deactivated and replaced with an alternative 
member of the same redundancy group. This is the main 
means by which redundancy groups continually optimise 
themselves, while dealing with changing execution 
contexts, or context-driven faults.  

We do not constrain the component redundancy 
concept to the level of atomic components [10] [Figure 1-
a]. This concept can also be applied to composite 
components [Figure 1-b] (i.e. composites [10], 

‘containing’ a number of sub-components) or to 
component sets, or groups (i.e. components ‘using’ other 
components) [Figure 1 – c]. Therefore, through the rest of 
the paper, references to redundant components can imply 
atomic, composite, or sets of components. 

 
Figure 1: Redundancy granularities 

We intend to implement all functionalities that are 
required to support and benefit from component 
redundancy at the component platform level. No 
development effort overhead is to be placed on the 
developers of software components that are to be 
deployed and run on such platforms. Of course, in order 
for redundancy to be enabled, alternative variants would 
have to be provided. However, our approach does not 
require that multiple redundant components be available 
at software application deployment or runtime. The only 
constraint is that at least one component version must be 
available for each external interface, at all times. While 
complying with this constraint, redundant components can 
be dynamically added or removed from the software 
system, at runtime.  

We propose that a formal component description be 
available for every deployed component variant. The 
description includes information on both functional (e.g. 
provided and required services) and non-functional (e.g. 
quality attributes, recommended resources) characteristics 
of the component (e.g. similar to contracts as in [10], or 
[11]). Most system quality characteristics depend upon the 
execution context (e.g. response time is influenced by 
workload and available resources). These variations are 
represented in component descriptions as a list of 
[environment related parameters, corresponding values] 
pairs. Initially, component non-functional characteristics 
can optionally be provided by component developers, 
based on estimations, test results, or previous experience 
with the supplied components. While a component variant 
is active, its initial quality description is updated with run-
time monitoring information, for the precise application 
configuration and execution environment.  

3. Example  

In this section, we provide an example of a possible 
scenario in which our approach proves to be beneficial. 
For this example, we opted for the EJB component 



technology. However, we believe our framework is 
generic enough to be applied to other component models. 

The example involves two different component 
implementations providing the same functionality: 
repeatedly retrieving information from a remote database. 
The two components differ at the design level. The first 
design variant involves a single Session Bean, containing 
SQL code for directly accessing the database. We will 
refer to this variant as the Direct DB variant. In the second 
design variant, a Session Bean uses an Entity Bean as 
means of interacting with the database. We will refer to 
this variant as the Using Entity Bean variant. A client 
Session Bean is used for calling these two variants, 
repeatedly requesting information. 

We deployed our EJB example on an IBM WebSphere 
application server, on Windows2000, running on an Intel 
Pentium4, with 1.6GHz CPU and 512 MB RAM. We used 
a DB2 database, running on Windows2000, Intel Pentium 
4, 1.6 GHz CPU and 256 MB RAM. A third machine was 
used for generating traffic and loading the network link to 
the remote database, to various degrees. We used the 
Tfgen traffic generator for this purpose. The three 
machines were connected through a switched 100 Mbps 
Ethernet LAN, completely separated from other traffic.  

We measured the response delays for each version, in 
different environmental conditions (i.e. available 
bandwidth on the network links) and usage patterns (i.e. 
number of repetitive read requests per client transaction).  

When the network is lightly loaded, we experience 
smaller delays in the Direct DB variant than in the Using 
Entity Bean variant, regardless of the number of repetitive 
client requests (e.g. 1, 10, 100, 1000 [requests per 
transaction]). This can be accounted for by the overhead 
incurred (in the Using Entity Bean variant) by the extra 
inter-process communication and Entity EJB management.  

However, increasing the load on the network link to the 
remote database has significant impact on the Direct DB 
approach, while hardly affecting the Using Entity Bean. 
This can be explained by the fact that the Direct DB 
variant needs to access the database for each individual 
(client) read request. The Using Entity Bean variant, 
involves a single database access per client transaction 
(i.e. only for the first read request in the transaction), as 
the data is then locally stored at the Entity Bean instance 
level and retrieved from there for subsequent requests. 
Therefore, for increased network loads (e.g. 90% load) 
and number of read requests, the Direct DB design choice 
produces higher delays than the Using Entity Bean does. 
Using an Entity Bean to read from the database becomes, 
in these circumstances, the optimal choice.  

The optimal variant switching point between the two 
implementations is reached when the inter-process 
communication and CPU overhead (i.e. in the Using 
Entity Bean variant) is exceeded by the repeated remote 

database access overhead (i.e. in the Direct DB variant). 
Figure 2 shows the response-time curves corresponding to 
the two redundant variants, for various network loads, 
when 1000 read requests were made per client transaction. 
For obtaining these curves, we repeatedly measured the 
response delays of such repetitive client requests, for 
different network loads. We then calculated the average 
delay value, for each network load.  

 
Figure 2: response-time curves  

Even though simple, this example shows how 
alternating the activation of two redundant variants can 
ensure better performance than either variant could, at all 
times. We argue that it is hard, if not impossible to devise 
a component version that exhibits optimal characteristics 
in all possible running contexts. The optimal component 
variant depends on the component execution environment, 
which can frequently change. Our focus is on the 
adaptation logic for automatically determining optimal 
component variants and optimal combinations of 
component variants, in different running contexts. 

4. Framework general architecture 

We propose implementing component redundancy as a 
new service provided by component platforms (i.e. 
besides already provided services, such as security, 
transaction support, or life-cycle management). Three 
main functionalities were identified as needed for the 
support, utilization and management of redundant 
components and were associated with three logical tiers in 
our framework [Figure 3]: i) Monitoring tier; ii) 
Evaluation tier and iii) Action tier. In this section, we 
present the main roles and functionalities of each of these 
tiers and discuss the way they interact in order to provide 
the component redundancy service.  

The Monitoring tier is concerned with acquiring run-
time information on the software application as well as on 
its execution environment. Run-time monitoring implies 
that information is collected exclusively for the active 
component variants. It is also the responsibility of the 
Monitoring tier to analyse the collected information and 
identify any potential ‘problem’ components [1], [12].  



The Evaluation tier is responsible for determining the 
optimal redundant component variant(s) in certain 
contexts, using adaptation logic, component descriptions 
and monitoring information on the current environment 
and application state. It also updates the descriptions of 
active component variants, with runtime information from 
the Monitoring tier. This helps the Evaluation tier to 
‘learn’ in time about the performance characteristics of the 
software application it has to manage. 

Adaptation logic, for deciding which redundant 
component(s) to activate (and deactivate respectively), is 
reified in the Evaluation tier in the form of decision 
policies. These are sets of rules, dictating the actions to be 
taken in case certain conditions are being satisfied. 
Decision policies can be customised for each deployed 
application (e.g. requested quality attributes values, 
default redundant components to activate) in order to 
serve the specific application goals and can be 
dynamically added, modified or deleted at runtime.    

We split decision policies into two layers, based on 
their complexity. The bottom layer comprises basic 
decision policies, of the condition-action type. These 
policies are used to remedy poor performance or critical 
situations (e.g. response time thresholds are being 
exceeded) and take immediate effect. The top layer is 
reserved for decision policies concerned with application 
optimisations, in conditions in which the application is not 
necessarily evaluated as under-performing or faulty. These 
policies are designed for activities such as reasoning, 
predicting, planning, or scheduling, in order to optimise 
application performance, anticipate and prevent failures or 
emergencies. Policies in the top layer are also used to 

control the adaptation process. They can decide when to 
stop an optimisation evaluation or enforcement operation, 
in case it becomes too costly (e.g. in time, or resources), 
or it seems to have entered an infinite loop (e.g. 
oscillating state, chain reaction). 

The Action tier encompasses the actual software 
application and a component-swapping mechanism. Based 
on optimisation decisions, the Evaluation tier sends 
corresponding configuration commands to the Action tier, 
indicating the redundant component variant(s) to be 
activated or deactivated respectively. The component-
swapping mechanism performs the requested operations. 
As stated in related research on component hot swapping, 
two main issues occur when replacing component variants 
at runtime. One issue is concerned with state transfer from 
an executing component instance to a replacement 
component instance. This is only needed in case instances 
of different component variants handled the same client 
request or session, one after the other. Since in the 
targeted problem domain client calls are usually short-
lived, we believe such action would bring little 
performance benefit to requests already being handled 
(when component replacement occurred). Therefore, in a 
first phase, we do not attempt to transfer state between 
instances of different component variants. Rather, 
incoming client calls are directed to an instance of the 
appropriate component variant, upon arrival. Instances of 
component variants to be deactivated finish handling 
current requests before being removed. This allows for 
instances of different redundant components to coexist. In 
a future phase, we will consider one of the solutions 
proposed in the ongoing research in this area (e.g. [13], 

Figure 3: Framework architecture 



[14]). The other issue is maintaining client references 
consistency. We adopt a proxy-based solution to address 
this issue. Component technologies based on contextual 
composition frameworks [10] provide a straightforward 
way of implementing this. That is because clients can only 
call component instances through the component 
container, in which the component was deployed and run. 
The component container can consequently be modified 
so that to transparently (re)direct client requests to 
instances of active component variants. In brief, in a first 
phase of our research, we adopt a client request 
indirection strategy for implementing the component hot-
swapping mechanism.  

In our framework, the three presented tiers operate in 
an automated, feedback-loop manner [Figure 3]: the 
application performance is monitored and evaluated, the 
optimal redundant component(s) are identified and 
activated and the resulting application is monitored and 
(re-)evaluated. Decision policies at both layers can be 
dynamically tuned in effect. It is important to note that as 
these are logical tiers, the boundaries between them may 
not be as clearly marked when implemented. 

4.1. Hierarchical adaptation mechanism 

When considering large-scale component-based 
applications, global optimisations may not always be 
desirable. Evaluating an overall application, potentially 
consisting of hundreds of components, whenever an 
individual component or a group of components does not 
behave as expected, might induce unnecessary overhead 
and not scale well. We propose distributing the adaptation 
mechanism. That is, if a problem is detected at an 
individual component level, the problem is dealt with 
locally, by means of redundant component replacement. 
Nevertheless, exclusively concentrating on local 
optimisations might not globally optimise the system. 
Therefore, our framework employs (three-tiered) 
adaptation mechanisms with different scopes (e.g. local, 
group, global), organised in a hierarchal manner. Detected 
problems can be dealt with locally or/and signalled 
upwards the hierarchical tree, up to the global level. 
Adaptation mechanisms can be dynamically activated or 
deactivated, in order to reduce overhead, when possible. 
This idea is also presented in [12], in the context of non-
intrusive, EJB system monitoring.  

5. Related Work 

Redundancy for increased robustness or reliability has 
been successfully used in various domains (e.g. hardware, 
mechanics, or constructions). The same concept was 
introduced in the software domain (e.g. [9], or as ‘design 

diversity’ in [6], [15]), in order to achieve fault-tolerance 
capabilities for software systems. A few examples of fault 
tolerant schemes implementing this concept are N-version 
programming, N self-checking software, recovery blocks 
[16], or exception handling approaches. However, as these 
schemes target system fault tolerance, they imply both the 
presence of knowledge of the correct system behaviour, as 
well as of methods for assessing system behaviour at 
runtime, in order to detect faults. We target a different 
problem domain, encompassing performance-related 
problems and non-functional faults, which can generally 
be detected without needing application semantics 
information. Our framework can consequently be 
implemented as part of the component platform layer, for 
the benefit of all applications deployed on such platforms.  

Similar to our performance optimisation related intent, 
the Open Implementation initiative [17] allows clients to 
decide which implementation variant to use (i.e. 
instantiate) for optimal performance, in a specific context. 
We propose that the component platform automatically 
take such decisions. In our view, it is very expensive, or 
even impossible for a system manager to optimally 
perform such activities in due time, in the case of complex 
systems or frequent environmental changes. 

Redundancy as a means of achieving dependability for 
Internet systems (i.e. Web Services based) is proposed in 
the RAIC [13] project. The addressed problem domain in 
this case however, is different in scope from our work. 
This is because such systems rely on Internet services 
offered by different providers, from different locations. 
No single authority owns, or has complete control over the 
entire system. The Internet system developer has no 
knowledge of, or access to the implementation, 
deployment platform, or supporting resources of the 
services it needs to use. Redundancy support cannot be 
implemented in this case at the component deployment 
platform level. Instead, redundancy support for the 
services that Internet systems use is implemented at the 
software application level of such systems.  

Research in the area of dynamic component versioning 
presents certain similarities to our work. However, the 
main intent of the two research directions is different, 
emphasising different aspects. Component versioning is 
concerned with verifying whether new versions are better 
than old ones, before dynamically upgrading the system. 
In [14] for example, the best component version is 
determined by means of online testing. Even though the 
possibility of multiple versions being kept is considered, 
the way such versions are to be used is not elaborated.  

A significant research area, closely related to our work, 
is concerned with specifying and building dynamic 
adaptability capabilities for self-repairing systems.  
Mostly related to our work are approaches based system 
architectural models [18], [19]. A feedback-loop 



mechanism (separated from system business logic) is 
employed for adapting running systems to changing 
requirements, or environmental conditions. This 
mechanism is designed in a centralised manner. 
Monitoring information is centralised, evaluated using 
analytical methods (e.g. queuing theory) and the system is 
globally optimised. Our approach adopts a hierarchical 
adaptation approach, where global system optimisation 
can generally be avoided. We focus on adaptation 
operations related to redundant component replacements. 

An important aspect of our research is the fact that we 
exclusively target component-based applications based on 
contextual composition frameworks [10]. The unique 
nature of such applications (e.g. soft inter-component 
bindings; unpredictable number of component instances) 
might make approaches devised for component-based 
systems in general (i.e. in which ‘components’ can mean 
clients, servers, or software modules), difficult to apply.   

6. Conclusions and Future Work 

This paper proposed the use of component redundancy 
for enabling self-optimisation, self-healing and dynamic 
adaptation capabilities in component-based software 
systems. A component redundancy related terminology 
was defined. We argued that system complexity, lack of 
sufficient information and changing execution conditions 
make it impossible to create and ascertain components 
that exhibit optimal dependability characteristics at all 
times. An example was presented to support this idea. In 
this example, different strategies were selected for 
implementing two distinct component variants providing 
the same functionality. Each implementation variant 
proved optimal (with respect to response delays) in 
different environmental conditions. As these results 
indicate, knowledgeably alternating the usage of 
redundant components, optimised for different running 
contexts, ensures better overall performance than either 
component variant could provide. 

A framework for implementing the component 
redundancy concept was described. We identified the 
main roles and functionalities this framework needs to 
provide and categorised them into three logical tiers: 
monitoring, evaluation and action. We proposed 
distributing the three logical tiers, organising them (each) 
in a hierarchical manner, in order to reduce overhead.  

As future work, we intend to provide a proof-of-
concept implementation of our framework and test it 
against our example scenario. In addition, further 
scenarios and case studies will be identified and 
documented. The cost of acquiring multiple redundant 
components, as well as the impact of using redundant 
components on the overall application performance and 
resource usage will have to be analysed. 
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