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Motivations

• Large distributed systems live for several years
• Environmental events and component’s faults may 

affect workload and functionalities of the system
• High availability and reliability of critical systems

System reconfiguration to react to faults, to 
manage system’s life and to provide dependability 
properties
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System Reconfigurations

• Dynamic: the reconfiguration must be performed while the 
system is running, without service interruption

• Automatic: the reconfiguration may be triggered as a reaction 
for a specified event, issued by a human administrator or an 
automatic Decision Maker

• Distributed: the reconfiguration is performed on distributed 
systems

In particular, we address:
• Component Reconfiguration: any change of the component 

parameters (component re-parametrization)
• Application Reconfiguration: any architecture’s modification 

in terms of topology, component’s number and location
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Our Approach to (Fault) Reconfiguration

Managed System

Lira monitors the system, 
detects faults and notifies the

Decision Maker
For each fault pattern, 

a set of reconfigurations
is specified

Decision Maker

DM performs
the evaluation

DM orders the
reconfiguration

Lira reconfigures
the system

• We propose to use Lira, an infrastructure created to perform dynamic
reconfiguration, enriched with a model-based Decision Maker
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• The decision making capability is decomposed in a 
hierarchical fashion:
– Favoring fault-tolerance by distribution of control
– Avoiding heavy computation and coordination activity 

whenever faults can be managed at local level
– Facilitating the construction and on-line solution of 

analytical models
– Favoring scalability 

Our Approach to (Fault) Reconfiguration
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Lira Architecture

• Lira Management Infrastructure
– Light-weight Infrastructure for Reconfiguring Applications
– Lira is based on:

• Agents
• MIB (Management Information Base)
• Management Protocol

MIB
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Component
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Human 
Administrator

Manager
Management 

Protocol



May 3rd, WADS 2003 7

Enriched Lira Architecture
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• Lira uses a different agent for each hierarchical level:
– Component, Host, Application, Manager agent

• Each agent is enriched with a decision maker
– Decision making capabilities depend on the hierarchical 
level of the agent



May 3rd, WADS 2003 8

Decision Maker

Up

Down

Degraded

• Model-Based Decision Maker

– The dynamic topology of the 
system and the number of 
managed faults demand for 
statistical decisions capabilities

– Combinatorial and Petri net 
like models (for complex 
relationships among 
components) help to take the 
most appropriate decision

– The possible reconfiguration 
options are pre-planned: 
models allow deciding each 
time which is the  most 
appropriate one

The component’s state is modeled 
by using three states :

• Up

• Degraded

• Down
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A Case Study

• Distributed computing where 
peer-to-peer clients on the 
network are communicating
• Path redundancy is used to 
prevent service’s interruption
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A Case Study (cont)
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• Component agent
– HEALTH_STATE
– CONNECTED_NODE
– Function to connect different nodes 
– Functions to control the node

• Host agent
– HEALTH_STATE
– CONNECTED_HOST
– Functions to install and activate nodes

• Application Agent
– AVAILABLE_PATHS
– ACTIVE_NODES
– ACTIVE_HOSTS
– Functions provided by the Host agents

• Manager Agent
– ACTIVE_HOSTS
– Functions provided by the Application 

agents
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An Example

• Let suppose that node N3 starts to 
work in degraded manner
• The associated agent A3 notifies at 
the upper level AA1

• The agent AA1 checks the path 
availability on the controlled 
network
• Three different reconfiguration 
options are possible:

– Continuing to work in 
degraded manner

– Temporarily bypassing node 
N3 and waiting for its restart

– Activate a new node for 
substituting N3
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An Example

• Three different 
reconfiguration options are 
possible:

– Continuing to work in 
degraded manner

– Temporarily bypassing node 
N3 and waiting for its 
restart

– Activate a new node for 
substituting N3

• The best reconfiguration 
consists in restarting N3

4.77510 * 10-8Set-up a new path

5.19695 * 10-9Restart node N3

1.73848 * 10-8Working in 
degraded manner
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Link or 
component 
status



May 3rd, WADS 2003 13

Conclusions

• An architecture for dependability provision has been 
proposed. It is based on:
– Lira
– Model-based Decision Maker

• We concentrate on system reconfiguration as 
consequence of faults (both sw and hw)

• Hierarchical approach
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Future Work

• Lira infrastructure has to be fault-tolerant itself
• Development of Petri net based decision maker 

(combinatorial models are not able to handle 
complex scenarios)
– Dependencies among components
– Account for Time
– Repairing of components

• Development of a prototype 
– Experimental measurements


