
Abstract

Distributed, decentralized, and mobile systems are
highly dependent on the underlying network. Due to net-
work connectivity failures, these systems must address the
problem of disconnected operation, i.e., continued func-
tioning in the absence or near-absence of network accessi-
bility. A number of existing approaches provide support for
disconnected operation by employing different techniques.
What is currently missing, however, is a general under-
standing of the applicability of these techniques to different
kinds of software systems, and the manner in which they
affect the overall system dependability. This paper strives
to improve that understanding. We present a framework for
classifying disconnected operation solutions and assess
several representative approaches according to the pro-
posed classification. This study highlights several pertinent
areas that are currently not supported, helping to motivate
our future work.

1. Introduction

The emergence of mobile devices such as portable note-
book computers, hand-held personal digital assistants
(PDAs), and mobile phones, and the advent of the Internet
and various wireless networking solutions make the com-
putation possible anywhere. However, new challenges
arise for software systems executing in such environments:
they are becoming highly distributed, decentralized, and
mobile, and therefore highly dependent on the underlying
network. Unfortunately, network connectivity failures are
not rare: mobile devices face frequent and unpredictable
(involuntary) connectivity losses due to their constant loca-
tion change and lack of wireless network coverage; the
costs of wireless connectivity often induce user-initiated
(voluntary) disconnection; and even the highly reliable
WAN and LAN connectivity is unavailable between 1.5%
and 3.3% of the time [25].

For this reason, network-dependent systems are chal-
lenged by the problem of disconnected operation, where
the system must continue functioning in the (near-)absence
of the network. Disconnected operation forces systems
executing on each individual host to operate independently
from other network hosts. This presents a major challenge
for the software systems that are highly dependent on net-
work connectivity, because each local subsystem is usually
dependent on the availability of non-local resources. Lack
of access to a remote resource can halt a particular sub-
system or even make the entire system unusable.

There are several possible solutions to increasing the

dependability of highly distributed and decentralized soft-
ware systems in face of the connectivity losses:
• make remote data available locally,
• make remote code available locally,
• make remote dynamic system state available locally,
• reroute the communication in cases of partial disconnec-

tion from the network, and
• delay remote interactions until the connection is reestab-

lished.
The goal behind each of these solutions is to tempo-

rarily mask the absence of connection by mimicking the
system’s continuous connectivity. The inconsistencies that
may result from applying these solutions need to be
resolved once the connection is re-established. Each of
these solutions can be provided in a number of different
ways, depending on the nature of the target application and
on those aspects of the application’s dependability that are
of primary concern (e.g., availability, performance, scal-
ability, security).

Most commonly used techniques for supporting discon-
nected operation are:
• Caching – locally storing remote data once it has been

accessed in anticipation that it will be needed again [12],
• Hoarding – prefetching the likely needed remote data

prior to disconnection [13],
• Queueing remote procedure calls – buffering remote,

non-blocking requests and responses during disconnec-
tion and exchanging them upon reconnection [11],

• Deployment and redeployment – installing, updating, or
relocating a distributed software system [1],

• Replica reconciliation – synchronizing the changes made
during disconnection to different local copies of the same
component [12],

• Code mobility – dynamic change of the bindings between
code fragments and locations where they are executed [8].
What is currently missing, however, is a general under-

standing of the applicability of these techniques to different
kinds of software systems, how and under what conditions
they may be used (possibly in concert), how they affect the
overall system dependability, and so forth. Also unclear is
the applicability of these techniques in the growing class of
architecture-centric, component-based software systems
[18,19]. We believe that an understanding of these issues
can help both to streamline existing and to develop future
techniques in support of this area. This paper strives to
improve that understanding. We present a framework for
classifying disconnected operation solutions. We have per-
formed an extensive study of existing techniques and iden-
tified a common set of criteria for their classification. In

Toward a Framework for Classifying Disconnected Operation Techniques

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{marija, neno}@usc.edu

Marija Mikic-Rakic Nenad Medvidovic

turn, we have assessed several representative solutions
according to the proposed classification. While this is still a
work in progress, it has already clearly identified areas not
addressed by current solutions. These areas, coupled with a
study of the compatibility of different techniques, will
frame our future research agenda.

The rest of the paper is organized as follows. Section 2
presents an overview of existing disconnected operation
techniques. Section 3 describes our classification frame-
work and assesses several representative solutions based on
the identified criteria. The paper concludes with a discus-
sion of open issues that will frame our future work.

2. Background

In this section we present an overview of existing dis-
connected operation solutions. They are organized accord-
ing to the general approach they adopt.

2.1. Availability of data

2.1.1. Distributed file systems. Most of the early work on
disconnected operation has been in the area of distributed
file systems. Coda [12], Ficus [9], and D-NFS [6] have
included extensive support for distributed file replication
during disconnection and synchronization of replicas upon
reconnection. These approaches use techniques such as
caching and hoarding for file replication, and logging and
version vectors for replica reconciliation. D-NFS and Coda
also introduced the notion of an agent, which represents an
intermediary between client and server components that
handles their interaction during disconnection. An agent
operates in two modes: connected and disconnected. In the
connected state the agent forwards all of the client requests
to the real server. This allows the agent to monitor client
operations and prepare the application for disconnected
operation. In the disconnected mode, the agent performs the
necessary tasks (such as logging the client operations)
needed to synchronize the replicas upon reconnection.
While Coda and D-NFS focus on client-server applications,
Ficus provides support for more general, peer-to-peer appli-
cations.

PFS [4] provides support for partially connected opera-
tion using a three-tier model, where an intermediary PFS
host is inserted between a file server and a mobile client.
PFS is a pseudo server for the mobile client and a pseudo
client for the file server. This extra level of indirection
enabled an efficient solution for partial disconnection, with
a tolerable overhead during full connection. PFS provides a
generic interface for application-directed adaptation to
varying network quality of service requirements.

2.1.2. Distributed databases. In the area of distributed
databases, disconnected operation has been addressed by
approaches such as Thor [2], and Bayou [22].

In Thor, a relevant subset of database objects is cached
prior to disconnection. Each transaction is logged during
disconnection, but the clients can only perform “weak”
transactions while disconnected. These transactions are
committed only if they do not conflict with the transactions
performed on the server.

Bayou is a platform of replicated, highly available, vari-
able-consistency, mobile databases on which collaborative
applications are built. Bayou focuses on providing applica-

tion-specific conflict detection and resolution.
The main focus of both distributed file system and data-

base approaches has been on supporting continuous avail-
ability of (passive) data only. Hence, they do not provide
support for applications whose mode of operation during
disconnection depends also on the availability of remote
code and/or remote system state.

2.2. Availability of code

Providing continuous availability during disconnection
by employing code mobility techniques has been the focus
of approaches such as Rover [11], Jamp [23], Mobile
extensions (ME) [3], Odyssey [17], and FarGo-DA [24].

The Rover toolkit provides two major programming
abstractions: relocatable dynamic objects (RDOs) and
queued remote procedure calls (QRPC). RDOs represent
mobile code that can be dynamically loaded from a remote
server and cached locally, while QRPC queues remote
requests during disconnection and dispatches them upon
reconnection. Rover uses version vectors to detect conflicts
between different instances of a given RDO.

Jamp provides abstractions that support the migration of
groups of objects and classes between nodes of the net-
work. However, Jamp does not support object replication
and, since mobile objects can only be in one location at a
time, does not provide facilities for conflict resolution.

Mobile extensions (ME) provides location-independent,
extensible facilities for deploying Web-based services. ME
makes use of caching, hoarding, asynchronous messaging,
and application-level adaptation to cope with network fail-
ures. This approach provides flexible and automatic
resource management, since its employed techniques such
as caching and hoarding can dramatically increase resource
demands.

Odyssey is a set of extensions to the NetBSD operating
system to support adaptation for a broad range of mobile
information access applications. Odyssey provides moni-
toring of various system resources, notifies running appli-
cations of relevant changes, and enforces resource
adaptation decisions. However, each application indepen-
dently decides how to adapt to the notified change.

FarGo-DA is a programming model and a runtime infra-
structure for automatic reconfiguration of an application
during disconnection. FarGo-DA advocates disconnected
operation awareness at system’s design time. Additionally,
since FarGo-DA is targeted at resource-constrained plat-
forms, its main consideration is limited memory on such
platforms. For this reason, FarGo-DA proposes the use of
multi-modal components in which the developer specifies
separate subcomponents to be used during connection and
disconnection. Usually the subcomponent used during dis-
connection provides a subset of connected-mode function-
ality. Additionally, FarGo-DA assumes that the application
developer provides the conflict resolution code as part of
the multi-modal component.

It should be noted that none of the described code mobil-
ity techniques support automated selection of components
that should be migrated, nor do they perform any analysis
of the effects of code mobility on the running system.

2.3. Ad-hoc networking

In the area of ad-hoc networking, several approaches

have been proposed, including packet rerouting protocols
(FORP [21]), predictive connection management with user
input (PCP [14]), and adaptive wireless and mobile net-
working (Monarch [10]). These approaches are focusing on
the mobility of the (human) user and are providing differ-
ent techniques for rerouting when a mobile host changes
location. However, they do not focus explicitly on discon-
nected operation, and therefore do not provide any support
for the operation of a mobile client if it is completely dis-
connected from the network.

2.4. Other techniques

Some techniques have taken a more general approach to
disconnected operation in which network disconnection
represents only one point of failure in a given system. Fail-
ures of individual components are also examined and
treated in a manner comparable to network failures. The
goal of these techniques is to ensure that the system’s oper-
ation will degrade gracefully in the face of failures. Repli-
cation is primarily used for increasing the reliability of
individual components. An example such approach is
RoSES [20], which provides a scalable framework for the
analysis and design of system-wide graceful degradation.

3. Classification framework

3.1. Description

The overall structure of our proposed classification
framework for disconnected operation approaches is orga-
nized around eight categories, as shown in Figure 1. Each
category may have multiple dimensions, subdimensions,
and values. The values are not necessarily mutually exclu-
sive, meaning that a single approach may have zero, one, or
multiple values corresponding to a given category, dimen-
sion, or subdimension. It should be noted that it was not
our goal to identify all possible values in Figure 1 but
rather to extract representative values from the existing
approaches. We expect that the list of values will grow as
we refine our classification framework. Missing
approaches corresponding to values in Figure 1 indicate
that no existing approach supports the corresponding prop-
erty. Various other techniques exist that may be effectively
applied in the context of disconnected operation (e.g.,
dynamic software architectures [5]). However, we feel that
including such techniques in our framework at this time
would be speculative as their effectiveness in this setting
has not been demonstrated. In the remainder of the section
we discuss each of the proposed classification categories in
more detail.

3.1.1. Connectivity. Connectivity encompasses informa-
tion about the nature of disconnection that a given
approach supports (type) as well as how the detection of
disconnection is achieved.

Connectivity type is further divided into two subdimen-
sions: predictability and degree of connectivity. Predict-
ability can have two values: anticipated and sudden. In
cases of anticipated disconnection the system is aware that
disconnection is going to occur, and usually can predict
when it will happen [14]. In cases of sudden disconnection,
the system is unaware of the disconnection beforehand.

We have identified the following values for the degree
of connectivity: total, partial, and low-bandwidth. In cases

of total disconnection, a given host is completely discon-
nected from the network. In cases of partial disconnection,
the host is disconnected from the remote host with which it
communicates, but there may be other hosts in the system
to which this host is still connected, or can be connected. In
cases of low-bandwidth connection, the host is connected,
but through a low throughput connection. Low throughput
connections necessitate the use of special techniques (e.g.,
compression) that would minimize the use of bandwidth.

Connectivity detection is further divided into two subdi-
mensions: accuracy and source. Accuracy denotes whether
disconnection is detected with no loss of data, by losing a
single remote invocation (event), after which the sub-
system recognizes that it has been disconnected and
adjusts, or by losing multiple remote invocations. There are
three possible sources of disconnection detection: (1) exter-
nal agent, denoting a source (e.g., OS service) that is not a
part of a given disconnected operation approach; (2) per
host, denoting detection if an entire given host gets discon-
nected; and (3) per component, denoting detection of dis-
connection of individual software components.

3.1.2. Component types. The component types category
includes information about the kinds of software compo-
nents whose availability in the face of disconnection is sup-
ported by a given approach. This category is further
divided into active and passive components. Active com-
ponents can be computation, communication, coordination,
or interface components, while passive components can be
files or dynamic data structures.

3.1.3. Architecture. The approaches described in
Section 2 use techniques such as component replication,
migration, or network rerouting to increase the dependabil-
ity of software systems during disconnection. However,
these changes to a software system’s architecture may have
unforeseen effects on the running system. It is thus impor-
tant to analyze the effects of the proposed changes prior to
enacting them.

Static analysis may use (partial) architectural models to
assess the validity of proposed run-time architectural
changes prior to their deployment, possibly disallowing the
changes. Dynamic analysis refers to the analysis performed
after the deployment, of the effects of the performed modifi-
cations on the running target system. These techniques are
described in more detail in [15].

In addition to the need for analyses, most of the
approaches described in Section 2 impose certain architec-
tural topology restrictions on the supported applications,
such as client-server or peer-to peer. An important decision
factor in determining the most suitable approach for a
given system would be whether the system’s topology is
supported by the given approach.

3.1.4. Use of bandwidth. As outlined in the Introduction,
partial or low bandwidth network connectivity is often
present in highly mobile systems. In such cases, there is a
critical need for efficient access mechanisms over networks
with variable qualities of service. In our taxonomy, use of
bandwidth is divided into two dimensions: intelligence and
efficiency. Intelligence indicates whether a given approach
uses an adaptive algorithm to optimize the use of band-
width, while efficiency indicates whether the approach
minimizes the use of bandwidth in cases of low bandwidth
connection.

Type

Predictability

Degree

Criteria Dimension Subdimension Value

Figure 1. Classification Framework for Disconnected Operation Techniques.

Anticipated disconnection

Sudden disconnection

Total disconnection

Partial disconnection

Low bandwidth connection

Detection

Accuracy

Source

No loss of data

Single event lost

Multiple events lost

External agent

Per host

Per component

Component

Active

Computation

Coordination

Interface

Files

Dynamic data structures

Communication

Passive

types

Use of

Intelligence

Efficiency

Adjustable

Constant

Inefficient

Efficient

bandwidth

Consideration
of system
resources

Software

Hardware

Shared resources

Memory

CPU

Battery

Display

Permanent storage

Technique

Application-level

System-level

Replication

Messaging

Fixed granularity caching
Variable granularity

Hoarding

Asynchronous

Deferred synchronous

Multi-mode components

Intelligent agents

caching

Re-routing
Network topology based

Arch. topology based

Manual (just reporting)

Semi-automatic

Fully automatic

Instant

Scheduled

Upon reconnection

Firm

Delayed Type

Management

Occurrence

Consistency

Availability

Scalability
Security

Performance

Non-functional
properties
considered

Application-level

System-level
Threads

(e.g., database,
GUI builder)

Processing components

Data components

Architecture

Static

Dynamic

Approaches

Coda, Ficus, D-NFS, PFS, Thor, Bayou, Rover, Jamp, FarGo-DA, ME, Forp

Coda, Ficus, D-NFS, PFS, Rover, ME

Coda, Ficus, D-NFS, PFS, Thor, Rover, Jamp, FarGo-DA, ME

Coda, PFS, Rover, ME, Odyssey

Coda, Ficus, D-NFS, PFS, Thor, Bayou, Rover, Jamp, FarGo-DA, ME

D-NFS, Thor, Rover, Jamp, ME

Coda, Ficus, D-NFS, PFS, Bayou, Odyssey

Coda, PFS, Odyssey

Coda, PFS, Odyssey

Coda, Ficus, D-NFS, Bayou

Coda, Ficus, PFS, Thor, ME, RoSES

Coda, Ficus, D-NFS, Bayou

Coda, Ficus, D-NFS, ME

Coda, Ficus, D-NFS, Thor, FarGo-DA

Application specific

Coda, Ficus, RoSES
Coda

PFS, Rover, ME

Application-directed PFS, Rover, FarGo-DA, ME, RoSES

PFS, Thor, Bayou

PFS

PFS, Thor, Rover, ME, Odyssey

Thor, Bayou

D-NFS, Ficus, Thor, Bayou, Rover, Jamp, FarGo-DA, ME

D-NFS, Ficus, Thor, Bayou, Rover, Jamp, FarGo-DA. ME

Thor

Rover, Jamp, FarGo-DA, ME, Odyssey

Rover, ME, RoSES

Rover, ME, RoSES

Rover, Jamp, FarGo-DA, ME, Odyssey

Rover, Jamp, FarGo-DA, ME, Odyssey

Rover, Jamp, FarGo-DA, ME, Odyssey

FarGo-DA, ME, Odyssey

FarGo-DA, RoSES

FarGo-DA

Forp, Bayou, PCP, Monarch

Forp, Odyssey, PCP, Monarch

Coda, Ficus, PFS, Forp, Odyssey

Forp, PCP, Monarch

Connectivity

Coda, Ficus, D-NFS, Thor, Bayou, Rover, FarGo-DA, ME, Forp, PCP, Monarch

Analysis

Topology
Client-server

Peer-to-peer

Coda, D-NFS, PFS, Bayou, FarGo-DA, ME, Odyssey

Ficus, Jamp

Bayou

ME, Odyssey

ME, Odyssey

ME, Odyssey, RoSES

Odyssey

Odyssey

3.1.5. Consideration of system resources. Dependability
of a destabilized system is influenced by many factors.
When selecting an approach that supports disconnected
operation, it is important to know whether the approach
considers the effects of the proposed changes on the system
resources, and whether the available system resources on a
set of affected hosts impose any restrictions on the pro-
posed changes. If component migration is proposed by a
given approach, it is important to assess whether the target
device provides hardware resources (e.g., memory, CPU,
display size) that the migrant component requires for nor-
mal operation. It is also important to assess the effects of
software resources available on the target host (e.g.,
threads, existing processing components and their loads)
on the migrant component. In our taxonomy, software
resources are classified into system-level resources and
application-level resources.

3.1.6. Technique. As outlined in the Introduction, there are
a number of commonly used techniques for increasing sys-
tem dependability during disconnection. We have classified
these techniques into system-level and application-level.

System-level techniques are provided either at kernel-
or middleware-level, and are further divided into replica-
tion, messaging, and rerouting. Replication subsumes tech-
niques such as caching and hoarding, while messaging uses
either asynchronous or deferred synchronous communica-
tion to delay remote interactions during disconnection.
Synchronous messaging is not a feasible technique for sup-
porting disconnected operation, since involved components
would block for unpredictable periods of time.

Re-routing is a technique used to discover alternate
paths of communication between mobile hosts. This subdi-
mension can have two values: network topology, or archi-
tecture topology based rerouting. Network topology uses
the information about the physical location of a given host
and the network coverage of a given area. On the other
hand, architecture topology uses additional information
about the allowed communication paths among software
components on each host to determine possible rerouting
strategies. Both of these techniques can only support dis-
connected operation in cases of partial disconnection.

In the contrast to the above system-level techniques,
several approaches [16,24] have proposed the use of appli-
cation-level adaptation to increase system dependability
during disconnection. For example, multi-modal compo-
nents are designed with the a-priori knowledge that they
may be executing in a disconnected mode. These compo-
nents thus encapsulate two modes of operation: discon-
nected and connected. It is the responsibility of the
application developer to design and implement a compo-
nent’s functionality such that it can be used during discon-
nection. The disconnected mode usually involves a subset
of connected mode functionality, as well as methods for
automated runtime conflict resolution.

Intelligent agents are special-purpose components
whose role is to perform a set of activities which would
translate a running application from a connected mode to a
disconnected mode and vice versa.

3.1.7. Consistency. Several of the techniques described in
Section 2 perform data, code, or system state replication to
handle disconnected operation. Replication may require
that changes made to different copies of a given component
be synchronized upon reconnection. We have identified

three dimensions of consistency: type, management, and
occurrence.

Type denotes the extent to which the states of different
replicas may diverge before they are synchronized. In firm
consistency, the states of all replicas are always the same.
This is achieved by either disallowing the updates to differ-
ent replicas or by performing simultaneous, blocking
updates to all replicas. In delayed consistency, replicas can
be in different states, and consistency management (i.e.,
replica reconciliation) is performed upon reconnection.
Some approaches also allow application-directed type of
consistency, i.e., specification of (possibly different) con-
sistency types for each application-specific operation.

Consistency management denotes the manner in which
the reconciliation is performed. Some approaches just
report inconsistencies, which are then resolved by the
application user. In semi-automatic management, some
conflicts are resolved automatically, while others are
reported to the user for (manual) resolution. Finally, in fully
automatic management all conflicts are resolved automati-
cally, without the user’s involvement.

Occurrence denotes the time at which the reconciliation
is performed. In cases of instant reconciliation, each update
will result in an immediate attempt to reconcile all replicas.
In cases of scheduled updates, updates are planned and per-
formed according to some, usually component-specific
algorithm. Most of the existing approaches perform recon-
ciliation upon reconnection. Finally, some approaches pro-
vide application-directed scheduling of reconciliation.

3.1.8. Non-functional properties. Existing disconnected
operation approaches have considered different non-func-
tional properties in the interest of increasing system
dependability. Most commonly considered non-functional
properties are availability, performance, security, and scal-
ability. There are other relevant non-functional properties
such as safety, reliability, utility, and so on. However, no
existing disconnected operation approaches have focused
on these properties.

3.2. Assessment of existing approaches

We have classified a number of representative
approaches using our framework. The results of this classi-
fication are shown in the right-most column in Figure 1. In
the remainder of this section we discuss these results.

Most of the existing approaches focus on anticipated
disconnection, and on maximizing the system’s availability
during disconnection. Coda, PFS, ME, and Rover support
both anticipated and sudden disconnection and provide
support for low-bandwidth connection. With the exception
of Bayou, partial disconnection is supported only by ad-
hoc networking approaches (recall Section 2.3).

Coda, PFS, and Odyssey make intelligent and efficient
use of the network bandwidth. However, none of the
remaining approaches adjust their operation for a low-
bandwidth connection. Instead, they assume either fully
connected or disconnected mode of operation.

With the exception of Fargo-DA (for memory), only
ME and Odyssey take into consideration system resources
(CPU, disk space, battery, and so on). These approaches
recognize that a given mobile host will not have unlimited
resources to fully support techniques such as hoarding, and
that certain trade-offs have to be made (e.g., providing con-
tinuous availability of only the most frequently used com-

ponents).
Fargo-DA, ME, and Odyssey use application-level dis-

connected operation techniques, while the remaining
approaches leverage different combinations of system-
level techniques. The most commonly used system-level
technique is (some form of) replication, while the
approaches that employ delayed communication via mes-
saging only use asynchronous messaging.

Finally, none of the studied approaches perform any
kind of analysis of the effects of the changes on the running
system. They also fail to take into consideration other soft-
ware resources (e.g., number of threads), or perform archi-
tecture-based re-routing (recall Section 3.1).

4. Conclusion

In this paper we have presented an attempt at classifying
the existing disconnected operation approaches. A general
understanding of these approaches and the techniques they
employ is needed to effectively support system dependabil-
ity in the face of disconnection. The existing approaches
attack the problem of disconnected operation from four
general perspectives: data housed in (1) static files and (2)
dynamic data structures, and functionality implemented in
both (3) inactive and (4) active software components. Typi-
cally, an approach will focus on a specific subset of these
four categories (e.g., support for off-line access to static
files only). Our classification framework is a step in the
direction of understanding the (in)compatibilities among
the existing techniques and suggesting the best possible
approach or combination of approaches (e.g., coupling a
passive file-based approach and an active component-
based approach) for the problem at hand.

This work is preliminary and much remains to be done.
A natural next step is to gain further experience by evaluat-
ing additional known disconnected operation approaches
using the framework outlined in this paper. Such an evalua-
tion will, in turn, be used to fine-tune the framework itself.
In addition, we plan to study the compatibilities of the dif-
ferent criteria, dimensions, subdimensions, and values,
which would help with identifying techniques that can be
used in concert. Finally, further study of existing discon-
nected operation techniques will highlight additional areas
that are currently not supported, which would motivate and
help to streamline our future work.

5. References
[1] A. Carzaniga et. al. A Characterization Framework for Soft-

ware Deployment Technologies. Technical Report, Dept. of
Computer Science, University of Colorado, 1998.

[2] S. Chang and D. Curtis. An Approach to Disconnected Oper-
ation in an Object-Oriented Database. 3rd International Con-
ference on Mobile Data Management, January 2002,
Singapore.

[3] M. Dahlin, B. Chandra, L. Gao, A. Khoja, A. Nayate, A.
Razzaq, A. Sewani. Using Mobile Extensions to Support
Disconnected Services. University of Texas Department of
Computer Sciences Tech Report TR-2000-20, June 2000.

[4] D. Dwyer and V. Bharghavan. A Mobility-Aware File Sys-
tem for Partially Connected Operation. In ACM Operating
Systems Review, Vol. 31, No. 1, Jan. 1997, pp. 24-30.

[5] Dynamic Software Architectures Resources.
http://www.ics.uci.edu/~peymano/dynamic-arch/

[6] M. E. Fiuczynski and D. Grove. A Programming Methodol-
ogy for Disconnected Operation. Technical Report, Univer-

sity of Washington, March 1994.
[7] K. Froese and R. Bunt. Scheduling Write Backs for Weakly

Connected Mobile Clients. In Proc. of the 10th International
Conference on Modelling Techniques and Tools for Com-
puter Performance Evaluation, Palma de Mallorca, Sept.
1998.

[8] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Trans. on Software Engineering, May 1998.

[9] J. S. Heidemann et al., Primarily Disconnected Operation:
Experiences with Ficus. Second Workshop on Management
of Replicated Data. IEEE, November 1992.

[10] D. B. Johnson and D. A. Maltz. Protocols for adaptive wire-
less and mobile networking. IEEE Personal Communica-
tions, 3(1), February 1996.

[11] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K. Gif-
ford, M. F. Kaashoek, Rover: a toolkit for mobile informa-
tion access, Proceedings of the fifteenth ACM symposium on
Operating systems principles, December 1995, Colorado.

[12] J. J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System. ACM Transactions on Computer
Systems, vol. 10, no. 1, February 1992.

[13] G. H. Kuenning and G. J. Popek. Automated Hoarding for
Mobile Computers. Proceedings of the 16th ACM Sympo-
sium on Operating Systems Principles, (SOSP-16) St. Malo,
France, October 5-8, 1997.

[14] M. Madi, P. Graham, and K. Barker. Mobile Computing:
Predictive Connection Management With User Input. Tech-
nical Report. Dept. of Computer Science, Univ. of Manitoba,
1997.

[15] M. Mikic-Rakic and N. Medvidovic. Architecture-Level
Support for Software Component Deployment in Resource
Constrained Environments. First International IFIP/ACM
Working Conference on Component Deployment. Berlin,
June 2002.

[16] W. Nace and P. Koopman. A Product Family Approach to
Graceful Degradation. In Proceedings of International Work-
shop on Distributed and Parallel Embedded Systems, Ger-
many, October 2000.

[17] B. Noble, et. al. Agile Application-Aware Adaptation for
Mobility. In Proceedings of the Sixteenth ACM Symposium
on Operating Systems Principles, St. Malo, France, October
1997.

[18] D.E. Perry, and A.L. Wolf. Foundations for the Study of
Software Architectures. Software Engineering Notes, Oct.
1992.

[19] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[20] C. Shelton, et al. A Framework for Scalable Analysis and
Design of System-Wide Graceful Degradation in Distributed
Embedded Systems. WORDS 2003, January 2003.

[21] W. Su and M. Gerla. IpV6 Flow Handoff in Ad-Hoc Wireless
Networks Using Mobility Prediction. Proceedings of IEEE
Global Communications Conference, pp 271-275, Rio de
Janeiro, Brazil, December 1999.

[22] D. B. Terry, K. Petersen, M. J. Spreitzer, and M. M. The-
imer.The Case for Non-transparent Replication: Examples
from Bayou. IEEE Data Engineering, December 1998.

[23] M. T. Valente, R. Bigonha, M. Bigonha and A. Loureiro.
Disconnected Operation in a Mobile Computation System.
Workshop on Software Engineering and Mobility, Toronto,
Canada, May 2001.

[24] Y. Weinsberg, I. Ben-Shaul. A Programming Model and Sys-
tem Support for Disconnected-Aware Applications on
Resource-Constrained Devices. International Conference on
Software Engineering 2002, Orlando, Florida, May 2002.

[25] Y. Zhang, V. Paxon, and S. Shenkar. The Stationarity of
Internet Path Properties: Routing, Loss, and Throughput.
Technical Report, AT&T Center for Internet Research at
ICSI, May 2000.

