A Reasoning Framework for the Architectural Design of Real-Time Fault-Tolerant Systems

Siemens Overview

- □>400,000 employees worldwide
- □Builds mission/safety critical software intensive systems
 - Power plant control systems
 - Power distribution systems
 - Telecommunications systems
 - Building control systems
 - Automotive systems
 - ...
- □ Largest developer of software in the world

Large Scale Distributed Embedded Systems

- □ Huge capitol investment
- □Long life expectancy
 - Often > 15 years
- Mission/safety criticalE.g. Power plant control systems
 - Downtime is very expensive

Reliability Impacts Revenue Directly

- □Business model may rely on correct operations
 - Systems may be sold based on expected savings for consumer
 - Siemens gets a % of consumer's savings
 - Speaks to the degree of confidence in the system
 - Non-optimal execution may mean losses to consumer and Siemens

Designing for Dependability

- ■How to ensure design meets QoS requirements?
 - Analytic models exist for performance
 - Queuing
 - Scheduling theory
 - How do we practically determine behavior when faults occur?
 - How do we understand impact of design decisions?
- □ Difficult to balance competing concerns
 - E.g. performance, degree of fault-tolerance, resource utilization, ...

Looking for Improvements

- □Currently we rely on intuition of experienced architects
- □ Looking for practical structured methods for understanding connection between design decisions and requirements
 - SEI approach shows promise, but not yet suitable for QoS issues
 - Also looking into more "tolerant" architectures