
Carnegie Mellon

An Architecture for
Versatile Dependability

Tudor Dumitraş and Priya Narasimhan
Electrical and Computer Engineering Department

Carnegie Mellon University
USA

2

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Motivation
The requirements of dependable systems are often conflicting

Example: meeting deadlines in the presence of faults
Meeting deadlines requires a predictable system, while faults are inherently
unpredictable!

These conflicts must be seen as a trade-off
Usually, dependable systems hard-code such trade-offs in their design
choices

Architectures should become tunable to provide support for:
Configuring the system before deployment
Adapting to changes in the environment during run-time
Maintaining the system throughout its life-cycle

3

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Outline

Versatile Dependability

An Architecture for Versatile Dependability

Case Study: Tuning the System Scalability

Conclusions

Future Work

4

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Versatile Dependability

Strength of fault-model
Group communication style
FT granularity
No. of faults tolerated
Frequency of failures
Window of vulnerability
Overhead of FT

CPU usage
Bandwidth
Energy / Power
Memory usage
Number of nodes
Storage space

Fault detection latency
Replica launch latency
Fault-recovery latency
No. of missed deadlines
Scheduling algorithms

Existing Dependable Systems

Performance

Re
so

ur
ce

s

Fault-Tolerance

5

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Versatile Dependability

Existing Dependable Systems

Fault-Tolerance

Performance

Re
so

ur
ce

s

Versatile Dependability

Versatile dependability allows tuning the trade-offs among conflicting requirements.Versatile dependability allows tuning the trade-offs among conflicting requirements.

6

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Versatile Dependability: Control Knobs

High-level knobs
Scalability
Availability
Real-Time

Guarantees

Application parameters
Frequency of Requests
Size of Requests and Responses
Size of State
Resources

Low-level knobs
Replication Style (Active, Passive)
Number of Replicas
Checkpointing Frequency

Versatile dependability provides control knobs to tune the trade-offs

7

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Versatile Dependability Loop

Requirements

Offline
configuration

Adaptation

Adaptation
Policies

Resource Monitor

Application
Parameters

High-Level Knobs Low-Level Knobs

8

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Architecture for Versatile Dependability

Design goals:

Tunability and homogeneity: one infrastructure, multiple knobs

Quantifiability: using precise metrics to evaluate trade-offs

Transparency: support for fault-tolerance unaware applications

Ease of use: simple knobs that are intuitively easy to adjust

9

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Architecture for Versatile Dependability
Distributed software architecture

No central point
Tunable redundancy levels
Components work independently and synchronize using group
communication

Enhancement to CORBA middleware
Part of the MEAD Project
Middleware for
Embedded
Adaptive
Dependability
(www.ece.cmu.edu/~mead)

10

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Replicated
state

Tunable mechanisms
Replication
style

#replicas

Interface to application / CORBA
(modified system calls)

Tunability

Interface to Group Communication

Architecture for Versatile Dependability

Group Communication

Client

CORBA

Replicator

Server

CORBA

Replicator

Host OS Host OS

Host O
S

R

C
R

C

R

C

Cli

Srv

Srv

Networking

Netw
ork

ing

Rep
lic

ate
d C

lie
nt

Rep
lic

ate
d S

erv
er

The Replicator

11

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

The Replicator
Library interposition

Intercepts and redefines system calls
Provides transparency without modifying
the application, the middleware, or the OS

Group membership and communication
The Spread toolkit

Replicated state
Decisions made based on information already available at every host

Tunable fault-tolerant mechanisms
Replication style, number of replicas, checkpointing style and frequency
Represent the low-level knobs

Adaptation Policies
Implement the high-level knobs

Replicated
state

Tunable mechanisms
Replication
style

#replicas

Interface to application / CORBA

Tunability

Interface to Group Communication

12

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Case Study: Tuning Scalability

Using more resources
(e.g., CPU, bandwidth)

Decreasing performance
(e.g., response time)

Decreasing fault-tolerance
(redundancy levels)

Increasing Scalability
(accommodating more clients)

13

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Exposing System Trade-offs

Comparing active and passive replication
in terms of round-trip latency and bandwidth

1

2

3

4

5 1

2

3

0

1000

2000

3000

4000

5000

6000

7000

8000

Fault-Tolerance
[#replicas]

Round-Trip Latency

Scalability
[#clients]

A
ve

ra
ge

 L
at

en
cy

 [µ s
]

Warm Passive
Replication

Active
Replication

1
2

3
4

5 1

2

3
0

1

2

3

4

5

6

Fault-Tolerance
[#replicas]

Bandwidth

Scalability
[#clients]

Ba
nd

w
id

th

[M
by

te
s/

s]

Active Replication

Warm Passive
Replication

14

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Exposing System Trade-offs

Active replication has lower latencyWarm passive replication uses less bandwidth

1
2

3
4

5 1

2

3
0

1

2

3

4

5

6

Fault-Tolerance
[#replicas]

Bandwidth

Scalability
[#clients]

Ba
nd

w
id

th

[M
by

te
s/

s]

Active Replication

Warm Passive
Replication 1

2

3

4

5 1

2

3

0

1000

2000

3000

4000

5000

6000

7000

8000

Fault-Tolerance
[#replicas]

Round-Trip Latency

Scalability
[#clients]

Av
er

ag
e

La
te

nc
y

[µ
s]

Warm Passive
Replication

Active
Replication

1
2

3
4

5 1

2

3
0

1

2

3

4

5

6

Fault-Tolerance
[#replicas]

Bandwidth

Scalability
[#clients]

Ba
nd

w
id

th

[M
by

te
s/

s]

Active Replication

Warm Passive
Replication

1

2

3

4

5 1

2

3

0

1000

2000

3000

4000

5000

6000

7000

8000

Fault-Tolerance
[#replicas]

Round-Trip Latency

Scalability
[#clients]

A
ve

ra
ge

 L
at

en
cy

 [µ
s]

Warm Passive
Replication

Active
Replication

1
2

3
4

5 1

2

3
0

1

2

3

4

5

6

Fault-Tolerance
[#replicas]

Bandwidth

Scalability
[#clients]

B
an

dw
id

th

[M
by

te
s/

s]

Active Replication

Warm Passive
Replication

15

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

System Constraints

Implementing a “scalability” knob under bandwidth, latency and
fault-tolerance constraints

Requirements:
1. The average latency shall not exceed 7000 µs
2. The bandwidth shall not exceed 3MB/s
3. The configuration should tolerate as many crash faults as possible
4. The following formula should be used to break any ties:

()
sMB

Bandwidthp
s

Latencyp ii

/3
1

7000
Cost i −+=

µ

16

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Implementing a “Scalability” Knob

Clients 1 2 3 4 5
Configuration Active (3) Active (3) Passive (3) Passive (3) Passive (2)
Latency 1246 µs 1457 µs 4966 µs 6141 µs 6006 µs
Bandwidth 1.05 MB/s 2.03 MB/s 1.89 MB/s 2.32 MB/s 2.8 MB/s
#Faults tolerated 2 2 2 2 1

17

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Conclusions
Versatile dependability tunes the trade-offs among:

Performance
Fault-tolerance
Resources

Provides high-level and low-level knobs
for tuning the trade-offs

We know how to implement some high-level knobs

Can be used for:
Off-line system profiling & adaptation during run-time

Future research directions:
Investigating the impact of run-time adaptation
Evaluating with benchmarks for hard real-time applications
Implementing other high-level knobs

18

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Thank You!

For more information: www.ece.cmu.edu/~tdumitra

19

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

20

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Performance of the Architecture

21

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

For More Information

http://www.ece.cmu.edu/~tdumitra

Tudor Dumitraş
Ph.D. Student
ECE Department
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Tel: +1-412-268-5005
tdumitra@ece.cmu.edu

22

Carnegie Mellon

© 2004 Tudor Dumitraş
MEAD: Real-Time Fault-Tolerant Middleware

Motivation
Dependable system architectures currently lack the flexibility to
adapt to the operating environment

Behavior of the system depends on static fault assumptions

No generic framework for resolving conflicts among requirements

Architectures should become tunable to provide support for:
Configuring the system before deployment
Adapting to changes in the environment during run-time
Maintaining the system throughout its life-cycle

