Improving System Dependabillity
by Enforcing Architectural Intent

Marwan Abi-Antoun Jonathan Aldrich
David Garlan Bradley Schmerl

Nagi Nahas Tony Tseng




Designing Dependabillity

 Dependability analyses
— Performance, reliabllity, fault-tolerance...

 Many architectural description languages,
reasoning techniques

— Examples: Rapide, Wright, Meta-H



Delivering Dependability

e Designed dependabillity achieved only if
iImplementation conforms to design

* Implementation violations of architectural intent
— Architectural structure
— Architectural types and styles

 |deally:

— Architects work at appropriate level of abstraction
— Design is faithful abstraction of implementation



Our Approach: Synchronize
Abstract and Concrete C&C Views

 Abstract C&C view Abstract C&C view

— Architect’s design view
. Synchronizatio
— Problem-specific .
o . (this paper)
— May elide information

— Example: Acme Concrete C&C view

* Concrete C&C view ArchJava
— Actual communication II
between implementation Module View
components

— Example: ArchJava 4



Relating Conceptual Views to
Implementation-Level Views

o Match Architectural structure
— Inserted, deleted, renamed, moved elements
— Do not rely on unigue identifiers
— Do not require names to match

 Match Architectural types and styles

 Lightweight, scalable, semi-automated,
iIncremental




Bridging the Gap

e Matching Types (and Styles)
e Matching Structure



Matching Type Structures between
Abstract and Concrete C&C Views

Acme Types ArchJava Types
Predicate-based type ¢ Conventional type
system system
Types = abstract  Types = concrete
logical predicates Interfaces
Architectural Style — provided and required

— Constraints (invariants functionality
or heuristics) e Some types not first-
Interfaces optional class

— Properties on ports — Port types, role types..



Matching Type Structures

Abstract C&C View Concrete C&C View

system: PipeAndFilterStyle s : SplitFilter
split : FilterT out: ?
/ /
ouput: p_outputT Lk ]
/
& 0 ]
L
conn_1:7?

charPipe : PipeT

| | . r1: ?
D-[ }D/source. r_source I

1. First-class types missing in ArchJava for connectors, ports, roles
2. Acme types at higher level of abstraction




Matching Styles and Types

Match explicit types If
available

Assign

Specia
Infer ty

types to instances

when no explicit type

wildcards

nes when possible

— Using style information

acme Types:

+-ale ArchlavaFam
—|-&l8 MYCFam
+-[27 Component Tvpes
- [C3 Connec tor Twpes
- '¢' ZalReturniConnT
[C7 Raoles
= '¢' EventBusT
[C7 Raoles

¥
Match
w
Unmatch

Reset

Shiow i

Order i

Archlava Types:

—-al= Archlava

+-[27 Component Types
=123 Connec tor Types

| ANy

73 Roles
-1-[27 Port Types
o ANY
PR OVIDE ORMLY
o REQUIRE_OMLY
-1-[27 Role Types
B AMNY




Structural Differences

e |ncidental renames

| o Types of differences
 Independent evolution

— Renames
— May forget to update other _ |nserts
representation — Deletes

e Design & Implementation — Moves

— Different structures may e« Detection important
be appropriate for maintaining

« E.g. hide representation design properties
Inside a new component

Strategy: Automated detection of differences



Insert/Delete Differences

Abstract C&C View Concrete C&C View

11



Naming Differences

Abstract C&C View Concrete C&C View
/upper J
.-./OUIDUt : -
.-./
pipe

| conn_split_portOut2_upper_portin

p source | .
r_upper_portin
l- = PPer_p
5, 1

12




Move Differences
Abstract C&C View

i-v-a

Concrete C&C View

o oo




Matching Architectural Structure

Acme Inskances: 1 Archlava Instances;
% Aphyds_Step3a Compare _@» Aphyds
=127 Components —1-[27 Components
+- (& channelRouteyiewer Clear + (& channelRouteYiewer
® D ete Ct - (&} circuitModel +- (5 floorplanDialog
+-[27 Parts < =1 (¥ model
B Show ‘
-3 reprmodel +-[27 Ports
—I-[07 Components = =% repmodel
-_ I\/I atCh U.. + G} channel Order - (3 Components
+-- (&} circuit SIS +- (& channelRout
+ (& floorPlanner Scrall + - (&) circuitData
—_— n Se rt + (& partitioner = +- (& floorplanner
+ (&) place Report +- (& globalRouter
+ (&} route — + - (& partitioner
—_— De I ete E =I-[27 Conneckors Ma?ch +- (=} placer
+ conn_floorPlanne =23 Connectors
+ conn_partitioner =+ + "h Conn__
- Q e n am e .l|' + conn_place_rout( PESEt +- (& placeRouteviewer
= + conn_route_chan - privateAphyds
+-=¢3 starConnector —-[Z32 Ports
_ Move E +- (&) circuit¥iewer +- iz window
+- (%) floorPlan¥iewer + - (&) viewer
+ G} placeRouteviewer +-[27 Conneckors
+-[27 Conneckors
£ > £ »

o Automated Tree-to-Tree Correction
— Unordered attributed labeled trees

14



Extended Example

e ArchJava architecture
consisting of

— Over 20 components,
80 ports, several
subsystems
 Re-engineered from
Java application
— Over 8 KSLOC

— See [ACNO2] for details




Aphyds System

circuitviewer hannelFouteyiewer
1 .
L placeRouteiewer
|
|

oorFlan'yiews

! circuittdodel

Legend:
Components Connectors Ports Roles

component conneckar = pork role




circuitModel detalls

circuit

N

+ﬂooernner+

place

channel
route

17



First Divergence: Extra Connectors!

The “data flow” connectors in the original
Architect’s model do exist!

/

circuitModel

circuitModel Representation - repmodel

Representation - repmodel

Before After 18



Many Other Divergences

FCiredt Ve, (Ases t: -x,‘i(f?%\rc
— L( (%m = yW(/
window
windowBus

.

channelRouteViewer

viewer

Ports
) use

@ provreq
P provide

Roles
- provider

—4 both
=3 user

=7

laceRouteViewer

K

model

Before After

19



Reliability Block Diagrams

 Determine aggregate reliability from the

parts, for certain styles

> R1 P>

—>

—» R2 |—>

R1» R2 % Rn —»
= Rn -
Rsys = HR Reys =1— H(l Ri)
1=1
Serial Composition Parallel Composition

Source: Abd-Allah, Ahmed, “Extending Reliability Block Diagrams to
Software Architectures”, USC Technical Report USC-CSE-97-501.

20



Conclusions

o Our approach encourages continuous use
of architectural views and analyses
throughout the software life cycle

 Work at appropriate level of abstraction
— Architectural styles, properties, analyses, ...

 Ensure that design is proper abstraction of
Implementation

21



Questions?

22



References

e Acme
— http://www.cs.cmu.edu/~acme

 ArchJava
— http://archjava.fluid.cs.cmu.edu/

23



