

Perspective-based Architectural Approach for Dependable Systems

Sheldon X. Liang, J. Puett, Luqi

Software Engineering Automation Center
US Naval Postgraduate School

{xliang, jfpuett, luqi}@nps.navy.mil

Abstract

Explicitly architecting dependable systems inevitably
involves establishing consensus among different
stakeholders' concerns and then anchoring the design on
architectural components that provide robustness. The
goal is to architect evolvable systems upon which users
can reasonably rely on receiving anticipated services.
Unfortunately, there are few established approaches for
rapidly prototyping architecture to identify dependable
architectural components during the early stakeholder
requirements resolution phases of software design. This
paper presents a perspective-based architectural (PBA)
approach process using rapid prototyping to build
dependable architectures using compositional patterns.
The approach is achieved through explicit architecting
and system composition to provide a set of rules
governing the system composition from coarser-grained
dependable components. The approach provides a
rationale for treating dependability as a set of semantic
constraints localized on compositional patterns.

1. Introduction
Building dependability into the architectural design

aims at attaining the benefits of reduced cost and
increased quality. The central idea is that dependable
architectures in large, complex, evolving systems will
provide their users with a reasonable assurance that the
system will deliver the services promised. Explicitly
architecting such systems requires identifying and
resolving different stakeholders' concerns. For instance,
the architect may have to resolve the inherit conflicts
between a user stakeholder that is concerned with
achieving a particular computational requirement and an
implementer stakeholder that may be concerned with
achieving systematic long-term evolution of the system.
Perspective-based architectural design [1-4] allows some
resolution between these perspectives.

The difficulties in engineering software-intensive
systems are further exacerbated by requirements
uncertainty, dynamic organizational structures (and
concerns), and the requirement for rapid application
development. Engineering dependable systems involves
three crucial aspects: 1) accurately identifying all
customer requirements, 2) resolving customer

requirement conflicts within the context of different
customer perspectives, and 3) verifying that the resulting
system satisfies customer intent (and if not, correcting
the requirements and the system).

A number of techniques, frameworks, and approaches
have emerged to address the problems in engineering
software-intensive systems. Widely embraced efforts
include rapid system prototypes [5-6], software
architectures [7-11], and component techniques [12-14];
all of which focus on composing software systems from
coarser-grained components. Rapid system prototyping is
useful in effectively capturing and resolving uncertainty
about requirements and providing computational
visibility [6]. Component techniques assume a
homogeneous architectural environment in which all
components adhere to certain implementation constraints
(e.g., design, packaging, and runtime constraints). They
are unalterably associated with derivational
implementation with little concern of the perspectives of
the customer or architect [8-10]. Software architecture
approaches typically separate computation (components)
from interaction (connectors) in a system. However, the
current level of understanding and support for connectors
has been insufficient, so that connectors are often
considered to be explicit at the level of architecture, but
intangible in the system implementation [9-10]. Several
sources have recommended the use of architecture views
[1, 2]. Yet, while they provide guidance on how
architecture should be represented, they generally do not
provide a prototyping process for the early development
of the artifacts that are used in that representation [3-4].

The rapid prototyping of architectural components
shows promise in acquiring accurate and timely
requirements and in establishing appropriate
compartmentalization of functionality [2-4]. To reduce
the amount of re-certification effort required after each
requirement change, the approach presented in this paper
helps to maintain the assurance of dependability as the
system evolves by combining rapid prototyping with
explicit architecting so that the system's architecture is
based on properties that are invariant with respect to
system requirements changes. This research integrates
requirements validation techniques and stakeholder
perspective resolution into a single model of explicit
architectural composition.

2. Overview of the Approach
Fig. 1 depicts the PBA approach embodied in three

perspectives: computational activity, compositional
architecture and derivational implementation. Starting by
rapid prototyping the user’s informal needs, an initial
prototyping model is created that represents the
computational activity needed to implement the
operational concept. Continued analysis and refinement
of the prototype then derives the explicit architecture
from which it is possible to extract valuable architectural
properties. Compositional architecture is then explicitly
built under the support of compositional patterns, and the
generation of application framework is driven by both
prototyping and architecting documentations. Next, PBA
composers are applied to derive PBA components.

Fig 1 Synthesizing Approach

For each perspective design artifact, a computer-aided
foundation is provided with significant formulated
attributes enabling automated analysis, reasoning and
code/framework generation. For instance, the
computational activity captures the activities and
information flows that will accomplish the operational
concept (e.g., real-time support is the foundation for hard
real-time systems [5]); the compositional architecture
details what kinds of rules (patterns) are used to govern
the interactions among components (e.g., compositional
patterns [8,11] and design inspection [15-17] support
semi-automated architecture generation); and the
derivational implementation identifies physical
components and connectivity that will be instantiated to
carry out the computational activities (e.g., based on PBA
composers [18]). Thus, compositional architecture
bridges gaps between the computational and derivational
artifacts (user and implementer perspectives).

3. Perspective-based Architecting
Central to the PBA approach, compositional patterns

provide principles for guiding the design and evolution
of system architecture and can be treated as architectural
elements governing system composition from
coarser-grained components. The transitional process is

embodied in three perspective designs.

3.1 Computational activity
Computational activity accounts for the customer

perspective concerns of computation and interconnection.
This perspective addresses system requirements by
capturing three kinds of formal arguments: components
from which the system is built, interconnections
enforcing interactions among them, and constraints on
both components and interconnections:

P computation = [Cc, I, Ct (Cc, I)]
Where Cc is the set of conceptual components hierarchically
decomposed, I is the set of interconnections among components,
Ct (Cc, I) is the set of constraints localized on components and
their interconnections, respectively.

Fig. 2 Computational Responsibility and Properties

The constraints on components have properties of
decomposability (representing the hierarchical level at
which the constraint is implemented) and granularity
(representing the logical packaged complexity of the
component). Granularity is an important factor for
constructing complex systems because well-grained
components are helpful not only to increase productivity
but also to improve understandability, reliability and
maintainability. As illustrated in Fig. 2, a schema is
introduced for PBA components, which identifies the
granularity and decomposability of each level of
computational responsibility.

3.2 Compositional architecture
Compositional architecture accounts for the architect's

perspectives of explicit treatment of system composition
and architecture with constraints localized on
compositional patterns. Detailing what kinds of rules
(patterns) are used to govern interactions among
components and how quantitative constraints are
associated with the patterns, this perspective addresses
what kinds of interactions are applied among components
and how to associate constraints with compositional
patterns. This perspective is represented as follows:

P composition = [Cc ⇒ R, Ro─S/P→Ri, Ct (R, S, P)]

 CSCS
CSCS: Computer Software Complex System
is a top - level component that undertakes
global a ctivity in distributed and concurrent
collaboration .

 CSCI
CSCI: Computer software Configuration Item
is a 1 st level component that undertakes a
specific mission and is a part of the top-level
collaboration (CSCS)

 CSCC
CSCC: Computer Software Common
Component is a 2 nd level component that
undertakes a specific function and comprises
 the 1 st level mission (CSCI)

 CSCU
CSCU:Computer Software Computing Unit is
a 3 rd level component that undertakes a specific
task and comprises the 2 nd level function
(CSCC).

Collaboration

Mission

Function

Task

Computational Component Systematic
Responsibility Granularity Decomposability

EASYC
Composers

Compositional
Patterns

Prototype
(Model)

Refine
(Coding)

System
Architecture

Component
Evolution

Construct
(Prototype)

Functional Behavior
Real-time Constraints

Architectural Properties

Real-time
Support

Computational Activity

User’s
Informal
Needs

Highly
Dependable

Systems

Operational
Concept

Rules / patterns for
Interconnections

Derivational
Implementation

Compositional
Architecture

Components and
Connectivity

Design
Inspection

Generating
(Framework)

PBA

Where Cc ⇒ R is the set of roles extracted from conceptual
components. Ro─ S/P→Ri is the set of compositional patterns: Ro
(output/producer) interacts with Ri (input/consumer) via
architectural styles S while complying with communicatory
protocols P. Ct(R, S, P) is the set of constraints localized on roles,
styles, and protocols, respectively.

 Constraints on interactions further localized on

architectural styles are embodied in such properties as
composability and heterogeneity. Composability
represents the hierarchical composition of architecture
(i.e., an entire architecture becomes a single component
in another larger architecture). Heterogeneity represents
the diverse ways components interact with each other.
Heterogeneity is inevitable in complex systems because
diverse components or systems will have to work and
interact together. In Fig. 3, a compositional coupling
schema is introduced for PBA approach.

Fig. 3 Compositional Coupling and Properties

3.3 Derivational implementation
Derivational implementation accounts for the

implementer's perspectives of component derivation and
connectivity. This perspective addresses what kinds of
components are needed to carry out computational
activity, what connectivity is needed between the
components and how to glue the components to specific
roles. This perspective is represented as follows:

Pderivation = [R ⊃Cp, (Cp Ro)─S/P→(Ri Cp), Ct (Cp S, P)]

Where R ⊃ Cp is the set of physical components derived from the

associated role. Cp R (its peer Ri Cp) is the set of instantiated
components that are glued to associated roles. Ct(Cp, S, P) is the
set of constraints localized on physical components, styles, and
protocols, respectively.

Constraints on components are embodied in such

properties as connectivity (representing the way
components are derived from the related role) and
evolvability (representing the evolution from roles to
components). Interactive roles are represented as
generalized role wrappers (GRWs) (an abstract class) to
support component evolution through sub-typing and
refinement. As illustrated in Fig. 4, the GRWs defined in
PBA composers introduce derivational gluing to refer to
connectivity and evolvability.

Fig. 4 Derivational Gluing and Properties

3.4 Automated transitional process
Starting with a prototyping model in the computational

activity perspective, a transitional process is formed from
computational activity, through compositional
architecture, to derivational implementation. Two kinds
of architectural elements evolve: PBA composers and
PBA components. Under the support of automated
software tools, two key mappings are used to bridge the
gaps between perspectives: explicit architecting via
compositional patterns and physical evolution via PBA
composers. PBA approach is associated with support
tools such as Prototyping Analyzer, Pattern Selector,
Framework Generator, and Component Evolver [5,8]. Fig.
5 illustrates this transitional process.

P computation P composition P derivation
Cc Cc ⇒ R R ⊃Cp
I Ro─S/P→Ri (Cp R)─S/P→(R Cp)

Ct(COM, INT)

Explicit Architecting
via

Compositional patterns
Ct (R, S, P)

Physical Derivation
via

PBA composers
Ct (Cp, S, P)

Fig. 5 Transitional Process between Architectural Perspectives

O2 NH3 H2O

Water_Flow

Display_status

Drain Inlet Feeder

F_Time

Repository

Adjusting Listener Feeding Listener

Sampler

Source

Sensor

Adjusting Announcer
Feeding Announcer

COM1 COM2

P

Sro ri

glue glue

COM1 COM2

P

Sro ri

glue glue

COM1 COM2

P

Sro ri

glue glue

Prototyping Analyzer Pattern Selector Framework Generator Component Evolver

 IDI
I DI: Interoperable - Distributed Interaction is
used for composing CSCS from CSCI
components to enforce distributed
interactive collaboration

 LCI
LCI: Loose- Coupled Interaction is used for
composing CSCI from CSCC compo nents to
encourage flexible configuration with minimal
communication between components

 TCI
TCI: Tight -Coher ent Interaction is used for
composing CSCC from CSCU components
to emphasize independent partition of
components with high internal complexity

Distributed

Loose

Coherent

Compositional Interactive Architectural
Coupling Heterogeneity Composability

 IsA
IsA: “is a ” connectivity let s a system
component be derived from the
correspond ing role wrapper and then
extend s its behavioral compu tation.

 ToA
ToA: “to a” connectivity let s a system
component associate with the corresponding role
wrapper and then refine s its behavioral
computation.

 HasA
HasA: “has a” connectivity lets a system
component aggregate one or more of the
corresponding role wrapper and then refines
its behavioral computation.

Extension

Import

Assembly

Derivational Physical Componential
Gluing Connectivity Evolvability

Explicit architecting of the computational activity starts
with assigning components with specific roles.
According to the architectural styles, related interactive
roles and communicatory protocols can be determined so
that suitable compositional patterns can be selected and
applied to govern the interconnections among the roles.
According to the assignment of which components play
which specific roles, the components will be derived
from the associated role facility. After being derived, the
components will be instantiated and then glued to the
associated roles by the PBA configuration.

A PBA composer is designed as a generic package-like
architectural entity that includes two kinds of GRWs: one
is for the "interactive producer" and the other is for the
"interactive consumer." GRWs provide adherence to
restricted, plug-compatible interfaces for interaction and
provide the template of behavior that components are
expected to refine. The physical connectivity between a
component and a role is implemented by refining or
overriding the restricted, plug-compatible interfaces
defined by the GRW [11, 18].

4. Dependable Compositional patterns
Compositional patterns provide a set of rules that

govern the interactions among components with
localized constraints. They are characterized by three
kinds of formulated arguments: interactive roles,
architectural styles, and communicatory protocols.

Fig. 6 Compositional pattern for interconnections

Fig. 6 depicts a compositional pattern. For a given
interaction between two components (COM1, COM2),
both are assigned to play specific roles ro and ri in the
specific compositional pattern. An architectural style s
specifies how ro (output / producer) interacts with ri
(input / consumer), while communicatory protocol p
builds a specific channel for message transportation
during the interaction. More specifically, in order to
construct the components as autonomous entities, roles in
the compositional pattern are deputized for the
components in dealing with interaction while the
associated components are mainly concerned with their
functionality (computation separated from interaction).
The pattern also provides a means for gluing a specific
component to a role.

By mathematically defining the compositional patterns,
it is possible to translate, localize, and analyze them
using automated CASE tools. Compositional patterns
involve three sets: R representing interactive roles, S

representing architectural styles, and P representing
communicatory protocols. Examples include:

R = { S = { P = {
Caller, Definer,
Announcer, Listener,
Outflow, Inflow,
Source, Repository,
Read, Writer, …
}

Explicit-invocation,
Implicit-invocation,
Pipe-filter (Pipeline),
Repository-centric,
Blackboard, …
}

Message-passing,
Event-broadcast
Data-stream,
Sampled-stream
Shared-data, …
}

Regardless of any constraint, a composition is defined as
an interaction between two roles (e.g., Caller and Definer)
via an architectural style (e.g., explicit-invocation), while
complying with a communicatory protocol (e.g.,
message-passing). So, the Cartesian product R х S х P х
R enumerates all possible compositions C, represented as
follows:

C (R, S, P)={ ro─s/p→ri | ro, ri ∈ R, s∈ S, p∈ P }

Where ro─s/p→ ri represents interaction between ro and
ri via a style s while complying with a protocol p.

Applying specific constraints on compositions develops
sophisticated compositional patterns. While GRWs
provide adherence to restricted, plug-compatible
interfaces for interaction and template of behavior for
computation, the components derived from GRWs will
specify, refine or override the template. In this way,
interactions are separated from computations.

Compositional patterns CP are the relation on the
Cartesian product of compositions with the constraints
reasonably localized on roles, styles and protocol:

CP(R, S, P) = {GRW(ro)─s/p→GRW(ri) |
 ro, ri∈ R, s∈ S, p∈ P, Ct(ro, s, p, ri) }

Where GRW(r) abstracts the role r as a GRW that separates
interaction from computation (the GRW "provides" while the
component "performs"). ─s/p→ represents interaction between ro
and ri via a specific style s while complying with a specific
protocol p. Ct(ro, s, p, ri) represents localized constraints.

4.1 Example of compositional patterns
Compositional patterns can be implemented as

composers, an explicit architectural element. They can be
organized in a reusable composer library that provides
the evolutionary foundation for component derivation.
Fig. 7 gives the typical composer Pipeline that exhibits
dependable architectural properties (e.g., loose
component coupling, asynchronous communication, and
data buffering). The two sides interconnected by the
composer are the Outflow and Inflow roles, respectively.
Outflow deputizes the producer to output the data, while
Inflow deputizes the consumer to input the data via
Pipeline. The formal Pipeline composer provides two
generic parameters for enhancing reusability: transported
Data (a basic item for dataflow) and buffer Size (a data
transportation buffer).

COM1 COM2
P

S ro ri

glue glue

This example provides a template for GRWs. With
respect to behavioral computation of components, the
CSP-based semantic description provides not only
synchronous constraints but also asynchronous control
transits. Both Output and Input are designed as exclusive
procedures (execution guards are used to coordinate
concurrent synchronization). Reference timing
constraints [5-6], the role of Outflow is subjected to a
maximum execution time (met) while Inflow is subject to
a maximum response time (mrt). Both met(100) and
mrt(100) are translated as asynchronous control transits
for runtime monitoring of the real time constraints. " "
represents an asynchronous operation. When outputting
produced data onto the given pipeline, Outflow must be
synchronized within a met(100) otherwise, an exception
is triggered.

composer Pipeline is generalized
 type Data is private;
 Size : Integer : = 100;
style as <#pipe-filter#>;
protocol as <#dataflow-stream#>;
wrapper
 role Outflow is

port
 procedure Output(d: Data);
 procedure Produce(d: Data) is abstract;
computation
 Produce (d);
 *[Output (d) Produce (d) met(100) exception;]
end Outflow;
role Inflow is
port
 procedure Input(d: Data);
 procedure Consume(d: Data) is abstract;
computation
 *[Input (d) Consume (d) mrt(100) exception;]
end Inflow;

collaboration (P : Outflow; C : Inflow)
 P•Produce(d);

*[P•Output(d) P•Produce(d) C•Input(d) C•Consume (d)]
end Pipeline;

Fig. 7 A Formal composer for Pipeline
The collaboration portion of the composer description

will generate topological configurations that are
connected graphs of components and composers. In
concert with models of components and composers,
configurations enable assessment of the autonomous and
concurrent aspects of an architecture (such as the
potential for deadlocks, starvation, reduced performance,
reliability, security, etc.). Configurations also enable
concurrent execution immediately after the roles are
glued with the instances of corresponding components.

4.2 Substantiated interconnection
It used to be that interconnections in the architecture of

a software system were annotated as a series of
“box-line-box” diagrams [8-10]. Over time, this
annotation has become much richer (for instance, the use
of Architecture Description Languages (ADLs)) in order
to more precisely capture and communicate more
complex ideas related to interconnection. PBA continues
in this vein by substantiating the interconnections among
components so that large, complex architectures of

systems can be built, dealing with following four aspects:
• Dependable composers by which interaction among

components are promoted,
• Heterogeneous forms by which communication during

interaction can be established.
• Topological connectivity that guides the connected

configuration of components, and
• Constraint localization that governs interconnections

by associating constraints on patterns
Dependable composers are used to implement

compositional patterns by analyzing interactive roles of
interconnected components in the prototyping model.
Heterogeneous forms are associated with architectural
styles and the way information is transported and refers
to as communicatory protocols in compositional patterns.
Constraint localization is presented next.

Topological connectivity simplifies the interconnection
among components and comes in the following forms:
• Fork (1~N): single producer to multiple consumers
• Merge (N~1): multiple producers to single consumer
• Unique (1~1): single producer to single consumer
• Hierarchy: external1 producer to interact with the internal1

consumer, and vice versa.

Fig. 8 illustrates how to use a composer to implement
Fork between one producer and more than one consumer.

Fig. 8 Fork Connectivity with one PBA composer

4.3 Dependability as a set of Constraints
In this case “localization” represents the abstraction of

dependability, its translation to quantitative constraints,
and the handling of these constraints applied (localized)
in the design, construction, and evolution of a
software-intensive system. In order to achieve high
confidence in the dependability of a system there must be
a systematic method for expressing the dependability
objectives via measurable constraints associated with the
subsystems of the architecture. In a macro view,
dependability can be abstracted as availability, reliability,
safety, confidentiality, integrity and flexibility [15-17].
How these qualitative global requirements translate into
quantitative constraints becomes crucial. Which
dependable properties need translating and how they are
localized on compositional patterns are the questions that
have to be answered.

1 External and internal refer to hierarchical decomposition. For a given
hierarchical level of decomposition, a component in the current level is external
to a component in a lower level, while the latter is the internal to the former.

Component

Composer

Dependability Translation Constraints Localization Patterns

• Availability
• Reliability
• Security
• Integrity
• Flexibility

 • Consistency
• Compatibility
• Granularity
• Heterogeneity
• Real time
• Synchronization

• Role

• Style

• Protocol

Fig. 9 Localization of Dependability

Fig. 9 shows a framework of localization applied to
dependability. With respect to translating dependability
and localizing the semantic constraints on the
compositional patterns, the handling of real-time
constraints provides a good example. Reliability of the
time-critical system may be embodied as an immediate
reply of a particular component, under a given request,
within an met, or as a data stream between components
performed within a specific latency [5]. First, this
time-critical reliability should be translated into timing
constraints met and latency (two quantitative constraints).
Both are associated with the patterns referring to the role
and protocol, respectively. met requires computation of
the role (the component acts) and must be executed
within a specific amount of time (a hard real-time
constraint). The latency constrains the maximum delay
during data transportation within the protocol. These
timing constraints can be also verified by runtime
monitoring and correctness assurance [15-17].
Dependability of the system would be translated into in
the form of maximum execution time or latency of the
data stream communication between components as
shown in Fig. 10.

composer Pipeline is generalized
 …
 role Outflow is
 port
 procedure Output(d: Data);
 procedure Produce(d: Data) is abstract;
 computation
 Produce (d);
 *[Output (d) latency(60) Produce (d) met(100)

 latency-signaled LAT-EXCEPTION
 met-signaled MET-EXCEPTION

]
 end Outflow;
 … …
end Pipeline;

Fig. 10 A Formal composer for Pipeline

Procedure Output can be treated as execution guard that
is tied to the communication protocol, so latency is
associated with to the protocol by Output (d)
latency(60). When executing Output is beyond the
latency, the asynchronous control will set
latency-signaled and abort current execution, and then
raise LAT_EXECPTION. Similarly, met is directed to the
procedure Produce by Produce (d) met(100). When
executing Produce is beyond the met limitation, the
asynchronous control will set met-signaled and abort
current execution, and then raise MET_EXCEPTION.

5. Conclusion
Explicitly architecting software-intensive systems

provides the promise of faster, better, cheaper systems.
In order to consistently engineer dependable
software-intensive systems, the PBA approach provides a
process that uncovers perspective concerns of different
stakeholders, and increases the effectiveness of
requirements validation techniques. Because PBA
approach can be used to localize and quantify invariant
architectural constraints (such as "dependability" in the
example above) it will also reduce the amount of
re-certification effort required after each requirement
change. The PBA approach illustrates that with
automated tool support, the prototyping of software
architecture can be used to identify and resolve
conflicting stakeholder perspectives and develop reliable,
dependable, consistent software-intensive systems.

References
[1] C. Hofmeister, R. Nord, D. Soni. Applied Software

Architecture. Addison-Wesley, 2000.
[2] IEEE Standard Board, Recommended Practice for

Architectural Description of Software-Intensive Systems
(IEEE-std-1471 2000), September 2000.

[3] H. Alexander, et el, C4ISR Architectures: I. Developing a
Process for C4ISR Architecture Design. Systems
Engineering, John Wiley and Sons, Inc., Vol. 3 No. 4,
2000.

[4] W. Lee, et el, Synthesizing Executable Models of Object
Oriented Architectures. Proc. Formal Methods in Software
Engineering & Defence Systems. Adelaide, Australia,
2002.

[5] Luqi, M. Ketabchi, A computer-Aided Prototyping System,
IEEE Software, March 1988.

[6] Luqi, Ying Qiao, Lin Zhang, Computational Model for
High-Confidence Embedded System Development,
Monterey workshop 2002, Venice, Italy, Oct 7-11, 2002.

[7] M. Shaw, D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, Inc., 1996.

[8] Andrew P., Systems Integration and Architecting: An
Overview of Principles, Practices, and Perspectives,
System Engineering, John Wiley and Sons, Inc., 1998.

[9] N. R. Mehta, N. Medvidovic. Towards a Taxonomy of
software Connectors. Proc. ICSE, Limerick Ireland, 2000.

[10] N. Medvidovic, Taylor, A classification and comparison
framework for software architecture description languages.
IEEE Transactions on Software Engineering, 2000, 26(1).

[11] X Liang, Event-based implicit invocation decentralized in
Ada, ACM AdaLetters, March, 2002.

[12] Sessions N., COM and DCOM: Microsoft's Vision for
Distributed Objects. John Wiley & Sons, Inc., NY, 1997.

[13] OMG/ISO Standard, CORBA: Common Object Request
Broker Architecture, http://www.corba.org/.

[14] Sun Microsystems, Inc. Java 2 Enterprise Edition
Specification v1.2. http://java.sun.com/j2ee/.

[15] E. M. Clarke (CMU), R. P. Kurshan (Bell Lab).
Computer-Aided Verification, Feb. 17, 1996.

[16] James C. Corbett, et el, Bandera: Extracting Finite-state
Models from Java Source Code, Proc of the ICSE 2000.

[17] M. Kim, et el, Monitoring, Checking, and Steering of
Real-Time Systems, 2nd Intl. Workshop on Run-time
Verification. Copenhagen, Denmark, July 26, 2002.

[18] X Liang, Z. Wang. Omega: A Uniform Object Model Easy
to Gain Ada's Ends, ACM AdaLetters, June, 2000.

