
May 3rd, WADS 2003 1

An Approach to Manage
Reconfiguration in Fault-

Tolerant Distributed Systems

Stefano Porcarelli1, Marco Castaldi2, Felicita Di Giandomenico1,
Andrea Bondavalli3, Paola Inverardi2

1 Italian National Research Council, ISTI Dept, Italy
stefano.porcarelli@guest.cnuce.cnr.it, digiandomenico@iei.pi.cnr.it

2 University of L'Aquila, Dip. Informatica, Italy
{castaldi, inverard}@di.univaq.it

3 University of Florence, Dip. Sistemi e Informatica, Italy
a.bondavalli@dsi.uni.it

May 3rd, WADS 2003 2

Motivations

• Large distributed systems live for several years
• Environmental events and component’s faults may

affect workload and functionalities of the system
• High availability and reliability of critical systems

System reconfiguration to react to faults, to
manage system’s life and to provide dependability
properties

May 3rd, WADS 2003 3

System Reconfigurations

• Dynamic: the reconfiguration must be performed while the
system is running, without service interruption

• Automatic: the reconfiguration may be triggered as a reaction
for a specified event, issued by a human administrator or an
automatic Decision Maker

• Distributed: the reconfiguration is performed on distributed
systems

In particular, we address:
• Component Reconfiguration: any change of the component

parameters (component re-parametrization)
• Application Reconfiguration: any architecture’s modification

in terms of topology, component’s number and location

May 3rd, WADS 2003 4

Our Approach to (Fault) Reconfiguration

Managed System

Lira monitors the system,
detects faults and notifies the

Decision Maker
For each fault pattern,

a set of reconfigurations
is specified

Decision Maker

DM performs
the evaluation

DM orders the
reconfiguration

Lira reconfigures
the system

• We propose to use Lira, an infrastructure created to perform dynamic
reconfiguration, enriched with a model-based Decision Maker

May 3rd, WADS 2003 5

• The decision making capability is decomposed in a
hierarchical fashion:
– Favoring fault-tolerance by distribution of control
– Avoiding heavy computation and coordination activity

whenever faults can be managed at local level
– Facilitating the construction and on-line solution of

analytical models
– Favoring scalability

Our Approach to (Fault) Reconfiguration

May 3rd, WADS 2003 6

Lira Architecture

• Lira Management Infrastructure
– Light-weight Infrastructure for Reconfiguring Applications
– Lira is based on:

• Agents
• MIB (Management Information Base)
• Management Protocol

MIB

Comp

Component
Agent

Human
Administrator

Manager
Management

Protocol

May 3rd, WADS 2003 7

Enriched Lira Architecture

Comp

 Agent
Component

MIB

Agent
Host

MIBDecision
Maker

Decision
Maker

Application
Agent

MIB

Manager

Decision
Maker

MIB

Management
Protocol

Host

• Lira uses a different agent for each hierarchical level:
– Component, Host, Application, Manager agent

• Each agent is enriched with a decision maker
– Decision making capabilities depend on the hierarchical
level of the agent

May 3rd, WADS 2003 8

Decision Maker

Up

Down

Degraded

• Model-Based Decision Maker

– The dynamic topology of the
system and the number of
managed faults demand for
statistical decisions capabilities

– Combinatorial and Petri net
like models (for complex
relationships among
components) help to take the
most appropriate decision

– The possible reconfiguration
options are pre-planned:
models allow deciding each
time which is the most
appropriate one

The component’s state is modeled
by using three states :

• Up

• Degraded

• Down

May 3rd, WADS 2003 9

A Case Study

• Distributed computing where
peer-to-peer clients on the
network are communicating
• Path redundancy is used to
prevent service’s interruption

H1

H2

H3 H4

H6H5

Net2

Net1

H1

H2

client
Client

H 65H

N1

N3

N4
N2

1
Net

a

c

d

eb

g

f

b-N2-d-N3-f4

b-N2-e-N4-g3

a-N1-c-N3-d-N2-e-N4-g 2

a-N1-c-N3-f1

RoutePath

May 3rd, WADS 2003 10

A Case Study (cont)

Manager

AA1

HA 2

HA 1

H1

H2

N1
A1

N2
A2

A3
N3

N4
A4

client
Client

H 65H

AA2

Net 1

Net 2

• Component agent
– HEALTH_STATE
– CONNECTED_NODE
– Function to connect different nodes
– Functions to control the node

• Host agent
– HEALTH_STATE
– CONNECTED_HOST
– Functions to install and activate nodes

• Application Agent
– AVAILABLE_PATHS
– ACTIVE_NODES
– ACTIVE_HOSTS
– Functions provided by the Host agents

• Manager Agent
– ACTIVE_HOSTS
– Functions provided by the Application

agents

May 3rd, WADS 2003 11

An Example

• Let suppose that node N3 starts to
work in degraded manner
• The associated agent A3 notifies at
the upper level AA1

• The agent AA1 checks the path
availability on the controlled
network
• Three different reconfiguration
options are possible:

– Continuing to work in
degraded manner

– Temporarily bypassing node
N3 and waiting for its restart

– Activate a new node for
substituting N3

Manager

AA1

HA 2

HA 1

H1

H2

N1
A1

N2
A2

A3
N3

N4
A4

client
Client

H 65H

AA2

Net 1

Net 2

May 3rd, WADS 2003 12

An Example

• Three different
reconfiguration options are
possible:

– Continuing to work in
degraded manner

– Temporarily bypassing node
N3 and waiting for its
restart

– Activate a new node for
substituting N3

• The best reconfiguration
consists in restarting N3

4.77510 * 10-8Set-up a new path

5.19695 * 10-9Restart node N3

1.73848 * 10-8Working in
degraded manner

PFPolicy Options

5 * 10-3Restarted and new

10-2Degraded state

10-3Up state

Failure
Probability

Link or
component
status

May 3rd, WADS 2003 13

Conclusions

• An architecture for dependability provision has been
proposed. It is based on:
– Lira
– Model-based Decision Maker

• We concentrate on system reconfiguration as
consequence of faults (both sw and hw)

• Hierarchical approach

May 3rd, WADS 2003 14

Future Work

• Lira infrastructure has to be fault-tolerant itself
• Development of Petri net based decision maker

(combinatorial models are not able to handle
complex scenarios)
– Dependencies among components
– Account for Time
– Repairing of components

• Development of a prototype
– Experimental measurements

