
Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing

Component-Based Systems

Ada Diaconescu, John Murphy
Performance Engineering Laboratory

Dublin City University

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Main Topics

• Targeted domain
• Motivation
• Our approach – component redundancy

– What is component redundancy ?
– Example
– How does component redundancy work ?
– Framework implementation

• Conclusions & future work

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Targeted domain – Enterprise software applications

•We are targeting the business logic tier of enterprise software applications

•Quality characteristics - influenced by all tiers and layers involved

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Motivation
• Enterprise software applications - Characteristics:

– Complex, large-scale
– Highly distributed and parallel
– Non-real time, Soft quality requirements (performance, reliability)
⇒Complicated & expensive design, testing, management processes
⇒Reduced flexibility
⇒Quality characteristics hard to control

• Component-Based Software Development (CBSD):
– Benefits: modularity, reuse, shorter development time, lower costs
– New challenges: lack of information

• At component development: ?overall system, platform, resources?
• At system integration: ?component insight information, changing

resources/ requirements at runtime?

• Impossible to exhaustively test such software apps. offline

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Component redundancy – what is ?

• Only one component variant is active at all times
__- instantiated for handling client requests -
• Variants are used alternatively,
‘complementing’ each other

• Variants are replaced in case of:
•Poor/ non-optimal performance
•Fault detection
•Changing requirements, or running-context

• Multiple Software Component Variants, with:
– Identical interfaces, Equivalent functionalities (i.e. offered services) and
– Different design and/or implementation strategies
are available at run-time

Request Service

Redundancy Group
Component
Variant 1

P r o x y

Component
Variant 2

Component
Variant 3

Delegate Request to
Active component variant

Component
Variant 2

Component
Variant 1

Component
Variant 1

Poor Performance

Redirect Requests to
Component Variant 2

Improved Performance

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Example
• Used EJB component technology
• Two component implementations:

– Same functionality: retrieve information from a remote DB

– Different design: Direct DB vs. Using Entity Bean

Response-time
variations with
Network load
on the link to the DB

⇒Alternating variants
yields better performance,
at all times

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Component redundancy – how it works

Functional Application

C1.1

C1.2

C1.3

C2.1

C2.2

C2.3

C3.1

C3.2

C3.3

C5.1

C5.2

C4.1

Monitoring
(&testing)

•Monitor application
•Monitor environment
•Determine problems:

•Causes
•Affected components

C1.1

C1.2

C1.1

Application
Server / Container

Evaluation
•Determine optimal variant(s)
•Use:

•Monitoring info
•Descriptions
•Decision policies

•Update descriptions
•Update decision policies

Action

•Activate /deactivate
component variants

•Maintain application
integrity

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Distributed adaptation mechanism
• Motivation: centralised adaptation mechanisms might:

– Introduce unnecessary overhead
– Not scale well

• Adaptation mechanisms with different scopes:
– Component
– Group of components
– Entire application

• Hierarchical organisation
• Local problems:

– Initially dealt with locally
– Signalled to higher level adaptation mechanisms (if necessary)

• Periodic global optimisations

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Framework Implementation

• Two options:
• Independent of specific applications

b) Software application level

• Maintain application integrity:
- Component swapping implemented by means of client call indirection

• No state transfer
• Keep client references consistent using the proxy pattern

a) Distributed platform level

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Conclusions & future work
• Component-based enterprise software
• Difficult to provide and maintain performance and dependability:

– Lack of information
– Changing requirements and execution contexts

• Our approach: using component redundancy (overview, general framework)

• Expected benefits:
• Automatic performance optimisation
• Recover from and avoid integration faults
• Adapt to changing requirements, resources, workloads

• Future work:
• Identify and implement relevant examples
• Design and implement proof-of-concept framework
• Identify and integrate work on monitoring, component descriptions,

knowledge based management,…

Ada Diaconescu
diacones@eeng.dcu.ie

Performance
Engineering
Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

