Performance
Engineering

Laboratory

Using Component Redundancy for
adaptive, self-optimising and self-healing
Component-Based Systems

Ada Diaconescu, John Murphy
Performance Engineering Laboratory

Dublin City University

Ada Diaconescu
diacones@eeng.dcu.ie

) Performance
7~ Engineering

DC Laboratory

Main Topics

« Targeted domain
« Motivation
* Qur approach — component redundancy
— What is component redundancy ?
— Example
— How does component redundancy work ?
— Framework implementation
« Conclusions & future work

Using Component Redundancy for Ada Diaconescu
adaptive, self-optimising and self-healing
Component-Based Systems

diacones@eeng.dcu.ie

,—5) Performance

Engineering

DCU Laboratory

Targeted domain — Enterprise software applications

Client request Client request
| B R
& ; P b
; : I I '______ _'__'____f'
Web Application | / Business Application \ | -
(JZP, servlets) (EJB component assemblies) =
| DB Warkstation 2
' |
[
l:' Hardwrare
*‘1. Warkstation 1
]
(=
w
[
- Hatdwrare 3
EJE Container and AT
EJE Server
Workstation n
Underlying Platform aile
Logical View et
k J I Physical View

Tiers

-
*We are targeting the business logic tier of enterprise software applications

*Quality characteristics - influenced by all tiers and layers involved

Using Component Redundancy for Ada Diaconescu
adaptive, self-optimising and self-healing
Component-Based Systems

diacones@eeng.dcu.ie

'w Performance
7~ Engineering

DC Laboratory

Motivation

« Enterprise software applications - Characteristics:
— Complex, large-scale
— Highly distributed and parallel
— Non-real time, Soft quality requirements (performance, reliability)
= Complicated & expensive design, testing, management processes
= Reduced flexibility

= Quality characteristics hard to control

« Component-Based Software Development (CBSD):
— Benefits: modularity, reuse, shorter development time, lower costs
— New challenges: lack of information

» At component development: ?overall system, platform, resources?

» At system integration: ?component insight information, changing
resources/ requirements at runtime?

* Impossible to exhaustively test such software apps. offline

Using Component Redundancy for Ada Diaconescu

diacones@eeng.dcu.ie

adaptive, self-optimising and self-healing
Component-Based Systems

'w Performance
7~ Engineering

DC Laboratory

Component redundancy — what is ?

* Multiple Software Component Variants, with:
— ldentical interfaces, Equivalent functionalities (i.e. offered services) and
— Different design and/or implementation strategies

are available at run-time
* Only one component variant 1s active at all times

ImPoorcllePknforanaace
- instantiated for handling client requests -
. . Redundancy Group
 Variants are used alternatively, Component
. 1 t ; h th .__ ;)l Variant 1
complementing’ each other < Component
. . e |—m> Variant 2
* Variants are replaced in case of: Request Service | 2
Component
*Poor/ non-optimal performance Variant 3
*Fault detection ,
. . . Redirect Requests to
*Changing requirements, or running-context Component Variant 2

Using Component Redundancy for Ada Diaconescu
adaptive, self-optimising and self-healing
Component-Based Systems

diacones@eeng.dcu.ie

’w Performance
7~ Engineering

DC Laboratory

Example

« Used EJB component technology

 Two component implementations:
— Same functionality: retrieve information from a remote DB
— Different design: Direct DB vs. Using Entity Bean

5000
Response-time 3000 -
. e . T fooo
variations with £ 5000 -
Network load E so00 4
. % 4000 -
on the link to the DB S 000
. . @ 2000 - :
—Alternating variants — | — Direct to DB
yields better performance, 0 I e By Besn

at all times
netwok load [%]

Using Component Redundancy for

Ada Diaconescu

adaptive, self-optimising and self-healing diacones@eeng.dcu.ie

Component-Based Systems

,,-7 Performance

Engineering
DC Laboratory

Component redundancy — how it works

Monitoring Evaluation Action

(&testing) Determine optimal variant(s)

*Monitor application Use: *Activate /deactivate
*Monitor environment :1]\)4::;1;;;1;(1)%1 ;nfo component variants
*Determine problems: *Maintain application

*Decision policies
*Update descriptions
*Update decision policies

- c21 C3.1
o L CZN N> >
o]

C4.1 ,\H/ C5.1
>
Application

Server / Container

*Causes

Integrity
*Affected components

Functional Application

Using Component Redundancy for Ada Diaconescu
adaptive, self-optimising and self-healing
Component-Based Systems

diacones@eeng.dcu.ie

) Performance
7~ Engineering

DC Laboratory

Distributed adaptation mechanism

Motivation: centralised adaptation mechanisms might:
— Introduce unnecessary overhead
— Not scale well
Adaptation mechanisms with different scopes:
— Component
— Group of components
— Entire application
Hierarchical organisation
Local problems:
— Initially dealt with locally
— Signalled to higher level adaptation mechanisms (if necessary)
Periodic global optimisations

Using Component Redundancy for Ada Diaconescu
adaptive, self-optimising and self-healing
Component-Based Systems

diacones@eeng.dcu.ie

/—’T Performance

Engineering
DC Laboratory

Framework Implementation

* Independent of specific applications
* Two options:

a) Distributed platform level

sy

b) Software application level

—— Component '
CRAMETR T Redundancy
. : o
EIE Container Lifecycle EJE Container
!Secuﬁt}r | | Hmaaseasy iSecuﬂt}r i Lifecycle
Y b matiage mett
Transaction Redundancy All client calls to ETB components Transaction
a support suppost go through an EIB container D | e
* Maintain application integrity:
°

- Component swapping implemented by means of client call indirection
No state transfer

« Keep client references consistent using the proxy pattern
Using Component Redundancy for
adaptive,

self-optimising and self-healing
Component-Based Systems

Ada Diaconescu
diacones@eeng.dcu.ie

) Performance
~~ Engineering

DC Laboratory

Conclusions & future work

« Component-based enterprise software

« Difficult to provide and maintain performance and dependability:
— Lack of information
— Changing requirements and execution contexts
« Qur approach: using component redundancy (overview, general framework)

« Expected benefits:

« Automatic performance optimisation

« Recover from and avoid integration faults

« Adapt to changing requirements, resources, workloads
* Future work:

 Identify and implement relevant examples

« Design and implement proof-of-concept framework

 Identify and integrate work on monitoring, component descriptions,
knowledge based management,...

Using Component Redundancy for Ada Diaconescu

adaptive, self-optimising and self-healing
Component-Based Systems

diacones@eeng.dcu.ie

,7—3 Performance
5 Engineering
DC

Laboratory

Using Component Redundancy for Ada Diaconescu
adaptive, self-optimising and self-healing

diacones@eeng.dcu.ie
Component-Based Systems

