
Elements of the Self-Healing System Problem Space

Abstract

One of the potential approaches to achieving
dependable system operation is to incorporate so-called
“self-healing” mechanisms into system architectures and
implementations. A previous workshop on this topic
exposed a wide diversity of researcher perspectives on
what self-healing systems really are. This paper proposes a
taxonomy for describing the problem space for self-healing
systems including fault models, system responses, system
completeness, and design context. It is hoped that this
taxonomy will help researchers understand what aspects of
the system dependability problem they are (and aren’t)
addressing with specific research projects.

1. Introduction

Self-healing systems form an area of research that is in-

tuitively appealing and garnering increased attention, but

not very well defined in terms of scope. At the 2002 Work-

shop on Self-Healing Systems [WOSS02], it became clear

that researchers have differing views on what comprises re-

search on self-healing systems. This paper attempts to doc-

ument those views in the form of a description of the

self-healing systems research problem space.

There is a rich set of existing knowledge on the general

topic of dependable systems, and on techniques that can

reasonably be considered to comprise “self-healing.” For

example, one view of self-healing systems is that they per-

form a reconfiguration step to heal a system having suffered

a permanent fault. The use of standby spares in such a man-

ner has been called “self-repair” [Bouricius69]. Systems

that use modular redundancy (e.g., [vonNeuman56]) can

tolerate component failures and might be considered to be

self-healing.

It is premature to propose a consensus-based definition

of the term “self-healing,” so we do not attempt to do this

beyond an appeal to intuition that such a system must some-

how be able to “heal” itself. Whether this means that

self-healing systems are really a subset of traditional

fault-tolerant computing systems is unclear. However, the

topic of self-healing systems has attracted a number of re-

searchers who would not otherwise have been involved in

the fault tolerant computing area. So, if nothing else, the la-

bel of self-healing has broadened the pool of researchers

addressing the difficult problems of creating dependable

systems.

To give researchers in this area a common basis for de-

fining the scope of self-healing systems research, it seems

worthwhile to set forth a description of issues being ad-

dressed by various research projects. This might provide a

way for researchers to realize they mean considerably dif-

ferent things by their use of the phrase “self-healing,” as

well as to understand the similarities and differences in

their approaches and domains. Toward that end, this paper

attempts to describe the general problem space relevant to

self-healing system research.

2. Elements of the model

Based on our experiences and observations at the

WOSS02 workshop, we propose that there are four general

categories of aspects to the self-healing system problem

space: fault model, system response, system completeness,

and design context (Table 1). (The particular categories

are not important, but simply form a way to group related

concepts for the purposes of discussion.) We shall discuss

the elements of each category in turn.

[Avizienis01] contains an extensive taxonomy of fault

tolerant computing terminology and approaches. We use

this as the basis for terminology, and as the basis for the

fault modeling portion of the taxonomy.

2.1. Fault model

Self-healing systems have similar goals to the general

area of dependable computer systems. (Not all dependable

computing research areas are “self-healing”, but one can ar-

gue that all “self-healing” techniques ultimately are de-

pendable computing techniques.)

One of the fundamental tenets of dependable computing

is that a fault hypothesis (often called a fault model) must

be specified for any fault tolerant system. The fault hypoth-

 

Philip Koopman
Institute for Software Research, International

& ECE Department
Carnegie Mellon University

Pittsburgh, PA, USA
koopman@cmu.edu



esis answers the question of what faults the system is to tol-

erate. (If one doesn’t know what types of faults are to be

tolerated, it is difficult to evaluate whether a given system is

actually “fault tolerant.”)

In a similar vein, self-healing systems must have a fault

model in terms of what injuries (faults) they are expected to

be able to self-heal. Without a fault model, there is no way

to assess whether a system actually can heal itself in situa-

tions of interest. The following are typical fault model

characteristics that seem relevant.

Fault duration: Faults can be permanent, intermittent

(a fault that appears only occasionally), or transient (due to

an environmental condition that appears only occasion-

ally). Since it is widely believed that transient and intermit-

tent faults outnumber permanent faults, it is important to

state the fault duration assumption of a self-healing ap-

proach to understand what situations it addresses.

Fault manifestation: Intuitively, not all faults are as se-

vere as others. Beyond that, components themselves can be

designed to exhibit specific characteristics when they en-

counter faults that can make system-level self-healing sim-

pler. A common approach is to design components that are

fail-fast, fail-silent. However, other systems must tolerate

Byzantine faults which are considered “arbitrary” faults.

(It is worth noting that Byzantine faults exclude systematic

software defects that occur in all nodes of a system, so the

meaning of “arbitrary” is only with respect to an assump-

tion of fault independence.)

Beyond the severity of the fault manifestation, there is

the severity of how it affects the system in the absence of a

self-healing response. Some faults cause immediate sys-

tem crashes. But many faults cause less catastrophic conse-

quences, such as system slow-down due to excessive CPU

loads, thrashing due to memory hierarchy overloads, re-

source leakage, file system overflow, and so on.

Fault source: Assumptions about the source of faults

can affect self-healing strategies. For example, faults can

occur due to implementation defects, requirements defects,

operational mistakes, and so on. Changes in operating en-

vironment can cause a previously working system to stop

working, as can the onset of a malicious attack. While soft-

ware is essentially deterministic, there are situations in

which it can be argued that a random or “wear-out” model

for failures is useful, suggesting techniques such as

periodic rebooting as a self-healing mechanism. Finally,

some self-healing software is designed only to withstand

hardware failures such as loss of memory or CPU capacity,

and not software failures.

Granularity: The granularity of a failure is the size of

the component that is compromised by that fault. (The re-

lated notion of the size of a fault containment region is a key

design parameter in fault tolerant computers.) A fault can

cause the failure of a software module (causing an excep-

tion), a task, an entire CPU’s computational set, or an entire

computing site. Different self-healing mechanisms are

probably appropriate depending on the granularity of the

failures and hence the granularity of recovery actions.

Fault profile expectations: Beyond the source of the

fault is the profile of fault occurrences that is expected.

Faults considered for self-healing might be only expected

faults (such as defined exceptions or historically observed

faults), faults considered likely based on design analysis, or

faults that are unexpected. Additionally, faults might be

random and independent, might be correlated in space or

time, or might even be intentional due to malicious intent.

2.2. System response

The first step in responding to a fault is, in most cases,

actually detecting the fault. Beyond that there are various

ways to degrade system operation as well as attempt recov-

ery from or compensation for a fault. Each application do-

main has extra-functional aspects that are important, such

as reliability, safety, or security. These extra-functional

concerns influence desired system responses.

Fault Detection: Fault detection can be performed in-

ternally by a component, by comparing replicated compo-

nents, by peer-to-peer checking, and by supervisory

checks. Additionally, the intrusiveness of fault detection

can vary from nonintrusive testing of results, to execution

of audit or check tasks, redundant execution of tasks,

Fault model:
Fault duration
Fault manifestation
Fault source
Granularity
Fault profile expectations

System response:
Fault Detection
Degradation
Fault response
Fault recovery
Time constants
Assurance

System completeness:
Architectural completeness
Designer knowledge
System self-knowledge
System evolution

Design context:
Abstraction level
Component homogeneity
Behavioral predetermination
User involvement in healing
System linearity
System scope

Table 1. Problem space model elements.



on-line self-test, and even periodic reboots for the purpose

of more thorough self tests. Systems might inject faults in-

tentionally as on-line tests of fault detection mechanisms.

A related area is that of ensuring that all aspects of a system

are activated periodically so that any latent accumulated

faults can be detected within a bounded time. Not all sys-

tems can achieve 100% fault detection in bounded time.

Degradation: Self-healing systems might not restore

complete functionality after a fault. The degree of de-

graded operation provided by a self-healing system is its re-

silience to damage that exceeds built-in redundancy. Some

systems must fail entirely operational (i.e., cannot fulfill

their mission without full functionality). But many systems

can degrade performance, shed some tasks, or perform

failover to less computationally expensive degraded mode

algorithms.

Fault Response: Once a fault has been detected, the

system must select a response mechanism. Typical on-line

responses include masking a fault (e.g., modular redun-

dancy that performs a majority vote of independent compu-

tational results), rollback to a checkpoint, rollforward with

compensation, or retrying an operation using the original or

alternate resources. Heavier-weight responses include sys-

tem architectural reconfiguration (on-the-fly or involving a

reboot), invoking alternate versions of tasks, killing less

important tasks, and requesting assistance from outside the

system. The fault response might be optimized to maintain

desired properties such as correctness, quality of service

contracts, transactional integrity, or safety. Fault responses

might also be preventative (such as a periodic system re-

boot), proactive (such as an action triggered by a burst of

faults which were tolerated but are indicative of a possible

near-term failure), or reactive.

Recovery: After a system has detected a fault, poten-

tially degraded, and invoked a fault response, it must re-

cover operation to complete the self-healing process.

Recovery involves issues such as integrating newly com-

mitted resources into ongoing processes, “warming up” re-

sources by transferring system state into them, or taking

action to bring the system to a clean known state before pro-

ceeding with operations. A component might be

hot-swapped, require a warm system reboot, or require a

cold system reboot to finish recovery.

Time constants: The time constants of a system, along

with the fault distribution assumptions, play a large role in

determining what types of self-healing are feasible. The

time constant of faults with respect to the forward progress

of computations determines things like the frequency at

which checkpoints must be taken, or whether a system can

reboot itself quickly enough to prevent an overall system

outage. Additionally, if intermittent or transient faults are

in the majority as is typical in many systems, the speed of

the detection-response-recovery cycle might need to be

faster than typical fault arrival periods to avoid system

thrashing.

Assurance: Every domain has a specific set of system

properties of importance. Every system requires assur-

ances of some level of functional and extra-functional cor-

rectness for normal operation. Self-healing systems

additionally require a way to assure that such properties are

maintained during and after fault occurrences. Challenges

in this area include assurance between the time a fault oc-

curs and the time the fault is detected (keeping in mind that

not all faults are detected); assurance during degraded

mode operations; and assurance during recovery opera-

tions. This assurance might be provided at design time or

might involve checks at run time. Finally, the assurance

might be absolute or probabilistic, and might involve all

functionality or partial assurance of only a few key system

properties.

2.3. System completeness

Real systems are seldom complete in every sense.

Self-healing approaches must be able to deal with the real-

ity of limits to knowledge, incomplete specifications, and

incomplete designs.

Architectural completeness: Few system architectures

are completely elaborated when the first implementation is

built. Architectures and implementations evolve over time.

Many systems are “open” in that third-party components

can be added during or after system deployment. And,

many systems are designed using prebuilt components that

have details and behavior so opaque to the overall system

designer that the architecture might as well be considered

incomplete. Finally, a system might be built upon discov-

ery mechanisms which are intended to extend the architec-

ture or implementation at run-time. A related issue is that

implementations of components evolve, are patched, suffer

configuration management problems, and so on.

Designer knowledge: Designers in the typical case do

not have complete knowledge of the systems they design.

Any system is designed using a set of abstractions about un-

derlying components. But beyond that the designer must

deal with missing knowledge about aspects of components,

and in all likelihood incorrect knowledge about system

components due to documentation and implementation de-

fects. It is common for designers to have a thorough under-

standing of typical system behaviors, but to have little or no

understanding of atypical system behaviors – especially

system behaviors in the presence of faults. A vital aspect of

designer knowledge is how well the fault model for the sys-

tem is characterized and whether field information about

faults is fed back to the system designer.

System self-knowledge: Systems must have some level

of knowledge about themselves and their environment in



order to provide self-healing. This self-knowledge is lim-

ited by the aspects of knowledge built into a component (for

example, a component might or might not be able to predict

its execution time in advance), the accessibility of knowl-

edge about one component to another component, and de-

fects in representation of such knowledge either due to

initial design defects or staleness caused by system evolu-

tion. The concept of reflection is often discussed in the

context of system self-knowledge; however it also seems

possible to build systems that have no awareness of their

state but rather exhibit emergent correctness as a conse-

quence of the interaction of their component behaviors.

System evolution: Self-healing systems must deal with

the fact that they change over time. Sources of change in-

clude designed operating mode changes, accumulated com-

ponent and resource faults, adaptations to external

environments, component evolution, and changes in sys-

tem usage. Making use of available information on system

dynamics might help with self-healing, such as being able

to count on a scheduled system outage (or self-schedule an

outage) to perform healing.

2.4. Design context

There are several other factors that influence the scope

of self-healing capabilities that could be considered to form

the design context of the system.

Abstraction level: Systems can attempt to perform vari-

ous forms of self-healing to application software,

middleware mechanisms, operating systems, or hardware.

Self-healing techniques can be applied to implementations

(such as wrappers to deal with unhandled exceptions) or ar-

chitectural components.

Component homogeneity: While some systems have

completely homogenous components, it is common to have

systems that are heterogeneous to some degree. Server

farms often have different versions of processing hardware,

and might well have different versions of operating systems

or other software installed, especially when changes are ap-

plied incrementally across a fleet of components as a risk

management technique. Homogeneity can consist of exact

component duplicates, or components that are “plug-com-

patible” even though they have differing implementations.

Some systems are inherently heterogenous, such as the

computational components within embedded systems such

as automobiles. The heterogeneity of a system tends to

limit its ability to simply migrate computational tasks as a

self-healing strategy and requires that self-healing ap-

proaches deal with the issue of configuration management

of systems both before and after healing.

Behavioral predetermination: Most systems do not

have perfectly predetermined and deterministic behavior,

and some self-healing approaches must be able to accom-

modate this. Non-deterministic behavior abounds in hard-

ware and in software infrastructure. But, beyond that, it is

often impractical to quantify things such as absolute

worst-case execution time. Even things that might seem

determinable in theory such as enumeration of all possible

exceptions that can be generated by a software component

might be impractical due to obscure component interac-

tions or defects. In the time dimension, system tasks might

be event-based or periodic, necessitating differing assump-

tions and approaches by healing mechanisms.

Both the system and the self-healing mechanism can

have differing levels of behavioral predeterminism. For ex-

ample, a rule-based application or one that employs neural

networks might not be readily analyzed for behavior. Simi-

larly, a self-healing mechanism might employ

nondeterministic or analytically complex approaches that

make design-time analysis of behavior impractical.

User involvement in healing: While the goal of much

thinking about self-healing systems is to achieve complete

autonomy, this might be an over-ambitious goal. Most sys-

tems have a limit to healing ability, beyond which users

must become involved in system repair. The opportunity

for self-healing system collaborations with users are two-

fold: users can adapt their behavior to help systems func-

tion despite failures, and users can provide advice to

systems to guide aspects of their self-healing behavior.

System linearity: Overall system linearity and compo-

nent coupling can greatly affect the ability of a system to

self-heal. If a system is completely linear (i.e., all aspects

of the system are completely composable from component

aspects) then self-healing of one component can be carried

out without concern for its effect upon other components.

While many well-architected systems have good linearity,

component interaction is a typical situation that must be ad-

dressed by self-healing approaches.

System scope: How big is the system? A single-node

computing system does not have all the self-healing possi-

bilities available to a geographically distributed computing

system. Similarly, portions of the system might be consid-

ered out-of-bounds when creating a self-healing mecha-

nism, such as a requirement to use an off-the-shelf

operating system or existing Internet communication proto-

cols. The scope of system self-healing might therefore be a

single component; a computer system; a computer system

plus a person; an enterprise automation suite; or the com-

puter in the context of society including regulatory agen-

cies, maintenance groups, and insurance mechanisms.

3. Examples of use

Because the purpose of this paper is to propose a way of

structuring a complex and still relatively unexplored re-

search area, it is unlikely that the results are complete or in-



Property RoSES Graceful Degradation Semantic Anomaly Detection Amaranth QoS

F
a
u
lt

M
o
d
e
l

Fault Duration Permanent Permanent+Intermittent Permanent+Intermittent

Fault Manifestation Fail fast+silent components

Potentially correlated

Unexpected data feed values;

Recovery only if uncorrelated

Resource exhaustion

Potentially correlated

Fault Source All non-malicious sources Representable by templates;

Non-malicious

Peak resource demand;

Non-malicious

Granularity Component failure in distributed

embedded system

Failure of Internet data feed Depletion of memory, CPU, etc. in

distributed system

Fault Profile

Expectations

Random; arbitrary; unforeseen Anomalies compared to prior

experience

Random; resource consumption

only

S
y
s
te

m

R
e
s
p
o
n
s
e

Fault Detection State variable staleness Anomaly detection Resource monitoring alarm

Degradation Fail-operational;

Maximize system utility

Not addressed Preserve predetermined baseline

functions; eject nonessential tasks

Fault Response Reconfigure SW based on data

and control flow graphs

Substitute redundant data feed Admission control policy:

Admit “baseline” tasks and reject

some enhanced tasks

Recovery Reconfigure SW & reboot system On-the-fly data feed switch Terminate enhanced tasks as

necessary

Time constants Long time between failures;

Can handle multiple failures

Valid data samples occur much

more often than anomalies

Can handle multiple failures;

Tasks can be terminated instantly

Assurance Future work; reliability-driven “Good enough” data quality Static analysis of baseline load

S
y
s
te

m

C
o
m

p
le

te
n
e
s
s

Architecture

Completeness

Closed, complete system;

Graceful upgrade/downgrade;

System must work in worst case

Dynamic Internet data feeds;

Unknown gaps & defects;

Common case handling complete

Closed, complete system;

System must work in worst case

Designer Knowledge Assumed to be complete Component specifications

unknown -- must be inferred

Complete; workload information is

statistical distribution

System

Self-Knowledge

System knows component

presence & failure; data/control

flow

History used as basis for anomaly

detection

Available resources and

approximate task resource

consumption

System Dynamicism Upgrades & downgrades;

System stable during mission

Data feeds come and go Workload is stochastic

D
e
s
ig

n

C
o
n
te

x
t

Abstraction Level HW & SW components within

distributed system

Nodes on Internet Tasks within distributed system

Component

Homogeneity

Heterogenous components and

resources

Redundant or correlated data

feeds

Homogenous resources;

heterogeneous tasks

Behavioral

Predetermination

Components characterized;

Functions must be composable

Predetermined data feed type;

Behavior of data feed discovered

System design predetermined;

Workload is stochastic

User Involvement Fully automatic User accepts/rejects templates Fully automatic

System Linearity Multiattribute utility theory;

Scalability assumes linearity;

Bin-packing task approach

Not applicable Tasks have discrete operating

points;

Bin-packing approach

System Scope Multiple computers in embedded

control system

Multiple computers + user on

Internet-based system

Multiple computers on Internet or

closed network system

Table 2. Self-Healing Problem Spaces Addressed By Example Research Projects.



deed even apply to all research projects. Additionally, the

type of information required to describe many projects is

not fully available from published sources. In the interest

of providing concrete examples, three of our own research

projects are briefly described in terms of the proposed cate-

gories in Table 2.

RoSES (Robust Self-configuring Embedded Systems)

[Shelton03] is a project that is exploring graceful degrada-

tion as a means to achieve dependable systems. It concen-

trates on allocating software components to a distributed

embedded control hardware infrastructure, and is con-

cerned with systems that are entirely within the designer’s

control.

The semantic anomaly detection research project

[Raz02] seeks to use on-line techniques to infer specifica-

tions from underspecified components (e.g., Internet data

feeds) and trigger an alarm when anomalous behavior is ob-

served. An emphasis of the research is using a tem-

plate-based approach to make it feasible for ordinary users

to provide human guidance to the automated system to im-

prove effectiveness.

The Amaranth project [Hoover01] is a Quality of Ser-

vice project that emphasizes admission policies. A key idea

is to have tasks with at least two levels of service: baseline

and optimized. A system could thus be operated to

guarantee critical baseline functionality via static system

sizing, with idle resources employed to provide optimized

performance on an opportunistic per-task basis.

All three projects are, in our opinion, “self-healing soft-

ware system” research projects. But as shown by Table 2

they have widely varying areas of exploration, assump-

tions, and areas that are unaddressed. The area in which all

three projects are substantially similar is the last attribute,

in which all three systems assume a distributed computing

environment. It is worth noting that the categories were

created before Table 2 was constructed, so this provides ini-

tial evidence that the categories capture differences among

general projects rather than being specific to just these pro-

jects. But of course since the people involved in the three

projects discussed overlap, this does not prove generality

and certainly does not demonstrate completeness.

4. Conclusions

It is too soon to tell whether “self-healing” system ap-

proaches are just a different perspective on the area of fault

tolerant computing, and whether that perspective brings

significant benefits. Resolving this issue requires better un-

derstanding of what is meant by the term “self-healing” in

the first place. To that end, this paper proposes a taxonomy

for describing the problem space for self-healing systems.

Relevant aspects of self-healing system approaches in-

clude fault models, system responses, system complete-

ness, and design context. It is of course unreasonable to ex-

pect every research paper on self-healing systems to

address every possible aspect discussed, and no doubt some

important aspects are yet to be discovered. It remains to be

seen how different aspects interact in various domains, and

which aspects matter the most in practice. However, it is

hoped that this taxonomy will provide a checklist for re-

searchers to use in explaining the part of the problem space

they are addressing, and perhaps to help avoid inadvertent

holes in self-healing system approaches.

5. Acknowledgments

I would like to thank the participants of WOSS02 for

stimulating discussions that made this paper possible, the

anonymous reviewers for their comments, and the mem-

bers of my research group for their additional suggestions.

The techniques in this paper come from the experience of

others and decades of research, especially in the fault toler-

ant/dependable computing community. Interested readers

should consult the proceedings of the Fault Tolerant Com-

puting Symposium (FTCS) and Dependable Systems &

Networks (DSN) conference for further information.

This work was supported in part by the High Depend-

ability Computing Program via NASA Ames cooperative

agreement NCC-2-1298, and in part by the General Motors

Collaborative Research Laboratory at Carnegie Mellon

University.

6. References

[Avizienis01] A. Avizienis, J.-C. Laprie and B. Randell,
Fundamental Concepts of Dependability, Research Report
N01145, LAAS-CNRS, April 2001.

[Bouricius69] Bouricius, W.G., Carter, W.C. & Schneider, P.R,
“Reliability modeling techniques for self-repairing computer
systems,” Proceedings of 24th National Conference, ACM, 1969,
pp. 395-309.

[Hoover01] Hoover, C., Hansen, J., Koopman, P. & Tamboli, S.,
“The Amaranth Framework: policy-based quality of service
management for high-assurance computing,” International
Journal of Reliability, Quality, and Safety Engineering, Vol. 8,
No. 4, 2001, pp. 1-28.

[Raz02] Raz, O., Koopman, P., & Shaw, M., “Enabling
Automatic Adaptation in Systems with Under-Specified
Elements,” 1st Workshop on Self-Healing Systems (WOSS’02),
Charleston, South Carolina, November 2002.

[Shelton03] Shelton, C., Koopman, P. & Nace, W., “A framework
for scalable analysis and design of system-wide graceful
degradation in distributed embedded systems,” WORDS03,
January 2003.

[vonNeuman56] von Neumann, J., “Probabilistic logics and the
synthesis of reliable organisms from unreliable components,”
1956, in Taub, A. H., (ed.), John von Neumann: collected works,
Volume V, pp. 329-378, New York: Pergamon Press, 1963.

[WOSS02] 1st Workshop on Self-Healing Systems (WOSS’02),
Charleston, South Carolina, November 2002, ACM Press.


