

Computer Networks and Communication Systems Friedrich-Alexander-University Erlangen-Nuremberg Prof. Dr.-Ing. Reinhard German

Fault Tree Generation from EMF Models

Christoph Lauer¹, Reinhard German¹ and Jens Pollmer²

¹Department of Computer Science 7 – Computer Networks and Communication Systems, Friedrich-Alexander University, Erlangen-Nuremberg, Germany

²Department of Safety Electronics, Audi AG, Ingolstadt, Germany {christoph.lauer, german}@informatik.uni-erlangen.de, jens.pollmer@audi.de

Outline

- Introduction
- Integrated Safety Architectures
- System Models
- Fault Tree Generation
- Conclusions and Future Work

Integrated Safety Architecures in the Automotive Domain (1)

Integrated Safety Architecures in the Automotive Domain (1)

Integrated Safety Architecures in the Automotive Domain (3)

7

Integrated Safety Architecures in the Automotive Domain (4)

Integrated Safety Architecures in the Automotive Domain (5) Flexray Integrated ECU **Energy Reserve** Safety ASIC **Controller 2 Controller 1** Watchdog Squibs PSi5 **SPI Bus** Transceiver x/y φ -X

Lauer, Christoph, Bounding the Number of Relevant Objects in Automotive Environment Perception Systems

Requirements for Modeling & Generation

- Seperate modeling of system architecture and functional behavior
- Flexible allocation of functional tasks to system nodes
- Automatic generation of fault trees for further analysis using state-of-the-art tools
- No extensive design space exploration

Perception Systems

Transformation Rules

- 1) Start at top-level event
- 2) Evaluate top-level event
 - a. Get faults from allocated system entity
 - b. Add faults of entity directly (via OR gate)
- 3) Evaluate all incoming edges
- 4) Evaluate node
 - a. Get faults from allocated system entity
 - b. Traverse graph to top-level event
 - c. Add fault directly (via OR gate) if fault propagates, or add guardian (via AND gate) if fault is not propagated
- 5) Terminate if no incoming edges exist, else go to 3)

Lauer, Christoph, Bounding the Number of Relevant Objects in Automotive Environment 7/6/2009 Perception Systems

Lauer, Christoph, Bounding the Number of Relevant Objects in Automotive Environment **Perception Systems**

Lauer, Christoph, Bounding the Number of Relevant Objects in Automotive Environment Perception Systems 17

Conclusions

- Modeling of system and behavior using the EMF
- Model transformation from separated system model + behavior model to fault trees
- Just a transformation, the algorithm does not "create knowledge"
- Level-of-detail of the fault trees depends on the level-of-detail of the input models
- Method supports analysis of different architecture options at early design stages

Future Work

Leave the Ecore path for the sake of UML

- Modeling of the system and the behavior view using MARTE(+ Depandability profile from Bernardi et al. (2008)) or EAST-ADL2
- Papyrus plug-in for easy modeling without having to cope with UML
- Implementation (!) of interfaces to FaultTree+ (ISOGraph)

Last slide

Thanks for your attention!

