
Enabling Adaptable Verification by Monitoring
Evolvable Dependable System Architectures

Marcio Dias
mdias@ics.uci.edu

Debra J. Richardson
djr@ics.uci.edu

School of Information and Computer Science
University of California, Irvine

3rd Workshop on Architecting Dependable Systems
ICSE 2004 - Day 1

2

Southern California, USA

Weather
Mostly sunny! :-)

No Thunderstorms, Blizzards, Tornadoes, etc

Critical situations
Earthquakes, wildfires
(budget cuts, economic/political crisis, etc)

Air Traffic Control in Southern California
“Tornadoes have never happened here!”
“Meteorologists say it is virtually impossible!”
“It costs to monitor/handle this situation!”
Designers might say:

“Analysis & procedures to handle this situation is not necessary”
“This is not the focus of our system”

3

Santa Catarina, Brazil (27 / March / 2004)

First tornado ever in Brazil
Considered “impossible” by meteorologists
More than US$ 400 million in damages

1. Unpredictable or “impossible” situations may happen
2. They may require dynamic changes in the analysis

performed by/for dependable systems

4

1. Introduction
Dynamic Changes of Verification Analysis

Complexity

High-Availability

Dynamic Evolution

Dependable
Systems

System not fully understood System behavior changes Problems

On-the-fly Modifications in the (Dynamic) Analysis

Change
Verification Purpose

Change
Property Description

Necessary
Modifications
For Analysis

Multiple Specification
Languages for Property

Description

Dynamic Change of
Property Description

Required
Analysis
Support

5

Example:
Elevator System Case Study

Building
Panel (BP)

Elevator #1
Panel (EP1)

Elevator #2
Panel (EP2)

ElevatorPanel1

ElevatorADT1

ElevatorPanel2

ElevatorADT2

BuildingPanel

C2 Architecture Representation
for an Elevator System

(with 2 elevator and no scheduler)

6

Example: Elevator Case Study
If Elevator System is Modified (Dynamically)…

Prop. description before changes:
1 elevators, no scheduler

P1: Elevator should not be idle if there is an
unattended call
P2: Elevator should attend every call
P3: Elevator should not pass by (miss) an
unattended call

Prop. description after changes:
2 elevators, scheduler

P1’: Elevator should not be idle if there is an
unattended call assigned (scheduled) to it
P2’: Elevator should attend only the calls
assigned to it
P3: Elevator can miss a call (if the call was
not yet assigned by the scheduler, or it has
been assigned to another elevator)
P4: Scheduler must assign every call with
less than 1 sec of it being placed

BuildingPanel

ElevatorPanel1

ElevatorADT1

ElevatorPanel1

ElevatorADT1

Scheduler

ElevatorPanel2

ElevatorADT2

BuildingPanel

support to
dynamic

changes of
property

description
during analysis

7

2. Motivation
Verification and Heterogeneous Properties

Examples of Different Verification Purposes/Interests
Behavior Conformance Verification

Property Description: Statecharts (Component); Sequence Diagram
(System); CSP; Linear Temporal Logics …

Functional Requirement Verification
Property Description: Use Case, Activity and Sequence Diagrams;
Event-based Regular Expressions; …

Performance Verification
Property Description: Classical Temporal Logics; …

If Verification Purposes/Interests Change…

support to multiple (and extensible)
specification languages for property description

8

2. Motivation
Common Approach for Monitor Evolution

Services

Mon Specification
Language

Global Algorithm
(Procedure)

Derived
Architecture

Monitoring
System

What Purposes &
Properties?

How to specify
properties?

How to process
and execute the

monitoring?

How to organize
the algorithm?

Implementation

New Service

Mon Specification
Language

New Global
Algorithm

New Derived
Architecture

New Monitoring
System

Extended
or New

9

3. Approach
Summary

1. Configurable Monitoring Systems (instead of generic monitor)
Reuse of commonalities; development/adaptation of variabilities
Purpose configurable
Independent from target application and instrumentation
mechanism

2. Service-Oriented Monitoring System (instead of language oriented)
“Service” as element of composition
Collection of services: common, extensible and “pluggable”

3. Software Architecture Approach (instead of algorithmic approach)
Architecture-based Dynamic (Re) Configuration / Evolution
Event-flow Architectural Style

4. Configuration Before and During Program Execution (instead of
only before)

Ability to modify analysis (and other monitor) services given the
changes on the purposes of interest or system evolution

4

3

2

1

10

3. Approach
Service-Oriented and Soft. Arch. Approach

Service-Oriented Components
Identified and Classified Common Types of Services:

Collection: Persistence, Distribution, …
Analysis: Filtering, Abstraction, Measurement, Detection, Comparison, …
Presentation: Traces, Graphs, Charts, Animation, …
Actions: Event Generation, Sensor Enabling, …

Each Component Performs one Type of Service (for Reuse)

Event Flow Architecture Style

2

3

Application

Collector Filter Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

11

3. Approach
Description for Dynamic Analysis

MonArch2

Collector Filter
Abstracter

Sender

ADL

MonArch1

Collector Filter Sender

Description of the Monitor Architecture
Independent of Target Application
ADL: Components, Connectors and Configuration

Description for Monitoring Services
Specific for Target Application
Event types, composition, analysis, presentation, actions…

Description for
Monitoring Services

Application 1

Application 2

Application 3

1

Links within
Projects

3

2

12

3. Approach
Configurable Monitor System

Services

Mon Specification
Language

Monolith / Global
Algorithm

Derived
Architecture

Monitoring
System

What purposes &
properties?

How to describe
properties?

How to process
the data and
execute the

monitor services?

How to organize
the monitor?

Implementation

Services

Algorithm
“Distributed”

among Services

Derived
Architecture

Monitoring
System

S1

L1

S2

L2

S3

L3
+

Configuration
among

Services

How MS are built Our Approach

12

3

13

4. Current Status
Development of MonArch (prototype)

MonArch allows:
1. simultaneous use of multiple specification methods (languages)

for property description
2. modifications to the description of the properties to be (or

being) analyzed: (a) Static and (b) Dynamic modification
3. modifications to the analysis services provided by the monitor:

(a) Static and (b) Dynamic modification
4. the construction of previously existent monitors

MonArch prototype is composed of:
- Component Library Editor
- Monitor Architecture Editor
- Monitor Specification Editor
- Monitor Project Execution Manager

Skip >

14

4. Current Status
Development of MonArch (prototype)

Library Editor

Monitor Architecture
Editor

15

4. Current Status
Development of MonArch (prototype)

Monitor Specification Editor

16

5. Conclusions
Contributions

Conceptual framework for classification of the basic services in
dynamic analysis
Ability to allow different specification languages being used to
describe the properties of interest for analysis

By decomposing monitor activities into basic services, and
associating specification languages to these services

Ability to allow reconfiguration of monitor system analyses during
system execution

By using a software architecture approach for dynamic
reconfiguration, and supporting to property description changes

Implementation framework and supporting tools for building and
evolving dynamic and flexible monitor architectures
Mechanism to reuse services and specification

17

5. Conclusions
Current and Future Work

Case Studies
Air Traffic Control Simulation

Changes applied to Safety and Performance Analyses
Dynamically Reconfigurable Elevator System

Changes applied to Behavioral and Performance Analysis
Extended GEM (Generic Event Monitor)

MonArch version of GEM and ability for additional analysis
services

Explore, Research and Develop…
additional services: analysis, presentation and action
actions for self-adaptation of the monitor system
evaluate performance of distributed monitor algorithms
instrumentation mechanisms allowing actions to be performed
in the target application (e.g., dynamic modification of target
application)

18

Thank you!
Questions and Comments

19

20

3. Approach
Example of Distributed Monitoring

Collector

Intrusion
Detector

Abstracter

Filter

MonArch 3

App 3

Performance
Evaluator

ReportViewer

Intrusion
Handler

App 1

Collector Filter JDBCSenderApp 2

MonArch 1

JDBCCollector

TraceViewer

ReportViewer

Behavior
Checker

MonArch 2

Sender

Receiver

21

B1. Problem & Elevator Example
B. Verification and Heterogeneous Properties

Examples of Different Verification Purposes/Interests
Behavior Conformance Verification
Functional Requirement Verification
Performance Verification

Heterogeneous Properties (Descriptions)
Property Description for Behavioral Conformance Verification

Statecharts (Component); Sequence Diagram (System); …

Property Description for Functional Requirement Verification
Use Case, Activity and Sequence Diagrams; Event-based
Regular Expression; …

Property Description for Performance Verification
Classical Temporal Logics, Linear Temporal Logics; …

22

B1. Problem & Elevator Example
C. Property Description for Behavioral
Conformance Verification

Specification for
Elevator Behavior

up

down

idle

direction

moving

stop

open

close

motion doors

service

off on

AddCall / CallAdded

CallAttended

off on

ButtonPush / AddCall

Specification for
Building Panel Behavior

Verification of Component Behavioral Conformance
Example: Statecharts

23

B1. Problem & Elevator Example
D. Property Description for Other Verification
Purposes

Verification of System Level Functional Requirement
Elevator should not miss a call
Description (Inverse Property): When elevator misses a call

Example: Regular Expression
AddCall(dir,floor) • {

ElevStatus(dir, floor-1) • ElevStatus (dir,floor) • ~CallAttended(dir, floor) •
ElevStatus (dir, floor+1) || ElevStatus(dir, floor+1) • ElevStatus (dir,floor)
• ~CallAttended(dir, floor) • ElevStatus (dir, floor-1)

} • CallAttended (dir,floor)

Verification of Performance (and Temporal) Requirements
Example: Classic Temporal Logics

Every call should be scheduled in less than 1 second
time (BP out AddCall[i], EP[n] in AddCall[i]) < 1 sec

Elevator should not be idle for more than 1 second after a new call is
scheduled to it
time (EP[n] in AddCall, EP[n] not in Idle) <= 1 sec

Every call should be attended in less than 1 min
time (EP[n] in AddCall[i], EP[n] out CallAttended[i]) < 60 sec

24

B1. Problem & Elevator Example
Changes in the Property Description

Collector Filter

Abstracter

Trace
Viewer

Monitor

Collector Filter
Abstracter

Trace
Viewer

BuildingPanel

ElevatorPanel1

ElevatorADT1
Monitor

Changes in the Property Description

BuildingPanel

ElevatorPanel1

ElevatorADT1

25

Collector Filter

Abstracter

Trace
Viewer

Monitor

Collector Filter
Abstracter

Trace
Viewer

B1. Problem & Elevator Example
Changes in the Purpose for Analysis

BuildingPanel

ElevatorPanel1

ElevatorADT1
Monitor

Performance
Evaluator

Table
Viewer

Changes in the Purpose for Verification (Services)

BuildingPanel

ElevatorPanel1

ElevatorADT1

26

Collector Filter

Abstracter

Trace
Viewer

Monitor

Collector Filter
Abstracter

Trace
Viewer

B1. Problem & Elevator Example
Changes in the Analysis

BuildingPanel

ElevatorPanel1

ElevatorADT1
Monitor

Performance
Evaluator

Table
Viewer

Changes in the Purpose for Verification (Services)

BuildingPanel

ElevatorPanel1

ElevatorADT1

Changes in the Property Description

27

Collector Filter

Abstracter

Trace
Viewer

Monitor

Collector Filter
Abstracter

Trace
Viewer

B1. Problem & Elevator Example
Changes in the Target Application

BuildingPanel

ElevatorPanel1

ElevatorADT1

ElevatorPanel1

ElevatorADT1

Scheduler

ElevatorPanel2

ElevatorADT2

BuildingPanel

Monitor

Performance
Evaluator

Table
Viewer

Changes in the Property Description

Changes in the Purpose for Verification (Services)

28

Backup Slides
2. Research Context & Motivation

A. Dynamic Verification of Properties
Multiple specification language needed!

B. Dependable Systems
Complexity / High-availability / Dynamic Evolution

C. Specification Languages for Monitors
(from Survey: Boolean Tree/RegExp/FSM/…)

Back to Backup Slides

29

B2. Research Context & Motivation
A. Dynamic Verification of Properties

Runtime System Observation Required
Performed by Monitoring Systems

Different Verification Purposes
Performance (ex. “average/max response time”)
Usability (ex. “frequency of service usage”)
Availability, Security, Testing, Correctness Checking, etc…

Different Specification Languages for Property Description
Example: FSM, Regular Expressions, LTL, Timed Petri-Nets, …
Some properties may be described on different specification methods

No single specification language is adequate or enough to attend
every verification purpose

Verification for even one purpose can benefit from the use of
multiple specification languages

30

B2. Research Context & Motivation
B. Dependable Systems

Complex Systems with High-Availability Requirement (24/7)
Air-traffic control, command-and-control, power-plant control,
emergency systems/services (telecommunication for disaster relief
organizations…), global web-based systems, etc.

Systems Being Distributed, Replicated and Evolved Dynamically
Connections and Components

Systems Composed of Heterogeneous Components
Running on different platforms
Developed with different programming languages

Complexity (distribution, heterogeneity,etc)
High-availability requirement

Dynamic evolution occasionally required

31

B2. Research Context & Motivation
C. Monitor Specification Semantics

Specification Semantics Used By Existent Monitors
Simple Signature Matching:
Balzer's Software Architecture Monitor, Jade/Mona

Assertions (simple conditions):
Alamo, Anna Concurrent Monitoring, ZM4/SIMPLE

Boolean Expression Tree:
HiFi

(Extended) Regular Expressions:
DPEM, EBBA, EDEM, Falcon, GEM

Relational Calculus:
Issos, PMMS, Snodgrass's Historical DB (Temporal RC)

Finite Automata (Finite State Machine, etc):
Huang & Kintala, Argus

Some Other Possible Representations
Directed Acyclic Graph; Petri Nets

32

Background: Software Monitoring
Purposes for Monitoring

Monitoring

Performance
Evaluation

Testing and
Debugging

Control

SecurityCorrectness
Checking

Performance
Enhancement

Dependability

Usability

Program
Understanding

Dynamic
Documentation Ubiquitous

Computing

33

Backup Slides
5. Details of Implementation

MonArch Environment & IDE
How are monitors attached to applications?

Example of service descriptions

Back to Backup Slides

34

5. Details of Implementation
MonArch Environment (1)

Arch Model 1

Collector Filter
Abstracter

Sender

MonArch
(Project Design Time)

Projects

- Archs (ADL)

- Services
(for apps)

Links

Library
Editor

Classes Registry:
- Component
- Service Spec

Spec for App 1

Collector_S #1 Filter_S #1 Sender_S #1

Collector_S #2

Collector_S #3

Filter_S #2

Abstracter_S #1

Abstracter_S #2

Bar View_S #1 Trace_S #1… …

…

Project 1

Project 2

35

5. Details of Implementation
MonArch Environment (2)

MonArch
(Execution Time)

Instance: Arch + Service Config

Collector Filter
Abstracter

Sender

modifications

Arch Manager

starts

App 1

event
collection

Projects

Archs (ADL)

- Services
(for apps)

Classes Registry:
- Component
- Comp Spec

Modifications
(Arch)

Add/Remove: Comp/Connectors

(Service)
Add/Edit/Remove: Specification

design

36

5. Details of Implementation
MonArch IDE (Interface Design)
(Spec, Design and Run Time)

Project

Runtime
Control
Panel

Arch

Spec

MonArch

37

5. Details of Implementation
How are monitors attached to applications?

MonArch is open to different instrumentation mechanisms
Instrumentation of Target Application:

Extension of Log4J for Events: mostly done
Java Virtual Machine Debugging Interface: under construction
(planned)

MonArch ‘collector’ components receive events

JVM

Application

Application

Monitor

Collector …

Monitor

Collector …

Connection: Sockets or RMI
Event Data: Serialized or XML

Extended
Log4J

JVMDI

38

5. Details of Implementation
Extending Log4J (java.logging) - Before

public class Main {
static Logger logger = Logger.getLogger(

Main.class.getName());

public static void main(String args[]) throws
Exception {

// ...
logger.log(Level.INFO, "Starting transaction...");
// ...
logger.log(Level.INFO, "Debited "+value+ " from

account "+acc1);
// ...
logger.log(Level.INFO, "Credited "+value+ " to

account "+acc2);
// ...
logger.log(Level.INFO, "end of transaction");

}
}

Trace Format Output:
Dec 11, 2003 6:16:36 PM Main main
INFO: Starting transaction...
Dec 11, 2003 6:16:36 PM Main main
INFO: Debited 10 from account AAA
Dec 11, 2003 6:16:37 PM Main main
INFO: Credited 10 to account BBB
Dec 11, 2003 6:16:37 PM Main main
INFO: end of transaction

XML Format Output
<record>

<date>2003-12-11T18:16:36</date>
<millis>1071195396920</millis>
<sequence>1</sequence>
<logger>Main</logger>
<level>INFO</level>
<class>Main</class>
<method>main</method>
<thread>10</thread>
<message>Starting transaction...</message>

</record>

39

5. Details of Implementation
Extending Log4J (java.logging) - After

public class Main {
static Logger logger = Logger.getLogger(

Main.class.getName());

public static void main(String args[]) throws
Exception {

// ...
logger.send("Start");
// …
String[] params = {"value","account"};
Object[] values = { new Double(10.), "AAA" };
logger.send("Debited”, params, values);

// …
values[2] = “BBB”;
logger.send("Credited”, params, values);

// ...
logger.send(”End");

}
}

Java Object Serialization - Socket or RMI
Event Object

XML Format Output

<event>
<metaproperties>
<property><key>date</key><value type="java.util.Date">2003-12-

11T18:16:37</value></property>
<property><key>millis</key><value

type="java.lang.Long">1071195397061</value></property>
<property><key>sequence</key><value

type="java.lang.Integer">2</value></property>
<property><key>logger</key><value

type="java.lang.String">Main</value></property>
<property><key>class</key><value type="java.lang.String">Main</value></property>
<property><key>method</key><value

type="java.lang.String">main</value></property>
<property><key>thread</key><value type="java.lang.Integer">10</value></property>

<property><key>abstraction</key><value
type="java.lang.String">Main</value></property>

<property><key>type</key><value
type="java.lang.String">Debited</value></property>

</metaproperties>
<properties>
<property><key>value</key><value

type="java.lang.Double">10.0</value></property>

<property><key>account</key><value
type="java.lang.String">AAA</value></property>

</properties>
</event>

40

41

MonArch Example
Distributed Monitoring Example

Collector

Intrusion
Detector

Abstracter

Filter

Arch 3

App 3

Performance
Evaluator

ReportViewer

Intrusion
Handler

App 1

Collector Filter JDBCSenderApp 2

Arch 1

JDBCCollector

TraceViewer

ReportViewer

Behavior
Checker

Arch 2

Sender

Receiver

42

4. Case Studies
GEM Monitoring System

ApplicationApplication

Collector Filter
(guard)

Abstracter
(expression,

guard)

Sender

ApplicationApplication

Timed Event
Generator
(at, every)

GEM Event
Generator

(notify, forward,
trigger)

43

4. Proposed Approach
Project: Linking Services Specification
to Monitor Architecture

MonArch 2

Collector Filter
Abstracter

Sender

Spec for App 1

Collector_S #1 Filter_S #1 Sender_S #1

Collector_S #2

Collector_S #3

Filter_S #2

Abstracter_S #1

Abstracter_S #2

Bar View_S #1 Trace_S #1… …

…

Project 1

Project 2

Spec for App 2

Collector_S #1 Filter_S #1 Sender_S #1

Collector_S #2

Collector_S #3

Filter_S #2

Abstracter_S #1

Abstracter_S #2

Bar View_S #1 Trace_S #1… …

…

Project 3

44

4. Proposed Approach
Project: Linking Services Specification
to Monitor Architecture

MonArch 2

Collector Filter
Abstracter

Sender

Spec for App 2

Collector_S #1 Filter_S #1 Sender_S #1

Collector_S #2

Collector_S #3

Filter_S #2

Abstracter_S #1

Abstracter_S #2

Bar View_S #1 Trace_S #1… …

…

Project 3

MonArch1

Collector Filter Sender

Project 4

45

Software Monitoring
Example of Analysis Techniques

Selection
Remove “noise”
(filtering)

Abstraction
Synthesizing new
information
(possibly in a
different level of
abstraction)

a
b
c
d
e

events filtering selected
events

a

c
d

a
b
c
d
e

events filtering selected
events

a

c
d

events abstraction

x

y

abstracted
events

a
b
c
d
e

events abstraction

x

y

abstracted
events

a
b
c
d
e

46

Software Monitoring
Example of Analysis Techniques

events measurement

a
b
a
a
b

3 a
2 b

1.5 sec / a
75 % idle time

…

events measurement

a
b
a
a
b

3 a
2 b

1.5 sec / a
75 % idle time

…

events detection

c

Specification:
[a • b]

a

a

b

a
b

a
b

events detection

c

Specification:
[a • b]

a

a

b

Specification:
[a • b]

a

a

ba

a

b

a
b

a
b

events comparison

c
a
b

a
b

Specification:
[a • b]

a

a

b

events comparison

c
a
b

a
b

Specification:
[a • b]

a

a

b

Specification:
[a • b]

a

a

ba

a

b

events characterization

c
a
b

a
b Specification:

[a • b]

a

a

b

events characterization

c
a
b

a
b Specification:

[a • b]

a

a

b

Specification:
[a • b]

a

a

ba

a

b

47

48

MonArch Specification
Event Specification

Event Instance
Metadata section

Type
Timestamp (start, end)
SourceID / Location
ThreadID / ProcessID
…

Attributes section
Name / Date Of Birth
Address / City / …
FromAccount / ToAccount
Amount / Date
…

Event Type
Primitive Event

Metadata Types
Attribute Types
Implementation Mapping
(optional)

Composite Events
Metadata Types
Attribute Types
Event Dependence
Event Correlation
Constraints (Guards)

49

MonArch Specification
Event Instance (XML)

<event>
<metaproperties>

<property>
<name>Type</name>
<value type=“String”>CustomerData</value>

</property> …
</metaproperties>
<properties>

<property>
<name>Name</name>

<value type=“String”>John Doe</value>
</property>…

</properties>
</event>

50

MonArch Specification
Primitive Event Type (XML)

<event>
<type>EventA</type>
<primitive>

<metaproperties> (Additional Metadata - Optional)
<property><name>Count</name><type>Integer</type>
</property>

</metaproperties>
<properties>

<property><name>Name</name><type>String</type></…>
<property><name>Account</name><type>Long</type></…>

<properties>
<mapping> … </mapping> (Optional)

</primitive>
</event>

51

MonArch Specification
Composite Event Type (XML)

<event>
<type>EventABC</type>
<composite>

<metaproperties…/>
<properties>

<property><name>Account</name>
<value>EventA.Account</value></property>

</properties>
<composition/> (Events That Compose This One)
<correlation/> (Relation Between Events – e.g. Regular Exp)
<constraint/> (Conditions/Guards for Composition)

</composite>
</event>

52

MonArch Specification
Composite Event Type (XML) - Example

<event><type>AccountTranfer</type>

<composite>
</metaproperties><properties>…</properties>

<composition>
<alias><name>before</name><event>Bank.TransferRequest</event></alias>
<alias><name>withdraw</name><event>Account.Withdraw</event></alias> ...

</composition>

<correlation>
<regexp>
<sequence min=1 max=1>
<event min=1 max=1>before</event>
<parallel min=1 max=1>
<event>withdraw</event>
<event>deposit</event>

</parallel>
<event min=1 max=1>after</event>

</sequence>

</regexp>
</correlation>

<constraint>
<and><constraint><eq><attribute>withdraw.amount</attribute>

<attribute>deposit.amount</attribute></eq></constraint> ... </and>
</constraint>

</composite>
</event>

Correlation
Regular Expression

b • (w • d | d • w) • a

Composition
b = Bank.TransferRequest

w = Account.Withdraw
d = Account.Deposit

a = Bank.TransferCommit

Constraint (Conditions)
w.amount = d.amount
w.account <> d.account

...

53

<composition>
What events may compose EventABC?

<composition>
<alias><event>EventA</event></alias>
<alias><name>B</name><event>EventB</event></alias>
<alias><name>C</name><event>EventC</event></alias>

</composition>

EventABC depends only on events EventA, EventB and EventC.

It does not necessarily imply that all events A, B and C must happen
to compose EventABC. It will depend on the correlation.
For example, EventABC may be a result of the following Regular
Expression correlation:

(A & B) | (A & C)

54

<correlation>
How do events correlate? (For EventABC)

<correlation>
<regexp> (RegularExpression / DAG / PetriNets / …)

<sequence min=“” max=“” />
<choice min=“” max=“” />
<parallel min=“” max=“” />
<event min=“1” max=“1”>EventB</event>

</regexp>
</correlation>

Regular Expression: (A & B) | (A & C)
<choice>

<sequence><event>A</event><event>B</event></sequence>
<sequence><event>A</event><event>C</event></sequence>

</choice>

55

<constraint>
Conditions to be satisfied for composition

<constraint>
<_simple_operand_> (Operands: =,>,>=,<,!=,…)

<attribute>Amount</attribute>
<value>300.00</value>

</_simple_operand_>
…

<_composite_operand_> (Operands: AND, OR, NOT…)
<constraint>…</constraint>
<constraint>…</constraint> …

</_composite_operand_>
</constraint>

56

MonArch Specification
Filtering Specification

<filter>
<name>IllegalTransactions</name>
<type>Detecting</type> (Detecting | Blocking)
<filterEvent>

<type>ATMWithdraw</type>
<constraint>…</constraint> (Amount > 300.00)

</filterEvent>
<filterEvent>

<type>InsufficientBalance</type>
<constraint/>

</filterEvent>
…

</filter>

57

58

Service-Oriented Components (examples)

SocketCollector

Collection

JDBCCollector

FileCollector

Dissemination

SocketSender

FileSender

Other Components

Synchronizer

Analysis

Abstracter

Filter

Measurer

Comparer

Modeler
(characterizer)

Presentation

GraphicsDisplay

TextualDisplay

Audio

Actions

SystemActor

MonarchActor

Multiplexer

Subscriber

JDBCSender

Publisher

EventGenerator

Sorter StateManager

59

MonArch
Overview of Monitoring Components

SocketCollector

Collection

JDBCCollector

FileCollector

Dissemination

SocketSender

FileSender

Other Components

Synchronizer

Analysis

Abstracter

Filter

Measurer

Comparer

Modeler
(characterizer)

Presentation

GraphicsDisplay

TextualDisplay

Audio

Actions

SystemActor

MonarchActor

Multiplexer

Subscriber

JDBCSender

Publisher

EventGenerator

Sorter StateManager

60

Components Categories (1/6)
Interaction to “outer” world

Receiver/Collector - Incoming events (from outside)
Collector (Active, pull)

Socket, Subscriber, File, Database

Receiver (Passive, push)
Socket, Subscriber

Sender (Disseminator) – Outgoing events
Active (push)

Socket, Publisher, File, Database, Console

Passive (pull)
Socket, Publisher

Collector

Sender

61

Components Categories (2/6)
Event Filtering & Detection

Filter – Remove not interesting events
Detect or Block identified event

Abstractor – Pattern Matching & Abstraction
Pattern Matching:

Detect sequence (pattern) of events and generate “detected
pattern” event

Abstraction:
Detect sequence and generate higher-level event

Filter

Abstracter

62

Components Categories (3/6)
Event Processing

Measurer – counts and statistics
Simple counting (w/ or w/o constraints)
Average value (timing between events, …
Percentages

Comparer – compare event trace to model
Which models ?! How to specify?!

“Characterizer” – extract info/model from event trace
Example: causalities ?! User behavior (expectations) ?! Etc…

63

Components Categories (4/6)
Display / User Interaction (Gauge?)

Display
Show results to user

Textual
Graphics …

Allow user interaction to monitoring system
Modify/Configure Architecture/Components

64

Components Categories (5/6)
Agents / Actors

Agents / Actors – take actions
Actions can be:

generation of new events (multiple events)
changes to architecture: configuration, components, …
enabling/disabling: properties, components / links, etc…
interaction to external elements (programs/resources/etc…)

Some example:
Generate specific events given a timing rate…
Load new components or reconfigure component (with new
specification)
Start external applications…

65

Components Categories (6/6)
Other Components

Multiplexer (for classification, separation)
Separate events given some criterion:

Priority, Filtering, Subscriptions, etc…

Synchronizer
Synchronize clocks between different machines
Modify event timestamps

Sorter
Sort events given some criterion (timestamp /
priority / …)
Some limits may be required (window frame)

Multiplexer

66

Air Traffic Control Simulator

67

End of Backup Slides

68

BuildingPanel

ElevatorPanel1

ElevatorADT1

ElevatorPanel1

ElevatorADT1

Scheduler

ElevatorPanel2

ElevatorADT2

BuildingPanel

69

Problem Example: Elevator Case Study
Characteristics and Assumptions

High Availability Requirement
(24/7)
Monitoring Purpose:
Behavioral Conformance
Verification
Component Behavioral
Specification:
Statecharts

Monitoring Analysis:
Compare System Execution to
Specification Models

Building
Panel (BP)

Elevator #1
Panel (EP1)

Elevator #2
Panel (EP2)

Floor: 8
Direction: Up
Attending Call

Floor: 5
Direction: Up

Moving

70

Building
Panel

Elevator #1
Panel

Elevator #2
Panel

CallAttended (UP,floor)

AddCall (UP,floor)

ElevStatus (UP,floor)
ElevStatus (UP,floor+1)

ElevStatus (UP,floor-1)
ElevStatus (DOWN,floor)
ElevStatus (DOWN,floor-1)

ElevStatus (DOWN,floor+1

OR AddCall (DOWN,floor)

CallAttended (DOWN,floor)

AddCall (dir,floor)

ElevStatus (dir,floor)

ElevStatus (dir,floor+1)

ElevStatus (dir,floor-1)

CallAttended (dir,floor)

ElevStatus (dir,floor)

ElevStatus (dir,floor-1)

ElevStatus (dir,floor+1)

OR…

…

…

…

~CallAttended(dir,floor) ~CallAttended(dir,floor)

71

72

1. Research Context & Motivation Examples of
Dynamic Properties

Performance
What is the average and max response time of service “x” ?
What is the average time from order “submission” to “shipment” ?

Availability (Reliability)
Is service “x” available? How often (percentage) ?
How busy is service “x” (time for response) ?

Usage (Usability)
How often is service “x” requested (number of requests) ?
How often does a user “undo” the “AutoFormat” ?

Security
Is the system being “sniffed” ?
Is there someone trying to explore a known vulnerability ?
Is there someone violating the expected system usage ?

And Multiple Other Purposes
Testing, Debugging, Correctness Checking, Control, etc…

73

1. Research Context & Motivation
System Verification

Static analysis is not enough
dynamic properties needed to be checked

Dynamic analysis based on system execution monitoring
preparation happens before execution
dynamic properties to be observed and processed:

known before execution
limited to restrictions established/known before execution

Verification requirement changes during execution
unknown/unexpected behavior/situation happens
changes: “what?” (property) and “for what?” (purpose)

Verification environment: development & operation
system components may not be known before deployment
problems may not be detected until system is deployed

74

1. Research Context & Motivation
Software Monitoring

Categories of Monitoring Services
Collection, Processing, Presentation, Dissemination and Action

Current Monitoring Systems: Commonalities vs. Variabilities
much more commonalities than variabilities (ratio: 80% - 20% ?!)

Why Develop New Monitoring Systems ?
New services and property types required
Difficulties in simultaneous execution of multiple monitors

Problems
Monolith specification language/algorithm for monitoring system

algorithm handling all services
architecture restricted to algorithm and services previously defined

Hard to reuse common services
Hard to extend or evolve monitoring systems

Problems with
Multiple Monitors

How MS are
usually built

75

Problem Statement
Research Question

How can we verify dynamic properties that
change during execution on many types of
critical and dependable systems?

Focus:
Verification of dynamic properties
Run-time verification requirement changes
Critical and dependable systems

76

2. Proposed Approach
Overview

Services

Mon Specification
Language

Monolith / Global
Algorithm

Derived
Architecture

Monitoring
System

What Purposes &
Properties?

How to specify
properties?

How to process
and execute the

monitoring?

How to organize
the algorithm?

Implementation

Services

“Distributed”
Algorithm

Derived
Architecture

Monitoring
System

S1

L1

S2

L2

S3

L3
+ Configuration

How MS are usually built… Our Approach

77

2. Proposed Approach
Overview

Family of Monitoring Systems (instead of “one-size-fits-all”)
Configurable Monitoring Systems
Reuse of commonalities; development/adaptation of variabilities

Service-Oriented Monitoring System (instead of language oriented)
“Service” as element of composition
Collection of services: common, extensible and “pluggable”

Software Architecture Approach (instead of algorithmic approach)
Appropriate Architectural Style: Data flow (event flow)
Architecture-based Dynamic (Re) Configuration / Evolution

Purpose-Independent Monitoring Systems (instead of Generic)
Requires independence from:

Target Application (Domain, Programming Language, Platform…),
Instrumentation Mechanism, Specification Language, Services, Initial
Configuration of Services, … How MS are

usually built

78

Thesis Activities

Comparison Framework for Monitoring Services (survey)
domain analysis: commonalities and variabilities
services categorization and comparison

Architectural Support for Family of Monitoring System
architecture style and components for monitoring systems

Support for Specification and Configuration of Monitoring System
specification of events for a target application
description and configuration of services of a MS for a target
application

Validation
Case Studies and Evaluation

Dissertation Writing

79

2. Proposed Approach
Scenario: Roles and Tasks

Monitor System (MS) Developer
Identification, Selection and Configuration of Services for a MS

Requirements for a MS, purposes and types of properties
Selection or implementation of services
Define relationship between services (configuration)

MS User
Deals with the Target Application (TA) and MS Preparation

Specification of Events for the TA
Specification for Services of a MS for the TA

MS “Advanced” User (or interacting with a MS Developer)
Deals with new services for MS and dynamic changes

Selection (or implementation) of new services
Specification for the new services in relation to the TA
(Dynamic) re-configuration of the MS services

80

2. Proposed Approach
Architectural Support

Service-Oriented Components
Common Types of Services (identified on survey)

Collection: Persistence, Distribution, …
Analysis: Filtering, Abstraction, Measurement, Detection, Comparison, …
Presentation: Traces, Graphs, Charts, Animation, …
Actions: Event Generation, Sensor Enabling, …

Each Component Perform only one Type of Service (for Reuse)

Data Flow Architecture Style

Application

Collector Filter
Abstracter

Sender

Need more details ?

Need more details ?

81

2. Proposed Approach
Data Flow Architectural Style

Architectural Style Rules
Event as the only element of communication
Input and Output ports only (no dual communication ports)
Asynchronous communication between components

Example

Application

Collector Filter Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

82

2. Proposed Approach
Innovation

Configuration / Setup
Collection

Analysis
Presentation

Configuration / Setup

Collection
Analysis
Action
Presentation

Traditional
Monitoring

Systems

Online
Monitoring

Systems

before during after
Program Execution

Configuration / Setup
Collection

Analysis

Action
Presentation

MonArch
Monitoring

Systems

83

2. Proposed Approach
Future Vision

Preparation
Collection

Analysis
Presentation

Preparation
Collection
Analysis
Action
Presentation

Traditional
Monitoring

Systems

Online
Monitoring

Systems

before during after
Program Execution

Preparation
Collection

Analysis

Action
Presentation

MonArch
Monitoring

Systems

Preparation
Collection
Analysis

Action
Presentation

Future
Monitoring

Systems

Preparation
Collection

Analysis
Presentation

Preparation
Collection
Analysis
Action
Presentation

Traditional
Monitoring

Systems

Online
Monitoring

Systems

before during after
Program Execution

Preparation
Collection

Analysis

Action
Presentation

MonArch
Monitoring

Systems

Preparation
Collection
Analysis

Action
Presentation

Future
Monitoring

Systems

84

3. MonArch

Goal?
Support the development of monitoring systems

What kind of support?
Infrastructure for monitoring systems

How?
Software architecture-based product family
Framework & library with common M.S. services

Services provided by software components

Support specification and development of
variabilities

85

3. MonArch
Specifications

MonArch2
Collector Filter

Abstracter
Sender

ADL

MonArch1
Collector Filter Sender

Specification to Monitor
Application #1

App 1

App 1

Specification to Monitor
Application #1

Ev
en

t
Ty

pe
s

Collection

Analysis

Presentation

Actions

Preparation

Specification to Monitor
Application #1

MonArch2
Collector Filter

Abstracter
Sender

ADL

MonArch1
Collector Filter Sender

App 1

App 1

App 2

App 2

Specification to Monitor
Application #2

Monitoring System Architecture Specification
ADL: Components, Connectors and Configuration

Monitoring Specification for Target Application
Event types, composition, analysis, presentation, actions…

86

3. MonArch
Specification

Commonalities vs. Variabilities
Common services => “common” specification
“Killer features” => “extended” specification

What are the commonalities?
Hard to decide!!! (point of view/agreement/…)

Solution? Stepwise refinement?!!
Select a basic set of services and specification for
commonalities

Create library of services
Create specification language for service

Extend services and specification for variabilities
New libraries and specification languages

87

3. MonArch
Overview of Monitoring Components

SocketCollector

Collection

JDBCCollector

FileCollector

Dissemination

SocketSender

FileSender

Other Components

Synchronizer

Analysis

Abstracter

Filter

Measurer

Comparer

Modeler
(characterizer)

Presentation

GraphicsDisplay

TextualDisplay

Audio

Actions

SystemActor

MonarchActor

Multiplexer

Subscriber

JDBCSender

Publisher

EventGenerator

Sorter StateManager

88

3. MonArch
Overview of Monitoring Components

SocketCollectorCollection JDBCCollectorFileCollector

Dissemination SocketSenderFileSender

Others Synchronizer

Analysis AbstracterFilter Measurer Comparer Modeler
(characterizer)

Presentation GraphicsDisplayTextualDisplay Audio

Actions SystemActorMonarchActor

Multiplexer

Subscriber

JDBCSender Publisher

EventGenerator

Sorter StateManager

89

4. Case Studies

Elevator Simulator - Dynamic Reconfiguration
requires dynamic adaptation of dynamic analysis

GEM – Generic Monitoring System
Building existent MSs with MonArch

Self-Analysis - Monitoring MonArch (TBD)
Monitoring MonArch systems ?!

(what exactly do I want to demonstrate here?)

90

4. Case Studies
Elevator Problem

(previous presentation)

91

Conclusion

Summary
Benefits
Future Work
Schedule

92

93

2. Proposed Approach
Innovation

Support for Family of Monitoring Systems
No MS can provide all needed services

Independent Monitoring System (vs. Generic)
reuse MS with distinct variations

Dynamic Adaptation & Evolution for MS
activities can be performed during execution
properties of interest can be (re) defined during execution
services can be created/changed/removed during execution

94

2. Proposed Approach
Service-Oriented Components

Common Types of Services (identified in the Survey)
Collection: Persistence, Distribution, …
Analysis: Filtering, Abstraction, Measurement, Detection, Comparison, …
Presentation: Traces, Graphs, Charts, Animation, …
Actions: Event Generation, Sensor Enabling, …

One Component for Each Service
Some Examples of Service-Oriented Component:

Persistence: JDBCWriter, JDBCReader, XMLWriter, XMLReader, …
Distribution: TCPSender, TCPReceiver, RMISender, RMIReceiver, …
Filtering: DetectingFilter, BlockingFilter, Multiplex, …
Measurement: TotalMeasurer, PercentMeasurer, TimingMeasurer, …

John Vlissides approach: Transformation Object-Component
Components derived from methods

Back to Approach

95

2. Proposed Approach
Data Flow Architectural Style

Architectural Style Rules
Event as the only element of communication
Input and Output ports only (no dual communication ports)
Asynchronous communication between components

Example:

Application

Collector Filter Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

96

Application

Collector Filter Sender

Application

Collector Filter
Abstracter

Sender

(draft)

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Collector { b, a, c, a, b, c, d, … }

{ b, a, c, a, b, c, d, … }Detect: { a, b }

{ b, a, a, b, … }Sender

Filter

Application

Collector Filter
Abstracter

Sender

97

(draft)

Collector Out: { b, a, c, a, b, c, d, b, b, c, a, … }

In: { b, a, c, a, b, c, d, b, b, c, a, … }
Out: { b, a, a, b, d, b, b, a, … }Detect: { a, b, d }

In: { b, a, a, b, d, b, b, a, … }Sender

Filter

Define: d = b . a
e = d . b

Detect: { a, b, d }

Collector Out: { b, a, c, a, b, c, d, b, b, c, a, … }

In: { b, a, d, a, b, d, b, e, b, a, d, … }Sender

Filter

In: { b, a, a, b, d, b, b, a, … }
Out: { d, e, d, … }

Abstracter

In: { b, a, c, a, b, c, d, b, b, c, a, … }
Out: { b, a, a, b, d, b, b, a, … }

Define: d = b . a
e = d . b

Detect: { a, b, d }

Collector Out: { b, a, c, a, b, c, d, b, b, c, a, … }

In: { b, a, d, a, b, e, d, b, e, b, a, d, … }Sender

Filter

In: { b, a, a, b, d, b, b, a, … }
Out: { d, e, e, d, … }

Abstracter

In: { b, a, c, a, b, c, d, b, b, c, a, … }
Out: { b, a, a, b, d, b, b, a, … }

Define: d = b . a
e = d . b

Detect: { a, b, d }

Collector Out: { b, a, c, a, b, c, d, b, b, c, a, … }

In: { b, a, d, a, b, e, d, b, e, b, a, d, … }Sender

Filter

In: { b, a, a, b, d, b, b, a, … }
Out: { d, e, e, d, … }

Abstracter

In: { b, a, c, a, b, c, d, b, b, c, a, … }
Out: { b, a, a, b, d, b, b, a, … }

98

Preparation
Collection

Analysis
Presentation

Preparation
Collection
Analysis
Action
Presentation

Traditional
Monitoring

Systems

Online
Monitoring

Systems

before during after
Program Execution

Preparation
Collection

Analysis

Action
Presentation

MonArch
Monitoring

Systems

Preparation
Collection
Analysis

Action
Presentation

Future
Monitoring

Systems

99

100

Research Context - Motivation
Why Not Use More Than One Monitor

One specification for each monitor
Similar properties “re-described”

Consistency problems
Duplicated effort

Different specification semantics may be used
May be hard to compare results between monitors

Increased interference
Monitor execution interfering with another

Different instrumentation mechanisms
Complex configuration management required

Source code, OS libraries, Interpreters (VMs), etc

Back to Motivation

101

Understanding the Problem
How monitoring systems are usually built

Services

Mon Specification
Language

Monolith / Global
Algorithm

Derived
Architecture

Monitoring
System

What Purposes &
Properties?

How to specify
properties?

How to process
and execute the

monitoring?

How to organize
the algorithm?

Implementation

New Service

Mon Specification
Language

Monolith / Global
Algorithm

Derived
Architecture

Monitoring
System

Extended
or New

New

New

New

Back to Motivation
Back to Approach

102

103

Problem Statement
Research Question

How can we verify dynamic properties for
verification requirement that changes during
execution on such types of critical and
dependable systems?

Focus:
Verification of dynamic properties
Run-time verification requirement changes
Critical and dependable systems

104

Research Assumptions

Critical and dependable systems
execution cannot be interrupted

when new dynamic properties should be verified, their
execution cannot be stopped for a new preparation

support for dynamic changes may or may not be
provided

when dynamic changes of system is supported, dynamic
preparation may be performed in an easier way
otherwise, dynamic preparation has to be performed
externally to the system (limitations may apply!)

systems may be distributed and heterogeneous

105

Research Assumptions

Verification of dynamic properties
must happen continuously in the system in
operation

components/configuration may not be available before
system deployment/execution

properties of interest may change during system
execution

verification technique/mechanism must be able to adapt
dynamically to consider changes of properties of interest

106

Solution
Addressing the Research Question

Research Question
How can we verify dynamic properties for verification
requirement that changes during execution on such types of
critical and dependable systems?

Solution Direction
Software monitoring mechanisms that can:

Be of easy, flexible and dynamic adaptation & evolution
Be distributed
Deal with heterogeneous systems
Be used for multiple purposes (not limited to specific property
types, event types, …)

Current software monitoring systems do not handle
this problem

Problems: Services previously established for monitoring
systems (not evolvable)
…

107

Solution
Requirements for Software Monitoring

1. Easy, flexible and dynamic adaptation & evolution
addition/removal/modification of services

2. Used for multiple purposes
Independent of specific purpose
Not limited to specific property types, event types, etc

3. Distributed
Monitoring services distributed

4. Deal with heterogeneous systems
Independent of OS, programming language, middleware…

108

109

Agenda

Software Monitoring
Definition
Purposes
Common Activities

MonArch
Infrastructure for Monitoring Systems
Software Architecture Product Family
XML Specification for Monitoring Services

110

Software Monitoring
Definition

Definition
"Monitoring is defined as the process of dynamic collection,
interpretation and presentation of information concerning
objects or software processes under scrutiny.“

[Al-Shaer 1998]
"Monitoring is the extraction of dynamic information concerning a
computational process, as that process executes. This definition
encompasses aspects of observing, measurement, and testing."

[Snodgrass, 1988]

Software Monitoring
Complementary Technique

Dynamic Analysis complementing Static Analysis (and vice-versa)

Intermediate Technique
Support to Multiple Purposes

111

Software Monitoring
Purposes for Monitoring

Monitoring

Performance
Evaluation

Testing and
Debugging

Control

SecurityCorrectness
Checking

Performance
Enhancement

Dependability

Usability

Program
Understanding

Dynamic
Documentation Ubiquitous

Computing

112

(execute)

Software Monitoring
Common Activities

App.

A

Environ.

E

Preparation

A’ E’

Collection Data (events & states)

Processing
(analysis)

A’’ E’’

PresentationActions

A2 E2

113

Software Monitoring
Activities: When are they performed?

Preparation
Collection

Analysis

Presentation

Preparation
Collection

Analysis

Action

Presentation

Traditional
Monitoring

System

Online
Monitoring

System

before during after

Program Execution

114

Software Monitoring
Example of Analysis Techniques

Selection
Remove “noise”
(filtering)

Abstraction
Synthesizing new
information
(possibly in a
different level of
abstraction)

a
b
c
d
e

events filtering selected
events

a

c
d

a
b
c
d
e

events filtering selected
events

a

c
d

events abstraction

x

y

abstracted
events

a
b
c
d
e

events abstraction

x

y

abstracted
events

a
b
c
d
e

115

Software Monitoring
Example of Analysis Techniques

events measurement

a
b
a
a
b

3 a
2 b

1.5 sec / a
75 % idle time

…

events measurement

a
b
a
a
b

3 a
2 b

1.5 sec / a
75 % idle time

…

events detection

c

Specification:
[a • b]

a

a

b

a
b

a
b

events detection

c

Specification:
[a • b]

a

a

b

Specification:
[a • b]

a

a

ba

a

b

a
b

a
b

events comparison

c
a
b

a
b

Specification:
[a • b]

a

a

b

events comparison

c
a
b

a
b

Specification:
[a • b]

a

a

b

Specification:
[a • b]

a

a

ba

a

b

events characterization

c
a
b

a
b Specification:

[a • b]

a

a

b

events characterization

c
a
b

a
b Specification:

[a • b]

a

a

b

Specification:
[a • b]

a

a

ba

a

b

116

Software Monitoring
Monitoring Systems Domain

Current Monitoring Systems
Commonalities: “80%” of services are replicated

Variabilities: “20%” are specific to monitoring system

Why Develop New Monitoring Systems?
“Killer Features” (variabilities) required

Solution?
Product Family (Domain Analysis)
Reuse commonalities (with parameterization)
Allow developer to create new “killer features”

117

MonArch

Goal?
Support the development of monitoring systems

What kind of support?
Infrastructure for monitoring systems

How?
Software architecture-based product family
Framework & library with common M.S. services

Services provided by software components

Support the development of variabilities

118

MonArch
Architecture-based Monitoring Systems

Activity based components
Collection: Collector, Receiver, Sender …
Analysis: Filter, Abstracter, PatternMatcher, Accouter, …
Presentation: ReportGenerator, BarGraphDisplayer, …
Actions: EventGenerator, CollectionEnabler, MonArchModifier, …

Activities performed in a “dataflow/workflow” fashion
Event “Flow”-based Architectural Style

Application

Collector Filter Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

119

Collector

Intrusion
Detector

Abstracter

Filter

Arch 3

App 3

Performance
Evaluator

ReportViewer

Intrusion
Handler

App 1

Collector Filter JDBCSenderApp 2

Arch 1

MonArch
Distributed Monitoring Example

JDBCReceiver

TraceViewer

ReportViewer

Behavior
Checker

Arch 2

Sender

Receiver

120

MonArch
Specifications

MonArch2
Collector Filter

Abstracter
Sender

ADL

MonArch1
Collector Filter Sender

Specification to Monitor
Application #1

App 1

App 1

Specification to Monitor
Application #1

Ev
en

t
Ty

pe
s

Collection

Analysis

Presentation

Actions

Preparation

Specification to Monitor
Application #1

MonArch2
Collector Filter

Abstracter
Sender

ADL

MonArch1
Collector Filter Sender

App 1

App 1

App 2

App 2

Specification to Monitor
Application #2

Monitoring System Architecture Specification
ADL: Components, Connectors and Configuration

Monitoring Specification for Target Application
Event types, composition, analysis, presentation, actions…

121

MonArch
Specification

Commonalities vs. Variabilities
Common services => “common” specification
“Killer features” => “extended” specification

What are the commonalities?
Hard to decide!!! (point of view/agreement/…)

Solution? Stepwise refinement?!!
Select a basic set of services and specification for
commonalities

Create library of services
Create specification language for service

Extend services and specification for variabilities
New libraries and specification languages

122

Should I Continue? Where?!

MonArch Specification (some examples)
XML for Monitoring Systems

Describing Events (intances and types)
Describing Filter service

XML is a pain to read…
how we can avoid it

MonArch Components (overview)
Using MonArch to build:

Monitoring System: GEM Model
Other Systems: Simple Notification Server

123

Thanks
Summary

Current Monitoring Systems
Commonalities and Variabilities

Replication of Common Services
Purpose Oriented Variabilities

Limit the use of monitoring system

Hard to Reuse, Evolve, and Maintain
MonArch

Support to Product Family of Monitoring Systems
Software Architecture-based

Services (component) and Specification (XML)
Reuse of Commonalities: Library of Components and Specs
Extend for Variabilities: Component Framework and XML

124

125

126

127

MonArch
Overview of Monitoring Components

SocketCollector

Collection

JDBCCollector

FileCollector

Dissemination

SocketSender

FileSender

Other Components

Synchronizer

Analysis

Abstracter

Filter

Measurer

Comparer

Modeler
(characterizer)

Presentation

GraphicsDisplay

TextualDisplay

Audio

Actions

SystemActor

MonarchActor

Multiplexer

Subscriber

JDBCSender

Publisher

EventGenerator

Sorter StateManager

Should I
Continue ?

128

Components Categories (1/6)
Interaction to “outer” world

Receiver/Collector - Incoming events (from outside)
Collector (Active, pull)

Socket, Subscriber, File, Database

Receiver (Passive, push)
Socket, Subscriber

Sender (Disseminator) – Outgoing events
Active (push)

Socket, Publisher, File, Database, Console

Passive (pull)
Socket, Publisher

Collector

Sender

129

Components Categories (2/6)
Event Filtering & Detection

Filter – Remove not interesting events
Detect or Block identified event

Abstractor – Pattern Matching & Abstraction
Pattern Matching:

Detect sequence (pattern) of events and generate “detected
pattern” event

Abstraction:
Detect sequence and generate higher-level event

Filter

Abstracter

130

Components Categories (3/6)
Event Processing

Measurer – counts and statistics
Simple counting (w/ or w/o constraints)
Average value (timing between events, …
Percentages

Comparer – compare event trace to model
Which models ?! How to specify?!

“Characterizer” – extract info/model from event trace
Example: causalities ?! User behavior (expectations) ?! Etc…

131

Components Categories (4/6)
Display / User Interaction (Gauge?)

Display
Show results to user

Textual
Graphics …

Allow user interaction to monitoring system
Modify/Configure Architecture/Components

132

Components Categories (5/6)
Agents / Actors

Agents / Actors – take actions
Actions can be:

generation of new events (multiple events)
changes to architecture: configuration, components, …
enabling/disabling: properties, components / links, etc…
interaction to external elements (programs/resources/etc…)

Some example:
Generate specific events given a timing rate…
Load new components or reconfigure component (with new
specification)
Start external applications…

133

Components Categories (6/6)
Other Components

Multiplexer (for classification, separation)
Separate events given some criterion:

Priority, Filtering, Subscriptions, etc…

Synchronizer ?!
Synchronize clocks between different machines
Modify event timestamps

Sorter ?!
Sort events given some criterion (timestamp /
priority / …)
Some limits may be required (window frame)

Should I
Continue ?

Multiplexer

134

135

Using MonArch
GEM Monitoring System

ApplicationApplication

Collector Filter
(guard)

Abstracter
(expression,

guard)

Sender

ApplicationApplication

Timed Event
Generator
(at, every)

GEM Event
Generator

(notify, forward,
trigger)

Should I
Continue ?

136

137

Simple Notification Server

Collector

Multiplex
(Filter)

Filter
(global)

Notification Server
Manager

Filter
(subscriptions)

Sender

Filter
(subscriptions)

Sender

Filter
(subscriptions)

Sender

Publishers Subscribers

Subscriber 1

Subscriber 2

Subscriber 3

Command Events:
• Publisher_Connect/Disconnect
• Subscriber_Connect/Disconnect
• Subscriber_Subscribe/Unsubscribe

Subscription Comp

Should I
Continue ?

138

Simple Notification Server

Component: Notification Server Manager
On Subscriber_Connect (port P):

Create Component “SubscriptionComp”
Link “Filter” (global) to “SubscriptionComp (Filter)” (local)
Setup “SubscriptionComp (Sender)” to External Subscriber
Application (port “P”)

On Subscriber_Subscribe(event X):
Add “X” to global and local filter

On Subscriber_Unsubscribe(event X):
Remove “X” from local filter
Remove “X” from global filter if no other subscriber listens to “X”

Should I
Continue ?

139

140

XML is a pain to “read”!!!

I agree!!!
But user should not “read” (deal with) XML…

UI bridging XML edition
Higher-level language “compiled” into XML

…unless extensions (new features) are needed
Option #1: With XML

XML extensions
“New” components dealing with extensions
“New” bridge between user and XML

Option #2: Without XML
New language, new monitoring system, new algorithms,
etc…

Should I
Continue ?

141

142

MonArch
Specification

Our Approach
XML-based specification

Initial Description for Commonalities
XML Extensions for Variabilities

Initial XML Specification
Event

Event Types, Composition, Mapping

Analysis
Filter, Abstraction, Measurements, …

Presentation
Format, Media, …

Action
Event Generation, Architecture Evolution, External Command, …

143

Event Languages
Commonalities & Variabilities (1/2)

Event types
Name, Fields and Types
Some fields/types are predefined by monitoring system

Timestamp: event started or ended?! Why not have both?!

Not evolvable to “new” (other) concepts:
“Group of events”, “Context of event”, …

Composition/Abstraction of events
What and how events compose another (higher-level?!) event
Uses specific semantics

Specification:
Boolean Tree, Reg Expression, DAG, Petri Nets, …

“Implementation”:
(next slide)

144

Semantic Problems for Event Composition

Semantics implicit in the implementation (algorithm):
Is A -> C a sequence when (A-> B -> C) ?!

(mostly yes)

If X = (A -> B) and Y = (C -> D), is (X -> Y) true when
(A -> C -> B -> D)? (mostly yes, but some no’s)
(C -> A -> B -> D)? (some yes, some no)
(A -> C -> D -> B)? (some yes, but mostly no’s)

If X = (A -> B), and
the event history = (A1, A2, B3, B4, A5, B6)

Is (A1 -> B4) a valid composition for Xn? (mostly no)
X1 should be (A1->B3) or (A2->B3)? (both equally)
If X1=(A1->B3), is X2=(A2->B3) valid? (some yes, some no)

145

Event Languages
Commonalities & Variabilities (2/2)

Filtering (What events should be filtered out?)
Events not specified are filtered out
What about when you are interested on unknown or
unpredicted events? (Unknown event being not filtered out)

Actions
Trigger described as event (pattern) identification
What action to take?

Create / Send event
Modify Monitoring System / Target Application
Alert user about current situation (hazard)

146

Event Languages
Examples of Killer Features

GEM
Event Generation by Frequency and Time:

every[2*min] means “generate new event after 2 min”
at[10:00] means “generate new event at 10:00”

Detection Window:
[1*min] means “events collected/generated before 1 minute ago
should be discarded”

Actions:
Notify & Forward – Action is “to send event”
Enable & Disable – Action is “to change filter enabling”

EBBA
Viewpoints:

Subsets of overall specification (allows to narrow down the initial
focus of investigation)

147

Event Languages
Examples of Killer Features

EDEM
Group of Events for Abstraction (wildcard “*”):

“KEY_PRESSED|*|javax.swing.JTextField” groups all key_pressed
events on any JTextField

Action:
Persistence - RecordEvent, UpdateState, …

Snodgrass’s Relational Approach
“Display Specification” ?!

Based on Tables and Queries

148

Event Languages
Comments (1/2)

Problem with event languages
Monolithic Approach (Syntax and Semantics)

Commonalities, Variabilities & “killer features”
Restrict the monitoring system:

Architecture and Capabilities
The monitoring system algorithm

Avoid reuse of services
Separation of Concerns

Software Engineering: e.g. UML, AOP, IDL, ADL, …
Monitoring: e.g. HiFi (provides 4 languages: event,
environment, filter and action specification)
Expressiveness & Reusable

Delegation (“downsizing”)
Reuse of Services

149

Event Languages
Comments (2/2)

Many different aspects require specification
Event (Primitive, Composition, Types)
Analysis (Filtering, Pattern Matching, Metrics, …)
Presentation (Format, Reports, …)
Actions (Tuples [trigger / guard / action])

Event Specification
should answer:

What are the events? Name, fields, types, sub-events, etc.
but not include:

Analysis: Filtering, Pattern Matching, Metrics, etc
Presentation
Actions: send/create event, persistence, dissemination,
Event Generation: frequency / timing (when event is generated)

150

Examples: Models

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter
Abstracter

Sender

Application

Collector Filter Sender

151

Brief Background on Software Monitoring
Common Activities (1/3)

Monitored
System

Traditional Monitoring

Collection

Analysis

Preparation

events (& states)

Testing & Debugging

Performance Enhancement

Correctness Checking

Program Understanding

Usability

Dynamic Documentation

Security

Control

Ubiquitous Computing

Presentation

Dependability (Reliability)

Performance Evaluation

PurposesActivities

152

Brief Background on Software Monitoring
Common Activities (2/3)

Monitored
System

Online Monitoring (reactive)

Collection

Analysis

Preparation

events (& states)

Testing & Debugging

Performance Enhancement

Correctness Checking

Program Understanding

Usability

Dynamic Documentation

Security

Control

Ubiquitous Computing

Presentation

Dependability (Reliability)

Performance Evaluation

PurposesActivities

Actions
actions

153

Software Monitoring
What should be performed?
Aspects addressed by specification

Collection

Analysis

Presentation

Action

Preparation

• Instrumentation
• Configuration

• Observation
• Dissemination
• Persistence

• Filtering
• Abstraction
• Measurements
• Pattern identification
• Comparison
• Characterization

• Information Display
• User Controls Mon Sys

• Trigger
• Actions

Event Language Specification

Partial support
Full support

No support

Monitoring System

Configurable (more than 1 way to perform)
Some configurable (some MS)
Not configurable (only 1 way to perform)

154

Software Monitoring
How to perform activities?

Specification-based
Preparation: how to instrument application / environment?

Collection: what events to be collected?

Analysis: what techniques to apply and how?

Presentation: how and what to present to the user?

Action: what types of actions to perform?

Specific to monitoring system
Preparation: e.g. collect network / GUI events

Collection: e.g. collect all events

Analysis: e.g. filter than match pattern than take action

Presentation: e.g. log traces and histograms only

Action: e.g. creation of events and halt system

155

Decisions

Preparation

Collection

Analysis

Action

Presentation

Implementation Specification “Other”

Jade – RPC events
EDEM – GUI events

HK – I/O events

Application Level –
From Specification

(PMMS)

Application Level –
Manual Instrum.

(EBBA,GEM,HiFi, …)

All events,
instrumented
events (most)

Spec. describes
what sensors are

enabled or not

156

Event Languages

Commonalities
Features present in most event languages

Variabilities (& killer features)
Features present in some or one event language

