
Middleware Reliability 
Implementations and 
Connector Wrappers

Authors: Jesse Sowell and Kurt Stirewalt

Presented by: Jesse Sowell



Overview
Context: Adding new features to distributed 
applications by extending middleware

Behavioural reflection [FaPe’98]

Selective behavioural reflection [Yan+’02]

Feature-oriented design [Ren+’98]
Feature a product characteristic used in 
distinguishing programs in a family [BaSR’03]

Problem: Evaluating feature decompositions 
Hypothesis: Connector wrappers [SpGa’03] useful 
for evaluating feature decomposition



Feature Composition in Theseus

Theseus: framework for asynchronous 
request—reply communication

Framework component = composable feature
Theory: roles/collaborations [VaNo'96,BaOM'92]

E.g. transport, FIFO vs. prioritized scheduling

Extensions:
Reliability, e.g., retry, bounded retry, failover
Implemented as wrappers



Connectors and Wrappers
Given: In software architecture, middleware 
functionality modelled by connectors

Distributed systems implement components
Middleware connectors guide their interaction
Formalized in CSP [AlGa'97]

Configuration = composition of components & connector

Given: Connector wrappers a principled basis for 
creating and understanding wrappers [SpGa'03]

Key Idea: Use connector wrappers to evaluate 
design of Theseus extensions



Enabling Evaluation
Idea: Establish correspondence between 
connector wrappers and features, e.g.,

parallel composition = collaboration synthesis
action = operation invocation

What we did:
Formalized Theseus core as a connector
Checked that connector wrappers compose
Refactored Theseus’ reliability extensions

Made them “traceable” to connector wrappers
Evaluated implementation against specification



Details of Our Evaluation
Given: Connector specification, implementation, 
connector wrapper, feature implementation

Procedure:
1. Establish traceability relationship T
2. Compose wrapper with core
3. Simultaneously interpreting spec and code

Use T to check conformance
Designer decides sufficiency
Results:

Refactoring for traceability helped improve design of both 
the core and reliability features
Process suggested further feature composition



Conclusions
Benefits: Evaluation has potential for:

Validating/improving implementation 
Discovering more effective decompositions

Currently this is done by hand

Future Work:
Perform additional case studies
Techniques and tools to:

Automate evaluation
Generate configuration code from specifications
Analyze configurations


