Failure Modelling in Software
Architecture Design for Safety

Weihang Wu
Tim Kelly
Presented by George Despotou

High Integrity Systems Engineering Group
Department of Computer Science

WADS ICSE’05

Failure Modelling - 1 THE UNIVERSITY of%yk

Outline

® Motivation
® The role of feedback in architecting dependable systems
® The need for compositional and automated safety analysis
M The value of CSP
M The relationship between system modelling and failure
modelling
® CSP Failure Modelling Approach
M The process view
M Architecture transformation
M Failure modelling
M Causal analysis
® Use of CSP tools

® Summary
M Initial results
B Ongoing work

WADS ICSE'05 Failure Modelling - 2 THE UNIVERSITY 0f 407Kk

Motivation 1

® Architectural Feedback on Safety

W Evaluate the impact of architectural decisions on safety (safety tactics)
€ How to select or identify proper scenarios for evaluation
@ Protection mechanisms themselves may fail

W Validate existing safety requirements

W Elicit new safety requirements to subsequent refinement process
W Analyse safety implications on software-hardware mapping

M Predict both normal and failure behaviours of the system

® Software Safety Analysis of Architectures
® An underlying formal model
B Compositional reasoning
€ Compositional features of architectures must be acknowledged

W Expressive power

€% Common failure scenarios such as sequential failures, cascading failures,
and common-cause failures

M Automation support

WADS ICSE'05 Failure Modelling - 3 THE UNIVERSITY 0f 407Kk

Motivation 2

® Value of CSP

W Mathematical language devised to solve concurrency problems
© Freedom of deadlocks and livelocks

¥ Formal specification of systems behaviours
€ In terms of patterns of event sequences or component interactions
@ Architectural description language — Wright

B Compositional reasoning is an integral part of the language

W Explicit notation for specifying nondeterminism
€ Arise from the abstraction techniques or incomplete knowledge
¢ Identify alternative failure flows in an unconstrained manner

B Two important tools available
€ Animator (ProBE) and model checker (FDR2)

® Recent work on timed and probabilistic extensions

® System Modelling and Failure Modelling
W System modelling: only normative events are observable
@ Failure events are implicitly seen as anti-occurrences of normative events
W Failure modelling: all failure events are explicitly observable
€ Normative events are only modelled if necessary

W System modelling languages such as CSP can be extended to model
failure behaviours

WADS ICSE'05 Failure Modelling - 4 THE UNIVERSITY 0f 407Kk

Failure Modelling Approach 1

® The Process View
W Establish a correspondence between failure behaviours of a system
and its underlying software architecture
@ Architectural building blocks

=Components and connectors, safety-related architectural decisions,
architectural views

@ CSP building blocks
= Processes, channels (events)

®m We treat architectural design as an iterative and incremental
development process

. L Architecture
Architecture Definition Refinement -
— Feedbacks

A

Acrchitecture Architecture Revision |-

N

Key

Development activity

Development
artefact

Failure Model Failure Scenarios

System Model

v
Architecture . .
Failure Modelling

Data flow

Scenario Generation Safety Analysis

WADS ICSE'05 Failure Modelling - 5 THE UNIVERSITY 0f 407Kk

Failure Modelling Approach 2

® Architectural Transformation
B TMR system example

<<Capsule>> <<Capsule>>
Controller Voter
Majority VVoting input > PROCESS p Output sender 4, VOTE - leceiver
3 1 ports
ports +result : ProtSignal
+output : ProtSignal +inputl: Protsignal~
+input: ProtSignal~ +input2: Protsignal~ 1
+input3: Protsignal~ inputl g
input2 —— ! VOTER | result
UML-RT class diagram for TMR style input3 — gl
inl outl
inl C1: Controller UL > P1 » VIl —
<<Connector>> Majority voting
in2 » output
/ > P2 outr2 VT2 > Vi p;
J <<Connector >
_ 7 in2 C2 : Controller out2 :Vote vl : Voter . output
in3 out3
Functional N > P3 > VT3 —
unctional .
redundancy <<Cor\1/netcto N Timeout C&C VIEW
‘Vote -

= P1 = PROCESS [[input <- in1, output <- out1]]

in3 C3: Controller out3 Fail-stop P2 = PROCESS [[input <- in2, output <- out2]]
P3 = PROCESS [[input <- in3, output <- out3]]
VT1 = VOTE [[sender <-outl, receiver <-inputl]]

)) VT2 = VOTE [[sender <-out2, receiver <-input2]]
UML-RT collaboration diagram for TMR system VT3 = VOTE [[sender <-out3, receiver <-input3]]

V1=VOTER [[result <- output]]

CSP model

WADS ICSE'05 Failure Modelling - 6 THE UNIVERSITY 0f 407Kk

Failure Modelling Approach 3

® CSP Failure Modelling

M |dentification of failure events

® Identify failure modes by guidewords
such as SHARD/HAZOP

¥ Failure model allocation/injection to
the CSP system model

W Expressive power

@ CSP support the definition of multi-
part events by infix dot

= All events must have one part
describing normal or failure

-- Crash failure
CPU_CH = cpu.failure.omission -> CPU_CH

conditions such as sensor.failed, -- Transient timing failures
processor.working CPU_TF = cpu.failure.timing -> CPU_TF]]
Failure flows can be captured by CSP CoY.okS>'CPY TF
sequencing and recursion operators - Transient value failures
¥ Combination of failure flows can be CPU_VF = cpu.failure.value -> CPU_VF
modelled by the introduction of 0 cpu.ok -> CPU_VF
deterministic or nondeterministic VR
. -- Corruption failures
choice
CPU_CRT = CPU_TF [] CPU_VF
=Depend on the degree of = _TFOCPU_
knowledge

WADS ICSE'05 Failure Modelling - 7 THE UNIVERSITY 0f 407Kk

Failure Modelling Approach 4

® Failure Modelling

B Two basic forms of failure flows
® Failure propagation
=Include failure transformation and stopping by protection mechanisms
® Failure generation
=The cause of failure stimulus has been hidden by model view

=The cause may arise from its enclosing components or its underlying
hardware platform

® Interaction between these two forms

=Inconsistency may arise: e.g., atiming failure arrives at the input of
component C, whilst C itself generates an value failure

=Proper form of arbitration is needed

M Failures of protection mechanisms
€ The ways to handle failures are obvious
€ But what if these mechanisms fail?
=What happen if a watchdog timer fails?
€ The answer may depend on internal detailed design or implementation
€ Worst case assumption

= Specify the occurrences of all possible failure outputs introduced by
nondeterministic choice

WADS ICSE'05 Failure Modelling - 8 THE UNIVERSITY 0f 407Kk

Failure Modelling Approach 5

® Compositional Failure Modelling

B CSP composition rule
Handshaking synchronisation
® Processes to be composed require synchronised events

¥ Failure implications on synchronisation

€ Synchronisation point represents the means to failure propagation across
component boundaries

€ Unsynchronised failure events are free to occur only within the component
boundary

= E.g., internally generated failure events
B Composition of components within one view
@ Define failure behaviours of elementary components

€ Compose all elementary processes using CSP parallel composition
operators
=TMR_CCVIEW = ((P1 [|[{outl]] VT1) ||| (P2 [|{lout2]}|]] VT2) ||| (P3 [[{|out3|}|] VT3))
[{linputl, input2, input3|}|] V1
B Composition of views

€ Require synchronisation points between views
= Mapping between them needs to be defined before composition

= E.g., C&C view and hardware architecture view cannot be composed directly
without the allocation view

WADS ICSE'05 Failure Modelling - 9 THE UNIVERSITY 0f 407Kk

Failure Modelling Approach 6

® Causal Analysis

W CSP view of causality
@ Temporal ordering and handshaking synchronisation
=Trace model
€ Necessary condition of causality

W Conclude causal relationships based on trace models
€ By changing the states of event sequences

=Borrowed from Philosophy domain: there is a causal connection
between A and B if and only if we can change B by changing A

= Similar to the tenet of accident analysis techniques such as Why-
Because Analysis

W The steps
@ Isolate the initiating event
@ Treat CSP external choice notation as logical disjunction
€ Treat CSP sequential notation as logical conjunction
€ Treat normal events as non-occurrence of failure events

<input.failure.O, a.ok, b.ok, output.ok>, occur(output.failure.V) = (occur(a.ok)roccur(b.fail)) v
<input.failure.O, a.ok, b.fail, output.failure.V> (occur(a.fail)aoccur(b.ok))v
<input.failure.O, a,fail, b.ok, output.failure.vV> C:> (occur(a.fail) A occur(b.fail))
<input.failure.O, a.fail, b.fail, output.failure.vV> = occur(a.fail) v occur(b.fail)

WADS ICSE'05 Failure Modelling - 10 THE UNIVERSITY 0f 407Kk

Failure Modelling Approach 7

® Use of CSP Tools

o ProBE
® Validate intended failure behaviour

B FDR2
@ Verify the consistency of a failure view
€ Refinement checking between views
=E.g., allocation failure view refines the C&C view
—assert TMR_CCVIEW [T= TMR_ALLOCVIEW \ ICpu
Generate failure scenarios by counterexamples

= Failure scenarios of interest are the ones related to system-level
failures

= Specify safety properties that exclude undesired system events
= Perform trace refinement against safety properties

=FDR2 provides batch interface for direct control on counterexample
generation

ISafeSys = diff(Events, {output.failure.V})

-- anything but value failures of output allowed
SAFESPEC =[] x : ISafeSys @ x -> SAFESPEC
assert SAFESPEC [T= TMR_CCVIEW

WADS ICSE'05 Failure Modelling - 11 THE UNIVERSITY 0f 407Kk

Summary

® Small-Scale Examples
W Architectural documentation by UML-RT
W Two architectural views
C&C and allocation views
B Uniprocessor hardware platform
® Findings
® The choice of architectural representations/descriptions is not
Important to our method

@ Provided that the corresponding transformation rules are well defined
W Architecture description is not necessarily complete
M A hardware/system architecture view must be provided

@ This view can be derived by the allocation view or hardware architecture
design

® Ongoing Work
B Generating CSP codes from annotated architecture models
€ Architecture annotation

=UML 2
CSP code generation

W Probabilistic failure modelling

WADS ICSE'05 Failure Modelling - 12 THE UNIVERSITY 0f 407Kk

