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ABSTRACT 
Decision trees are widely disseminated as an effective solution for 
classification tasks. Decision tree induction algorithms have some 
limitations though, due to the typical strategy they implement: 
recursive top-down partitioning through a greedy split evaluation. 
This strategy is limiting in the sense that there is quality loss while 
the partitioning process occurs, creating statistically insignificant 
rules. In order to prevent the greedy strategy and to avoid 
converging to local optima, we present a novel Genetic Algorithm 
for decision tree induction based on a lexicographic multi-
objective approach, and we compare it with the most well-known 
algorithm for decision tree induction, J48, over distinct public 
datasets. The results show the feasibility of using this technique as 
a means to avoid the previously described problems, reporting not 
only a comparable accuracy but also, importantly, a significantly 
simpler classification model in the employed datasets.   

Categories and Subject Descriptors 
I.2.6 [Learning]: Induction and Knowledge Acquisition – 
decision trees induction, multi-objective genetic algorithms.  

General Terms 
Algorithms. 

Keywords 
Lexicographic Multi-Objective Genetic Algorithms, Decision 
Tree Induction, Data Mining, Evolutionary Algorithms. 

1. INTRODUCTION 
Decision trees (DT) are a powerful and widely-used technique for 
data mining classification tasks. This can be explained by several 
factors, among them [18]: (i) ease of understanding, due to the 
knowledge representation method – a decision tree is a graphical 
representation and can be easily converted into a set of rules 
written in a natural language; (ii) robustness to the presence of 
noise; (iii) availability of computationally inexpensive DT 
induction algorithms, even for very large training datasets; and 
(iv) good handling of irrelevant or redundant attributes. 

Some well-known algorithms for DT induction are Quinlan’s ID3 
[19] and C4.5 [20] and Breiman et al.’s CART (Classification and 
Regression Trees) [3]. Such algorithms typically rely on a greedy, 
top-down, recursive partitioning strategy for the growth of the 
tree. There are at least two major problems related to these 
characteristics: (i) the greedy strategy usually produces locally 
(rather than globally) optimal solutions, (ii) recursive partitioning 
iteratively degrades the quality of the dataset for the purpose of 
statistical inference, because the larger the number of times the 
data is partitioned, the smaller the data sample that fits the current 
split becomes, making such results statistically insignificant, 
contributing to a model that overfits the data. 
To overcome these difficulties, different approaches were 
suggested, though not without drawbacks. These approaches can 
be divided into two basic threads: (i) multiple splits at non-
terminal nodes; and (ii) multiple tree generation, so as to combine 
different views over the same domain. Approaches based on (i) 
result in the so-called Option Trees [3], which are not, per se, a 
DT. An Option Tree is hard to interpret, hurting what is probably 
one of the most important characteristics of DTs. Approaches 
based on (ii) can aggregate different trees’ classifications into a 
single one, according to a given criterion. Well-known ensemble 
methods such as random forests [18], boosting and bagging [21] 
are the most common approaches based on (ii).  
It is well-known that, in general, an ensemble of classifiers 
improves predictive accuracy by comparison with the use of a 
single classifier. On the other hand, the use of ensembles also 
tends to reduce the comprehensibility of the model. A single 
comprehensible predictive model can be interpreted by an expert, 
but it is not practical to ask an expert to interpret an ensemble 
consisting of a large number of comprehensible models. In 
addition to the obvious problem that such an interpretation would 
be time-consuming and tedious to the expert, the classification 
models being combined in an ensemble are often to some extent 
inconsistent with each other – this inconsistence is necessary to 
achieve diversity in the ensemble, which in turn is necessary to 
increase the predictive accuracy of the ensemble. Considering that 
each model can be regarded as a hypothesis to explain predictive 
patterns hidden in the data, this means that an ensemble does not 
represent a single coherent hypothesis about the data, but rather a 
large set of mutually inconsistent hypothesis, which in general 
would be too confusing for an application-domain expert [9]. 
In order to alleviate the inherent problems of DT induction, and to 
avoid the shortcomings of the current approaches, we present a 
novel algorithm based on the Genetic Algorithms paradigm (GA) 
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[11]. Instead of local search, GAs perform a robust global search 
in the space of candidate solutions [7]. Through this evolutionary 
approach where each individual is a decision tree, we increase the 
chances of converging to a globally near-optimal solution. 
Furthermore, our approach results into a single decision tree, 
preserving the comprehensibility of the classification model.  
We focus on comprehensible models because model 
comprehensibility is highly important in many data mining 
applications [20, 24], even though it is usually underrated by the 
data mining community. Indeed, a comprehensible model has 
advantages such as [9]: (a) improving the user's confidence in the 
prediction; (b) giving the user's new insights about the data and/or 
the application domain; and (c) potentially detecting errors in the 
model or in the data. To the best of our knowledge this is the first 
paper to propose a GA based on a lexicographic multi-objective 
criterion for the problem of decision tree induction. In essence, the 
proposed GA optimizes a decision tree’s predictive accuracy as a 
higher-priority objective and tree size as a lower-priority 
objective. Computational results in 7 datasets have shown that, 
overall, the proposed GA improves decision tree simplicity 
without significantly reducing predictive accuracy, by comparison 
with the trees built by the very well-known J48 algorithm [24], 
WEKA’s implementation of C4.5 [20]. 
This paper is organized as follows. Section 2 describes our novel 
algorithm’s characteristics. Section 3 reports our experimental 
methodology. Section 4 reports the experimental results. Section 5 
discusses related work and Section 6 presents our conclusions and 
some future research directions.  

2. THE LEGAL-TREE ALGORITHM 
We have created a new evolutionary method for inducing decision 
trees called LEGAL-Tree (LExicographical Genetic Algorithm for 
Learning decision Trees). The next sections detail the main steps 
of this algorithm. 

2.1 Solution Representation 
While GA applications generally rely on binary strings for 
representing each individual, we adopt the tree representation, 
because it seems logical that if each individual represents a 
decision tree, the solution is best represented as a tree. Thus, each 
individual is a set of nodes, with each node being either a non-
terminal or a terminal (leaf) node. Each non-terminal node 
contains an attribute, and each leaf node contains a predicted 
class. A set of edges linking each node with their children is also a 
part of the tree representation. If a node x represents a categorical 
attribute, there are n edges, where n is the total number of 
categories (values) the attribute owns. If a node x represents a 
numeric continuous attribute, there is a binary split according to a 
given threshold automatically chosen by the algorithm. 
We have chosen to deal with missing values through the following 
simple strategy: for categorical attributes, the missing values will 
be replaced by the mode (in training set) of all attribute values; 
and for numeric attributes, the missing values will be replaced by 
the mean (in training set) of all attribute values. 

2.2  Generating the initial population 
Although a random individual generation is the most common 
technique for generating the initial population in GA applications, 
we believe that by incorporating task-specific knowledge for 
inducing decision trees (i.e., knowledge about the meaning of a 
decision tree in the context of a classification task) we can derive 

better solutions, or at least equally good solutions in fewer 
generations. Our strategy for incorporating task-specific 
knowledge into the GA is described in Algorithm 1.  
A decision stump is the simplest case of decision trees which 
consists of a single decision node and two predictive leaves [10]. 
We have extended such concept for categorical attributes, where 
each edge that represents an attribute category (value) will lead to 
a predictive leaf. Thus, the pseudo-code shown in Algorithm 1 
will basically generate a set of decision stumps (in fact, 10 X n 
decision stumps, where n is the number of predictive attributes of 
the dataset). By dividing the training dataset in 10 different pieces, 
we hope to achieve a certain degree of heterogeneity for the 
decision stumps involving numeric attributes, because they will be 
essential in the generation of the initial population. Such process 
of generating decision stumps is far from being random, since the 
thresholds for numeric attributes are deterministically chosen. 
More precisely, for setting the threshold of numeric attributes, we 
use the information gain measure [18]. The final step for 
generating the initial population is the aggregation of the different 
decision stumps previously created.  

The user sets the depth for the trees that will be part of the initial 
population, and the algorithm randomly combines different 
decision stumps in order to create a tree with the informed depth. 
For instance, consider that three randomly picked decision stumps 
(A, B and C) are merged into one complete tree of depth 2. The 
randomly selected root is decision stump A, while its two child 
nodes are replaced by B and C. All trees generated in the initial 
population are complete trees resulting from the merging of 
randomly picked decision stumps. However, the trees that will 
populate the next generations will not necessarily be complete due 
to the genetic operations that will affect their structures.  
The two main advantages of this approach for generating the 
initial population of decision trees are that: (a) the thresholds for 
numerical attributes in non-terminal nodes are chosen in a data-
driven manner based on information gain, rather than randomly 
chosen; and (b) the class associated with a leaf node is always the 
most frequent class among the examples covered by the leaf node, 
rather than a randomly chosen class. Both advantages are a result 
of incorporating general knowledge about the classification task 
being solved (rather than knowledge specific to a given 
application domain like finance or medicine) into the GA, which 
tends to increase its effectiveness.  

2.3 Lexicographic multi-objective fitness 
function 
It is also usually accepted that the knowledge discovered by a data 
mining algorithm should be not only accurate but also 
comprehensible to the user [24], where comprehensibility (or 

Algorithm 1: Decision Stumps Generation 
1. let x be the training dataset 
2. divide x in 10 different pieces  
3. let dsList be a list of decision stumps 
4. let yj represent the jth piece of x 
5. for each j do 
6. let ai be the ith dataset attribute 
7. for each i 
8. if ai is numeric 
9.      threshold = infoGain(yj,ai) 
10.      dsList.add(new numericDS(yj,ai,threshold)) 
11. else 
12. dsList.add(new categoricalDS(yj,ai)) 



simplicity) is usually estimated by the size of the classifier – 
smaller classifiers are assumed to be preferable, other things being 
equal. This is also justified by Occam’s razor [5], a principle often 
used in science, which essentially says that, out of multiple 
hypothesis that are equally consistent with the data, one should 
choose the simplest hypothesis. In this context, we present a 
lexicographic multi-objective approach, which basically consists 
of assigning different priorities to different objectives and then 
focusing on optimizing them in their order of priority [7]. In this 
work, we only consider predictive accuracy and tree size as 
objectives, since they are the most common measures for 
evaluating decision trees.  
Consider the following example. Let x and y be two decision trees 
and a and b two evaluation measures. Besides, consider that a has 
the highest priority between the measures and that ta and tb are 
tolerance thresholds associated with a and b respectively. The 
lexicographic approach works according to the following analysis: 
if |ax – ay| > ta then it is possible to establish which decision tree is 
“better” considering only measure a. Otherwise, the lower-priority 
measure b must be evaluated. In this case if |bx – by| > tb then the 
fittest tree considering x and y can be decided only by considering 
measure b. If it still is the case the difference between values falls 
within the assigned threshold tb, the best value of the higher-
priority measure a is used to determine the fittest tree.      
There are other approaches for coping with multi-objective 
problems. For instance, there is the conventional weighted-
formula, in which a single formula containing each objective 
adjusted by weights reduces the multi-objective problem into a 
single-objective one. Also, there is the Pareto approach, where 
instead of transforming a multi-objective problem into a single-
objective one and then solving it by using a single-objective 
search method, one should use a multi-objective algorithm to 
solve the original multi-objective problem in terms of Pareto 
dominance [4]. A weighted-formula approach suffers from several 
known problems, namely the “magic number” problem (setting 
the weights in the formula is an ad-hoc procedure), “mixing 
apples and oranges” (adding up non-commensurable criteria such 
as accuracy and tree size) and mixing different units of 
measurement (operating on different objective scales and 
introducing a bias when choosing a suitable normalization 
procedure) [8]. A Pareto approach also has its drawbacks, with 
one of the most expressive ones being the difficulty of choosing a 
single best solution to be used in practice. Another shortcoming of 
such approach is the difficulty in handling different-priority 
objectives, that is, cases where one objective is significantly more 
important than the other to the user. In particular, in the 
classification task of data mining, most researchers and users 
agree that predictive accuracy is usually considered more 
important than tree size for decision trees, but a Pareto approach 
would not be able to recognize that accuracy is more important 
than size. Consider, for instance, two decision trees t1 and t2, 
where t1 has 90% of accuracy and 20 nodes, and t2 has 70% of 
accuracy and 15 nodes. Most data mining researchers and users 
would clearly prefer tree t1 over t2. However, the Pareto approach 
would consider that none of these two trees dominates the other. 
A lexicographic approach does not suffer from the mentioned 
problems (in the above example, it would choose tree t1 over t2 for 
any sensible accuracy tolerance threshold < 20%, respecting the 
user’s preferences), and it is conceptually simple and easy to use. 
Note that, to the best of our knowledge, a lexicographic approach 
has not yet been used for evolutionary decision tree induction. 

2.4 Selection 
LEGAL-Tree uses the popular and effective tournament selection 
method. It also implements the elitism technique, i.e., it preserves 
a percentage of individuals based on their fitness values.   

2.5 Crossover 
LEGAL-Tree implements the crossover operation as follows. 
First, two individuals randomly picked among the selected ones 
(selection operation) will exchange sub-trees. According to a 
randomly number which varies from 1 to n (number of nodes), 
LEGAL-Tree performs an adapted pre-order tree search method, 
visiting recursively the root node and then its children from left to 
right. For numeric nodes, such search method is equivalent to the 
traditional binary pre-order search. If the attribute is categorical 
and has more than 2 children, the search method will visit each 
child from left to right, according to an index that identifies each 
child node. After identifying the nodes sorted by the randomly 
picked number in both parents, LEGAL-Tree will exchange the 
whole sub-tree represented by the sorted node. 
Consider two individuals presented as “parents” in Figure 1. For 
Parent 1, the sorted node was node C, while for Parent 2 it was 
node M. After this, the crossover operation will make sure two 
children individuals are created keeping the tree structure from 
one of the parents but with the sorted nodes being exchanged. 
Child 1 keeps the tree structure from Parent 1, but inherits node M 
from Parent 2. Similarly, Child 2 keeps the structure from Parent 
2 but inherits node C from Parent 1. By exchanging the whole 
sub-trees from the sorted node and not only specific nodes, we 
avoid problems such as domain irregularities, because each edge 
refers to attribute characteristics that are represented by a node. It 
does not prevent, however, redundant rules and inconsistencies. 
Section 2.7 details how LEGAL-Tree addresses such issues. 

 

Figure 1. Crossover between Parents 1 and Parent 2. 

2.6 Mutation 
LEGAL-Tree implements two different strategies for mutation of 
individuals. The first one considers the exchanging of a whole 
sub-tree, selected randomly from an individual, by a leaf node 
representing the most frequent class attribute value among the 
examples covered by that leaf. The second strategy replaces a 
randomly selected leaf node in an individual by a decision stump 
created in the population initialization process. Figure 2 depicts 
both strategies abovementioned. Such strategies aim at increasing 
or diminishing the individual‘s size, increasing the heterogeneity 
of the population and avoiding convergence to local optima.  

Parent 1 Parent 2 

Child 1 Child 2 

C 
M



 

Figure 2. Two strategies for mutating individuals. 

2.7 Candidate Solution Validity Issues 
After crossover and mutation operations, there are cases where 
evolution generates inconsistent scenarios. For instance, consider 
that a sub-tree from tree a has been replaced by a sub-tree from 
tree b generating a child individual during the crossover process. 
If the new sub-tree has a node representing an attribute already 
specified by an ancestral node, actions must be taken to avoid 
redundant rules or inconsistent threshold intervals. If the node’s 
attribute is categorical and an ancestor represents the same 
attribute, then we have some redundancy which can be eliminated. 
In such case, we have chosen to replace this sub-tree by a leaf 
node representing the most frequent class value for that given leaf 
node. Similarly, if the node is numeric and its threshold interval is 
inconsistent with some ancestral node, then such interval must be 
adjusted in order not to generate rules that are not satisfied by any 
data instance. This adjustment also considers task-specific 
knowledge because it recalculates the information gain for 
defining the new threshold interval value. Such problems are 
addressed by LEGAL-Tree through a filtering process applied 
after the crossover and mutation operations.  
Another problem that may occur after the crossover and mutation 
operations is when leaf nodes stop representing the most frequent 
class attribute value. Such irregularity is also addressed by 
LEGAL-Tree during this filtering process, which recalculates the 
correct class attribute value for the modified leaf, considering the 
training set. Dealing with such issues was an essential step in the 
construction of LEGAL-Tree, since we can converge faster to a 
near-optimal solution by implementing this filtering process. 

3. EXPERIMENTAL METHODOLOGY 
We have applied the proposed approach of inducing decision trees 
through a lexicographic multi-objective genetic algorithm to 
several classification problems collected in the UCI machine 
learning repository [17], including Credit-a, Credit-g, Colic, 
Diabetes, Glass, Hepatitis and Sonar (Table 1).  
First, we have analyzed the predictive accuracy and tree size 
obtained by the J48 decision tree induction algorithm (WEKA’s 
implementation of C4.5) [24] in each dataset. All parameter 
settings used are the algorithm’s default ones, and we have used 
10-fold cross-validation, a widely disseminated approach for 
validating classification models. In each of the 10 iterations of the 
cross-validation procedure, the training set is divided into sub-
training and validation sets, which are used to produce the 
decision stumps (sub-training set), filtering process (sub-training) 
and fitness function (sub-training or validation set, according to 
the approach). Each set represents 50% of the full training set. 

Table 1. Datasets specification. 

Dataset Instances Numeric 
Attributes 

Categorical 
Attributes Classes 

Colic 368 7 15 2 
Credit-a 690 6 9 2 
Credit-g 1000 7 14 2 
Diabetes 768 8 0 2 

Glass 214 9 0 6 
Hepatitis 155 6 13 2 

Sonar 208 60 0 2 

We have executed LEGAL-Tree with the parameter values 
described in Table 2, but with two different fitness measures. For 
the first case, L1, we have used as fitness measures the accuracy 
of an individual in the validation set and its tree size, in this 
priority order, with thresholds of 1% for accuracy and 2 nodes for 
tree size. Analysis of the results with this L1 version of LEGAL-
Tree revealed that the algorithm was overfitting the validation set, 
since the “learning stage” of our algorithm does not make 
extensive use of the sub-training set, especially by comparison 
with the extensive use of the entire training set by C4.5. Hence, to 
mitigate this problem, we have created a second configuration, 
L2, where we have used as fitness measures the accuracy in the 
validation set, the accuracy in the sub-training set and tree size, in 
this priority order, and the thresholds of 2% for both accuracies 
and 2 nodes for tree size. This approach preserves the highest-
priority of accuracy in validation set but introduces an additional 
selective pressure to maximize accuracy in the sub-training set as 
a second criterion (still more important than tree size), and so it 
helps avoiding overfitting to the validation set. 

Table 2. LEGAL-Tree parameters for the experiments. 

Parameter Value 
Initial population max depth 3 
Population size 500 
Improvement rate 3% 
Max number of generations 500 
Tournament rate 0.6% 
Elitism rate 5 % 
Crossover rate 90% 
Mutation rate 5% 

The parameter values in Table 2 were based on our previous 
experience in using evolutionary algorithms, and we have made 
no attempt to optimize parameter values, a topic left for future 
research. Improvement rate (i.e., rate of the maximum number of 
generations without fitness improvement) and Max number of 
generations are the algorithm’s stopping criteria.  Due to the fact 
that GA is a non-deterministic technique, we have run LEGAL-
Tree 30 times for each one of the 10 training/test set folds 
generated by the 10-fold cross-validation procedure. These folds 
were the same ones used by J48, to make the comparison between 
the algorithms as fair as possible. After running LEGAL-Tree 
over the 7 datasets presented in Table 1, we have calculated the 
average and standard deviation of the 30 executions for each fold, 
and then the average of the ten folds. Considering J48, we have 
calculated the averages and standard deviations for the ten folds.  
A few tests were executed to assess the statistical significance of 
the differences observed in the experiments. The data used consist 
of both the mean classification predictive accuracy and the tree 
size for each test fold. The statistical test used was the corrected 
paired t-test [16], with a significance level of α = 0.05 and 9 
degrees of freedom.  

Mutation 2 

Random Decision Stump 

Mutation 1 

Most Frequent Class Value for the Path 



4. EXPERIMENTAL RESULTS 
Table 3 shows the mean predictive accuracy (in the test set) and 
the tree sizes for J48 and the 2 versions of LEGAL-Tree: L1 and 
L2. A summarized comparison between the results of LEGAL-
Tree and J48, in terms of the previously mentioned statistical test 
of significance, is shown in Table 4. In this table, each cell Ci,j 
contains the label of the datasets in which technique i is 
significantly better than technique j (Table 4a) or i is significantly 
worse than j (Table 4b). The dataset labels are as follows 
{Co}olic, {Ca}redit-a, {Cg}redit-g, {D}iabetes, {G}lass, 
{H}epatitis and {S}onar.  
Table 3. Mean predictive accuracy (%), tree size (in number 
of nodes) and respective standard deviation (in parenthesis). 

Dataset      Predictive Accuracy                      Tree Size 
J48 L1 L2 J48 L1 L2 

Colic 85.30 
(4.50) 

82.72 
(3.24) 

84.72 
(2.69) 

8.10 
(2.02) 

15.37 
(7.73)

8.62 
(5.01)

Credit-a 86.08 
(3.56) 

85.76 
(1.49) 

85.45 
(1.01) 

28.10 
(8.58) 

6.37 
(4.04)

4.74 
(2.55)

Credit-g 70.50 
(3.41) 

71.24 
(2.39) 

71.86 
(2.57) 

117.40 
(28.20) 

13.82 
(7.38)

16.23 
(10.73)

Diabetes 73.83 
(5.37) 

72.94 
(3.10) 

73.69 
(3.09) 

37.40 
(12.38) 

16.05 
(6.22)

34.08 
(25.53)

Glass 66.75 
(7.53) 

60.28 
(7.03) 

62.94 
(6.07) 

44.20 
(5.23) 

18.55 
(6.55)

22.59 
(10.06)

Hepatitis 83.79 
(6.87) 

78.97 
(6.63) 

81.13 
(4.29) 

17.80 
(4.40) 

15.99 
(4.87)

20.39 
(6.58)

Sonar 71.16 
(6.74) 

69.79 
(8.87) 

72.22 
(8.79) 

29.20 
(3.40) 

27.33 
(8.41)

45.93 
(12.57)

As it can be seen in Table 4, LEGAL-Tree’s lexicographic L1 
version obtained a predictive accuracy significantly worse than 
J48 in just one dataset – in the other 6 datasets there was no 
significance difference. On the other hand, L1 obtained a 
significantly simpler (smaller) decision tree than J48 in 4 datasets, 
and the opposite was true in just one dataset. Hence, L1 obtained 
competitive results with respect to J48. 

Table 4. L1 and L2 significantly better (a) or worse (b) than 
J48 according to the corrected paired t-test. 

(a)  J48  (b)  J48 

Accuracy L1 -------  Accuracy L1 Co------ 
L2 -------  L2 ------- 

Tree Size L1 -CaCgDG--  Tree Size L1 Co------ 

L2 -CaCg-G--  L2 ------S 

LEGAL-Tree’s lexicographic L2 version performed particularly 
well. Its predictive accuracy was statistically indistinguishable 
from J48’s one in all 7 dataset, but L2 obtained a significantly 
simpler decision tree in 3 datasets, whilst the opposite was true in 
only one dataset. This shows that the lexicographic approach used 
in L2, based on choosing the smallest out of competing trees when 
their accuracy is not significantly different, is working well, 
leading to a significant reduction in the size of the DT produced 
by the system in approximately half of the datasets, without 
sacrificing accuracy in any dataset, by comparison with J48.  
As a final note, we have also stored the execution time for both 
algorithms, and LEGAL-Tree was, as expected for being an 
evolutionary algorithm, slower than J48. Nevertheless, our current 
efforts are to maximize LEGAL-Tree’s performance. 

5. RELATED WORK 
One branch of Evolutionary Algorithms (EAs), Genetic 
Programming (GP), has been largely used as an induction method 

for decision trees, in works such as [1, 6, 12, 13, 14, 22, 23, 25, 
26]. Koza [12] was the pioneer in inducing decision trees with 
GP, converting the attributes of Quinlan’s weather problem [19] 
into functions. In [25], it is proposed a tool which allows the user 
to set different parameters for generating the best computer 
program to induce a classification tree. This work takes into 
account the cost-sensitivity of misclassification errors, in a multi-
objective approach to define the optimal tree. In [6], it was 
implemented an algorithm of tree induction in the context of 
bioinformatics, in order to detect interactions in genetic variants. 
Bot and Langdon [1] proposed a solution for linear classification 
tree induction through GP, where an intermediate node is a linear 
combination of attributes. In [13] the authors proposed different 
alternatives to represent a multi-class classification problem 
through GP, and later extended their work [14] for dealing with 
nominal attributes. In [22, 26], the authors proposed the design of 
binary classification trees through GP, and in [23] it is described a 
GP algorithm for tree induction that considers only binary 
attributes. In [15] GP with lexicographic fitness is proposed, but 
that work does not involve decision tree induction. 
At this point it is important to discuss an issue of terminology. In 
GP each individual of the population is a computer program 
(containing data and operators/functions applied to that data), 
generally with its structure being represented in the form of trees. 
Ideally a computer program should be generic enough to process 
any instance of the target problem (in our case, the evolved 
program should be able to induce decision trees for any 
classification dataset in any application domain). It should be 
noted, however, that in the above GP works each individual is a 
decision tree for the dataset being mined, and not a generic 
computer program responsible for generating decision trees from 
any given classification dataset. This is also the approach 
followed in this paper. Although the above work are presented as 
GP, we prefer to call our EA a Genetic Algorithm (GA), to 
emphasize the fact that the EA is evolving just a decision tree 
(which is not a program in the conventional sense), i.e., just a 
solution to one particular instance of the problem of inducing 
decision trees from a given dataset; rather than evolving a generic 
computer program (like C4.5) that can induce decision trees from 
any given dataset. Regardless of terminology issues, all these GP 
algorithms differ from ours in an important way: we propose a 
multi-objective GA based on the lexicographic criterion. 

6. CONCLUSION AND FUTURE WORK 
Decision trees have been widely used to build classification 
models which are easy to comprehend, mainly because such 
models resemble the human reasoning. Recall that the 
comprehensibility of the discovered classification model is 
important in many applications where decisions will be made by a 
human being based on the discovered model. Hence, there is a 
clear motivation to discover decision trees that are not only 
accurate but also relatively simple. 
Traditional decision tree induction algorithms which rely on a 
recursive top-down partitioning through a greedy split evaluation 
are relatively fast but susceptible to converging to local optima, 
while an ideal algorithm should choose the correct splits in order 
to converge to a global optimum. With this goal in mind, we have 
proposed a novel Genetic Algorithm for inducing decision trees 
called LEGAL-Tree. LEGAL-Tree avoids the greedy search 
performed by conventional decision tree induction algorithms, and 
performs instead a global search in the space of candidate decision 



trees. In addition, it differs from previously proposed evolutionary 
algorithms for decision tree induction in a very important aspect: 
the fitness function. While other approaches typically rely on a 
single objective evaluation (possibly collapsing multiple 
objectives into a single objective using a weighted formula) or on 
an evaluation based on Pareto dominance, we propose a 
lexicographic approach, where multiple measures are evaluated in 
order of their priority. This approach is relatively simple to 
implement and control and does not suffer from the problems the 
weighted-formula and Pareto dominance do, as discussed earlier. 
LEGAL-Tree’s fitness function considers the two most common 
measures used for evaluating decision trees: classification 
accuracy and tree size. In experiments with 7 datasets, the first 
version of LEGAL-Tree was moderately successful, and its 
second version was quite successful, obtaining significantly better 
results than the very well-known J48 algorithm overall. More 
precisely, the former obtained statistically significantly simpler 
decision trees than the latter in 3 datasets, whilst the opposite was 
true in just one dataset; and such an overall improvement in 
simplicity was obtained without any significant loss in predictive 
accuracy in any dataset. This is a clearly positive result, which is 
also supported by the aforementioned Occam’s Razor, a principle 
very often used in data mining and science in general [5]. 
Some possibilities for future research are as follows. First, the 
setting of input parameters for LEGAL-Tree could be done 
through a supportive GA, helping to achieve convergence to a 
global optimum. In addition, we are working on alternative 
methods for mutation and dealing with categorical missing values. 
A future mutation implementation will be a tree pruning method 
which will have a higher probability of occurring.  
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