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Targeted domain — Enterprise software applications
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*We are targeting the business logic tier of enterprise software applications

*Quality characteristics - influenced by all tiers and layers involved
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Motivation

« Enterprise software applications - Characteristics:
— Complex, large-scale
— Highly distributed and parallel
— Non-real time, Soft quality requirements (performance, reliability)
= Complicated & expensive design, testing, management processes
= Reduced flexibility

= Quality characteristics hard to control

« Component-Based Software Development (CBSD):
— Benefits: modularity, reuse, shorter development time, lower costs
— New challenges: lack of information

» At component development: ?overall system, platform, resources?

» At system integration: ?component insight information, changing
resources/ requirements at runtime?

* Impossible to exhaustively test such software apps. offline
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Component redundancy — what is ?

* Multiple Software Component Variants, with:
— ldentical interfaces, Equivalent functionalities (i.e. offered services) and
— Different design and/or implementation strategies

are available at run-time
* Only one component variant 1s active at all times
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Example

« Used EJB component technology

 Two component implementations:
— Same functionality: retrieve information from a remote DB
— Different design: Direct DB vs. Using Entity Bean
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Component redundancy — how it works

Monitoring Evaluation Action

(&testing) Determine optimal variant(s)

*Monitor application Use: *Activate /deactivate
*Monitor environment :1]\)4::;1;;;1;(1)%1 ;nfo component variants
*Determine problems: *Maintain application

*Decision policies
*Update descriptions
*Update decision policies
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Distributed adaptation mechanism

Motivation: centralised adaptation mechanisms might:
— Introduce unnecessary overhead
— Not scale well
Adaptation mechanisms with different scopes:
— Component
— Group of components
— Entire application
Hierarchical organisation
Local problems:
— Initially dealt with locally
— Signalled to higher level adaptation mechanisms (if necessary)
Periodic global optimisations
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Framework Implementation

* Independent of specific applications
* Two options:

a) Distributed platform level

sy

b) Software application level

—— Component '
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* Maintain application integrity:
°

- Component swapping implemented by means of client call indirection
No state transfer

« Keep client references consistent using the proxy pattern
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Conclusions & future work

« Component-based enterprise software

« Difficult to provide and maintain performance and dependability:
— Lack of information
— Changing requirements and execution contexts
« Qur approach: using component redundancy (overview, general framework)

« Expected benefits:

« Automatic performance optimisation

« Recover from and avoid integration faults

« Adapt to changing requirements, resources, workloads
* Future work:

 Identify and implement relevant examples

« Design and implement proof-of-concept framework

 Identify and integrate work on monitoring, component descriptions,
knowledge based management,...
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