
Extracting Functional and Non-functional Contracts
from Java Classes and Enterprise Java Beans

Nikola Milanovic, Miroslaw Malek
Humboldt Universität zu Berlin

{milanovi,malek}@informatik.hu-berlin.de

Abstract

We explore possibility of manual and automated con-
tract extraction from Java classes and Enterprise Java
Beans. Contracts are extended component interfaces that
are defined using Contract Definition Language. They
describe functional and non-functional properties. We
examine how to extract hidden contracts and express
them formally,modeling software components as abstract
machines, hoping to achieve increased dependability at
the early phases of the software development lifecycle,
and to support easy and safe reuse of components later.

Indexed terms: contracts, components, composi-
tion, reuse, formal specification

1. Introduction

The software component marketplace is still in its
embryonic phase. Application servers have been around
for years, and still we are mostly left to ourselves to
develop, test and deploy custom components, rewrit-
ing code and solving the same problems all over again.
Therefore, is component marketplace a myth?

Ed Roman [7] tries to explain why independent soft-
ware vendors are not shipping components to the mar-
ket. He identified three reasons: maturity, politics and
questionable value. He argues that since components
live in application servers, application servers them-
selves must be mature enough before we see a market
for components written for those servers. Then, there
is the question of proprietary application servers, and
some providers see this as a competitive advantage, re-
sulting in non-compatible application servers or inten-
tional information withdrawal. At the end, there is no
metric to determine how good a component is, or does
it really fit customer requirements.

We intend to provide contract-based formal frame-
work for software development and reuse. It enables de-
velopers to specify functional and non-functional prop-

erties during early design and development phases,
making components more reliable and less error-prone.
Later, contract information may be used for safer reuse
and composition.

2. Related Work

Our work is motivated in part by the research in the
area of Design by Contract [5]. This paradigm devel-
ops three key questions that every component must be
able to answer to: What does it maintain? What does
it expect? What does it guarantee? It also lays founda-
tions for contract extraction techniques, trying to find
implicit contracts in .NET Framework libraries [4].

On the other hand, our previous work was done in
the area of composability [9, 10, 6], so we tried to ap-
proach the problem from a different standpoint: what
specification do we need in order to enable correct com-
ponent composition? In this paper we try to use De-
sign by Contract methods to extract contracts from
Java classes and EJBs, and show how to use obtained
information to develop formal component specification.

3. Contract Definition Language

Contract is how outside world perceives a compo-
nent. It describes functional and non-functional prop-
erties, expectations and guarantees. Logical contract
structure is shown on Figure 1. We differentiate sev-
eral classes of contracts. Base contract specifies basic
information about the component: name, URI, descrip-
tion, price, and available methods and events. Method
contract describes one method of a component. It con-
tains information about parameters, invocation, pre-
conditions, postconditions, invariants, declared events
and assertions. Invocation determines whether a com-
ponent is synchronous or asynchronous. Asynchronous
messages and/or callback functions are defined here.
Preconditions declare obligations of a client, while
postconditions declare obligations of a component. In-



Figure 1. Logical contract structure

variants are static component properties that must
hold before and after every method invocation. All
three types have the same substructure, as they can
describe conditions for parameters, performance, de-
pendability, security, logging or rendering. Event con-
tract is used for exposing events to which other com-
ponents can subscribe. They will receive notification
when an event occurs.

We also developed an XML schema called Contract
Definition Language (CDL) that enables description
of attributes shown on Figure 1. The XML file corre-
sponding to this schema is the end result of the extrac-
tion process. What is the difference between CDL and
Web Service Description Language (WSDL)? WSDL
addresses connectivity issue. We presume that WSDL-
like description is already in place, and then focus on
definition of semantic and non-functional properties.
The true challenge of dependable software components
is not in connectivity only, but in correctness.

Before we introduce the formal model for contract
elements, we will summarize why do we need speci-
fication expressed like this: contracts facilitate reuse
and make it much safer, they can help in comparing
and choosing between similar components, while for-
mal specification ensures correctness.

4. Adding Formal Specification

We introduce second form of contracts: abstract ma-
chines. We need XML representation (CDL) to trans-
port contracts over a network and to allow for easy

parsing, but for formal analysis of a contract (correct-
ness), we require mathematical representation.

We model components as abstract machines [1]. An
abstract machine is characterized by statics and dy-
namics. Statics correspond to the definition of the
state, while dynamics correspond to operations.

Mapping from CDL to abstract machine is done in
the following way: parameters and non-functional prop-
erties become state variables, while methods become
state functions. Preconditions, postcondition and in-
variants map directly from CDL. For each state vari-
able a domain is defined. For example, parameter do-
mains are defined by their language type (integer, real,
etc.), while exceptions are modeled as sets. The algo-
rithm we use for mapping properties from XML to ab-
stract machine is outside the scope of this paper, since
we concentrate on contract extraction techniques.

An abstract machine is not to be executed, but to
be submitted to mathematical analysis. Let us observe
the following machine:

MACHINE M(X,x)
CONSTRAINTS C
SETS S; T={a,b}
PROPERTIES P
VARIABLES v
INVARIANT I
ASSERTIONS J
INITIALIZATION U
OPERATIONS u <- O(w) = PRE Q THEN V END
END

The CONSTRAINTS clause specifies conditions that
must hold for machine parameters. SETS defines al-
lowed values for sets or deferred sets. VARIABLES lists
state variables. PROPERTIES takes form of conjoined
predicates involving constants and given sets, and has
the role of the invariant for defined sets. INVARIANT also
has a form of conjoined predicates stating invariants
for state variables. ASSERTIONS can be deduced from
INVARIANT and PROPERTIES clauses. It is used to ease
the invariant preservation proofs. INITIALIZATION es-
tablishes starting values for variables. OPERATIONS de-
fines abstract machine operations, with preconditions
(PRE) and postconditions (THEN).

The reason we introduce formal notation is to ensure
predictability and correctness of component properties.
We establish both with proof obligation. It states the
following: initialization and operation body must estab-
lish the invariant, while assertions must be deducible
from properties and invariants. Formally we can denote
this as (where [V ]I we denote substitution V which pre-
serves the invariant I):

C ∧ P ∧ I ⇒ J

C ∧ P ⇒ [U ]I

C ∧ P ∧ I ∧ J ∧Q ⇒ [V ]I



Using proposed model, we can improve software de-
pendability on three levels:

- Design phase: facilitating system design through
formal treatment of specification and requirements

- Early development phase: checking correctness of
component implementation by proof obligation
when writing code based on specification from the
design phase

- Reuse and composition: comparing components
based on functional and non-functional proper-
ties and guaranteeing correctness of composition
by proof obligation when writing wiring code.

5. Contract Extraction

Since contracts are not a part of modern software en-
gineering, at least in mainstream languages like Java or
C#, we have to add contracts a posteriori, to already
deployed components. Therefore, we must identify lo-
cations where to look for hidden specifications.

Elements we will be looking for are preconditions,
postconditions and invariants. Preconditions are linked
to exported methods and determine obligations of a
client. A method is guaranteed to work correctly if and
only if the client satisfies precondition. An exported
method can turn precondition to its advantage, since
it can assume precondition, without having to check
it. This type of interaction is called generous specifica-
tion, since we presume that client code is correct and
that it respects precondition. Postcondition describes
what a method guarantees, if precondition holds. Class
invariants are properties that must hold before and af-
ter invocation of each exported method. They describe
general, static properties of a class.

5.1. Extraction From Java Classes

We identified following locations as good candidates
to look for class invariants: documentation, construc-
tors, implemented interfaces, and base class. Invariant
detection consists of two phases: identifying candidates
and proving them invariant. Reading documentation is
a logical place to start looking for candidates. How-
ever, it immediately confronts us with the first obsta-
cle: it is almost impossible to provide a formal tool
for documentation analysis. Therefore, human inter-
vention will be necessary to provide insight on possi-
ble invariant candidates. After identifying candidates,
we refine and augment this list by source code inspec-
tion. We look into constructors and inheritance struc-
ture, trying to find conditions applying to candidates.

Sometimes new invariant candidates can be found in
implemented interfaces and base class. After a list of
candidate properties is established, we prove them in-
variant by showing that every exported method of a
component preserves that property.

Preconditions are associated with exported meth-
ods, and can be extracted from documentation, con-
ditions in exported methods that check input param-
eters, and exception conditions. In order to discover
all preconditions, we examine all exported methods.
Documentation can be of help here, but we observed a
tendency that preconditions are rarely explicitly doc-
umented. In a language that supports exception han-
dling, preconditions are usually coupled with throwing
an exception. Therefore, we look for exceptions thrown
by a method, and reverse conditions that precede ex-
ception throwing, or we explore calls inside a try...
catch blocks that can raise an exception. Using this
scheme we can construct what are the favorable con-
ditions for a method, under which it will not raise an
exception. This process can be automated.

Postconditions describe what a method will guar-
antee, presuming that preconditions are ensured. We
can look for them in documentation, and return paths
of exported methods. We observed that the method
postconditions tend to be well documented. Sometimes,
documentation is not specific about possible outcomes
of a method execution, and then we must consider all
return paths of all exported methods.

We can use Javadoc comments to extract con-
tract information from Java classes. @throws and
@exception tags can be used for extracting precon-
ditions, by identifying exceptions that a method can
raise. @param tag can be used for extracting method
signature and precondition candidates. If a construc-
tor is commented with any of these tags, we can use it
to extract invariant. @return tag can be used for form-
ing method postconditions. Javadoc encourages mul-
tiple return values for special cases, which facilitates
tracking multiple return paths through a method.
@see tag can be useful in tracking inheritance and de-
pendance behavior of a given class, checking if there
are conflicting requirements for identified precondi-
tions, postconditions or invariants.

5.2. Extraction from Enterprise Java
Beans

We now expand the issue of contract extraction by
considering Enterprise Java Beans. Apart from loca-
tions already identified, bean preconditions, postcon-
ditions and invariants can also be found in ejbCreate
and other CRUD (create, read, update, delete) meth-



ods, setter methods, primary key classes, finder meth-
ods, and deployment descriptors.

Knowing whether a component is session, entity or
message-driven bean, we can limit the scope and focus
our search. For session beans, looking into ejbCreate
method makes sense only for stateful beans, since
ejbCreate for stateless beans does not accept param-
eters. For entity beans, ejbCreate usually calls set-
ters, so this is the right place to look for invariants.
Depending on the type of entity bean (bean man-
aged or container managed persistence), we check ei-
ther ejbCreate or setter methods or underlying SQL
or EJB-QL statements in deployment descriptor.

For entity beans, it is good to examine construc-
tor of the primary key class and finder methods. The
problem is the same as with ejbCreate method: de-
pending on the type of persistence, sometimes it will
be required to go to the level of deployment descrip-
tor to extract useful information.

We will address hierarchy of EJB exceptions and
consider which to take into account when scanning
for method preconditions. Since beans are distributed
by definition, it is useful to make a distinction be-
tween system-level and application-level exceptions.
Every bean must throw a remote exception, indicat-
ing some special error, e.g., network or database fail-
ure. These exceptions are of no interest to us when we
look for contracts. Sometimes, they are not even prop-
agated all the way back to the client, but can be in-
tercepted by EJB objects that act as a middleware be-
tween the client and the bean. Those exceptions are
system-level exceptions. Application-level exceptions
on the other hand indicate ’regular’ problems, such
as bad parameters passed to a bean method. There-
fore, we must check for all exceptions that are propa-
gated to the client, including all exceptions that the
bean defines, and javax.ejb.CreateException and
javax.ejb.FindException.

In our contract model we allow for the following
types of non-functional properties: invocation, secu-
rity (authentication and authorization), dependability
(transactions, checkpointing, replication, exceptions),
performance, rendering and logging. However, current
J2EE specification defines only bean management, per-
sistence, transactions and security. Other functions,
such as load-balancing, clustering and logging, are ven-
dor specific and we do not consider them here.

We use bean management information to form in-
vocation part of a contract. We look into bean deploy-
ment descriptor and extract information about remote,
home and local interfaces. We need this information
to create and destroy beans. Then we extract infor-
mation whether bean is synchronous or asynchronous.

At the end, for session beans, we store information on
how bean handles states (stateful or stateless). For en-
tity beans we use the information about persistence
(bean managed or container managed).

We describe component transactional behavior us-
ing transaction manager, resource, resource manager,
compensate methods, transaction attribute and isola-
tion elements. We add compensate methods to usual
J2EE transaction attributes, since we want to allow
components to participate in split transactions [8].

Security information encompasses authentica-
tion and authorization. An important element in
J2EE authentication architecture are the login mod-
ules. Each login module implements one authenti-
cation mechanism. Therefore, one component can
support multiple authentication mechanisms. We
can obtain a list of login modules from configu-
ration module. We extract the name of configu-
ration module, as well as all login modules. Then
we extract security roles. If a bean uses declara-
tive authentication, we read security-role-ref,
role-name and role-link elements. However, if a
bean uses programmatic authentication, we must
scan the source code for getCallerPrincipal() and
isCallerInRole(roleName) methods. The first es-
tablishes the identity of a client, while the second
one checks whether it fits in a desired role. By check-
ing all isCallerInRole calls we can identify all the
roles that a component supports.

5.3. Static and Dynamic Extraction

There are two ways to perform contract extraction:
using static or dynamic analysis. Static analysis ex-
amines program source code and tries to reason about
possible execution outcomes. We build a model of pro-
gram execution state, e.g., what possible values vari-
ables can have. Then we proceed to track how they
change and infer specification. Static analysis is the-
oretically complete [2], but can be inefficient. On the
other hand, dynamic analysis is a runtime analysis of a
program. We try to obtain information from program
executions. Instead of trying to model execution state,
we observe actual values that a running program pro-
duces. Dynamic analysis is efficient, but it is not gen-
eral. Therefore, we try to combine the two methods in
a hybrid approach, similar to [3]. The process we use
is shown on Figure 2.

We first perform dynamic analysis, and then refine it
with static analysis. In the dynamic analysis part, we
identify candidate contract elements using heuristics
that we described in previous sections. After this step
is completed, we try to refine and/or augment identi-



source code
documentation
inheritance data

dynamic detector
identify candidates

language
framework

generate
test cases

static refine
check candidates

temporary
contract

fitness
function

evaluate
final

contract

Figure 2. Extracting functional contracts using
combination of dynamic and static analysis.

fied candidates with static analysis. We inspect code,
and try to prove that identified preconditions, post-
conditions and invariants are real. We either assume
negation and prove it not possible, or cover all mod-
eled program states with assumed candidate. In this
step we can identify additional candidates.

After this phase we construct a temporary contract.
The next step is evaluation of a temporary contract us-
ing fitness function. We test how well a derived spec-
ification reflects actual component behavior, trying to
predict results for a given test pattern using specifica-
tion. If a temporary contract is not valid, we can either
perform dynamic analysis again, possibly with another
set of test cases, or try to determine what is missing us-
ing static analysis, by looking deeper into source code
or documentation. Once a temporary contract is eval-
uated as valid, we promote it into final contract, and
use it as a component specification.

The main issue in contract extraction is possibility of
automation. Some steps of this process cannot be fully
automated. For example, finding invariants in docu-
mentation cannot be automated because of the lack of
standard documentation format. Since J2EE applica-
tion server configuration files are vendor specific, au-
tomatization in this area can be achieved on a vendor
basis only. On the other hand, inverting conditions that
cause exception throwing shows good results when au-
tomated, and there are many proposed methods for au-
tomatic generation of test cases.

6. Conclusion

The component-based software partially fails to ful-
fill its dependability promises due to unstructured for-
mal specification methodologies. We propose compo-
nent contracts as a solution. Using contracts we for-
mally specify functional and non-functional properties
and describe what a component requires and delivers.
Our main goal was to show how to extract contract in-
formation from Java classes and EJBs.

Including contract a priori, at the start of the devel-
opment process, is a great benefit and asset to any soft-
ware project. Extracting contracts a posteriori can be-
come very tedious, and we showed that in many stages
it cannot be automated. Therefore, we advocate the ap-
proach where as much contractual information as pos-
sible is included at early development stages. It ensures
easier extraction of remaining properties, and enables
thorough formal treatment, resulting in improved com-
ponent dependability and correctness.

Apart from enhancing reliability of single compo-
nents, this approach can be used for providing correct
component compositions. We are currently developing
a composable component architecture, based on con-
tractual descriptions [6] that allows for predicting and
guaranteeing results of component composition.

References

[1] J.R. Abrial. The B Book. Cambridge University Press,
1996.

[2] P. M. Cousot and R. Cousot. Automatic synthesis of op-
timal invariant assertions: Mathematical foundations.
In Proceedings of the ACM Symposium on Artificial In-
telligence and Programming Languages, Rochester, NY,
1977.

[3] M. D. Ernst, W. G. Griswold, Y. Kataoka, and
D. Notkin. Dynamically discovering program invariants
involving collections. Technical Report, University of
Washington, 2000.

[4] B. Meyer K. Arnout. Uncovering hidden contracts: The
.net example. IEEE Computer, 36, No. 11, pp 48-55,
November 2003.

[5] B. Meyer. Contracts for components. Software Devel-
opment, 2000.

[6] N. Milanovic, V. Stantchev, J. Richling, and M. Malek.
Towards adaptive and composable services. In Pro-
ceedings of the International IPSI2003Conference, Sveti
Stefan, Montenegro, 2003.

[7] E. Roman. Mastering Enterprise Java Beans. Wiley
Computer Publishing, 2002.

[8] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy.
Coordinated forward error recovery for composite web
services. InProceeding of the 22nd International Sympo-
sium on Reliable Dependable Systems, SRDS 2003, Flo-
rence, Italy, 2003.

[9] M. Werner and J. Richling. Komponierbarkeit nicht-
funktionaler Eigenschaften - Versuch einer Definition
(engl: Composability of non-functional properties — an
attempt of a definition). In GI Fachtagung Betriebssys-
teme, Berlin, 2002.

[10] M. Werner, J. Richling, N. Milanovic, and Vladimir
Stantchev. Composability concept for dependable em-
bedded systems. In Proceedings of the International
Workshop on Dependable Embedded Systems in conjuc-
tion with SRDS 2003, Florence, Italy, 2003.


