
ABC-Miner: an Ant-based Bayesian
Classification Algorithm

Khalid M. Salama and Alex A. Freitas

School of Computing, University of Kent,
Canterbury, CT2 7NF, UK

kms39@kent.ac.uk, A.A.Freitas@kent.ac.uk

Abstract. Bayesian networks (BNs) are powerful tools for knowledge
representation and inference that encode (in)dependencies among ran-
dom variables. A Bayesian network classifier is a special kind of these
networks that aims to compute the posterior probability of each class
given an instance of the attributes and predicts the class with the high-
est posterior probability. Since learning the optimal BN structure from a
dataset is NP-hard, heuristic search algorithms need to be applied effec-
tively to build high-quality networks. In this paper, we propose a novel
algorithm, called ABC-Miner, for learning the structure of BN classifiers
using the Ant Colony Optimization (ACO) meta-heuristic. We describe
all the elements necessary to tackle our learning problem using ACO,
and experimentally compare the performance of our ant-based Bayesian
classification algorithm with other algorithms for learning BN classifiers
used in the literature.

Keywords: Ant Colony Optimization (ACO), Data Mining, Classifi-
cation, Bayesian Network Classifiers.

1 Introduction

Classification is a data mining task where the goal is to build, from labeled
cases, a model (classifier) that can be used to predict the class of unlabeled
cases. Learning classifiers from datasets is a central problem in data mining and
machine learning research fields. While different approaches for tackling this
problem exist, such as decision trees, artificial neural networks and rule list [20],
our focus in this paper is on the Bayesian approach for classification.

Näıve-Bayes is the first Bayesian classifier in the literature. Although it is
a very simple kind of Bayesian networks that assumes the attributes are in-
dependent given the class label, Näıve-Bayes classifiers showed effective pre-
dictive performance under the aforementioned assumption [10]. However, since
the independency assumption amongst the dataset attributes is not realistic,
extended versions were developed to improve the performance of Näıve-Bayes,
namely Tree Augmented Näıve-Bayes (TANs), Bayesian networks Augmented
Näıve-Bayes (BANs) and General Bayesian Networks (GBNs) [10]. These algo-
rithms consider dependencies between the attributes in the learning process to

build more complex and hopefully more accurate BN classifiers. Nonetheless,
algorithms used in the literature for building such BNs utilize greedy and deter-
ministic techniques. Since learning the optimal BN structure from a dataset is
NP-hard [5], several stochastic search algorithms can be effectively applied to
build high-quality BN classifiers in an acceptable computational time.

Ant Colony Optimization (ACO) [9] is a meta-heuristic for solving combi-
natorial optimization problems, inspired by observations of the behavior of ant
colonies in nature. ACO has been successful in solving several problems, includ-
ing classification rule induction [13–15, 18] and general purpose BN construc-
tion [2, 8, 17, 21]. However, as far as we know, it has not been used for learning
Bayesian network classifiers.

In this paper, we propose a novel ant-based Bayesian classification algo-
rithm, called ABC-Miner, which learns the structure of a BAN with at most
k-dependencies from a dataset using ACO technique for optimization. The rest
of the paper is organized as follows. In Section 2 a brief overview on Bayesian
networks’ basic concepts is given as well as a discussion of various Bayesian net-
work classifiers is shown. Section 3 exhibits the related work on the use of ACO
algorithms for building BNs in the literature. In Section 4, we introduce our
proposed ABC-Miner algorithm and describe each of the elements necessary to
tackle our learning problem using the ACO meta-heuristics. After that, section
5 discusses our experimental methodology and results. Finally, we conclude with
some general remarks and provide directions for future research in section 6.

2 Bayesian Networks Background

2.1 Overview on Bayesian Networks

Bayesian networks are knowledge representation tools that aim to model depen-
dence and independence relationships amongst random variables [12]. In essence,
BNs are used to describe the joint probability distribution of n random variables
X = {X1, X2, X3, ..., Xn}. A directed acyclic graph (DAG) is used to represent
the variables as nodes and statistical dependencies between the variables as edges
between the nodes – child nodes (variables) depend on their parent ones. In ad-
dition, a set of conditional probability tables (CPTs), one for each variable, is
obtained to represent the parameters Θ of the network. The graphical structure
of the network along with its parameters specifies a joint probability distribution
over the set of variables X that is formulated in the product form:

p(X1, X2, ..., Xn) =
n∏

i=1

p(Xi|Pa(Xi), Θ,G) (1)

where Pa(Xi) are the parents of variable Xi in G (the DAG that represents the
structure of the BN).

Learning a Bayesian network from a dataset D with {d1, d,2 , ..., dm} in-
stances is decomposed into two phases; learning the network structure, and
then learning the parameters of the network. As for parameter learning, it is

considered a straightforward process for any given BN structure with speci-
fied (in)dependencies between variables. Simply, a conditional probability table
(CPT) is computed for each variable with respect to its parent variables. CPT
of variable Xi encodes the likelihood of this variable given its parents Pa(Xi)
in the network graph G, and the marginal likelihood of the dataset D given a
structure G is denoted by P (D|G). The purpose is to find G that maximizes
P (D|G) for a given D, which is the role of BN structure learning phase. The
common approach to this problem is to introduce a scoring function, f , that
evaluates each G with respect to D, searching for the best network structure
according to f . Various scoring metrics are usable for this job [6, 12].

A well-known greedy approach for building BN structure is Algorithm B [1].
It starts with an empty DAG (edge-less structure) and at each step it adds the
edge with the maximum increase in the scoring metric f , whilst avoiding the
inclusion of directed cycles in the graph. The algorithm stops when adding any
valid edge does not increase the value of the scoring metric. K2, a metric based
on uniform prior scoring, is one of the most used scoring metrics for building
and evaluating Bayesian networks [6].

For further information about Bayesian networks, the reader is referred to
[11, 12], which provide a detailed discussion of the subject.

2.2 Bayesian Networks for Classification

Bayesian network classifiers are a special kind of BNs where the class attribute
is treated as a unique variable in the network. The purpose is to compute the
probability of each value of the class variable given an instance of the predictor
attributes and assign this instance to the class that has the highest posterior
probability value. The following are various types of BN classifiers studied in
the literature.

• Näıve-Bayes: The classifier consists of a simple BN structure that has the
class node as the only parent node of all other nodes. This structure assumes
that all attributes are independent of each other given the class. In spite of
its simplicity, Näıve-Bayes has surprisingly outperformed many sophisticated
classifiers over a large number of datasets, especially where the attributes
are not strongly correlated [10].

• Tree Augmented Näıve-Bayes (TAN): As an extension to Näıve-Bayes,
TAN allows a node in a BN to have more than one parent, besides the class
variable. This produces a tree-like structure BN. A variation of the Chow-Liu
algorithm [3] is the best known method for building TANs. First, it computes
the conditional mutual information I(X,Y |C) between each pair of variables
X and Y given class variable C. Then it builds a complete undirected graph
connecting all the input variables to find the maximum weighted spanning
tree from the graph, where the weight of edge X → Y is annotated with
I(X,Y |C). After that, it chooses a root variable and sets the direction of all
edges to be outwards of it. Finally, it adds one edge from the class node to
each of the other variables, building a TAN classifier.

• BN Augmented Näıve-Bayes (BAN): It is an elaborated version of
Näıve-Bayes, in which no restrictions (or at most k-dependencies) are en-
forced on the number of the parents that a node in the network can depend
on. In other words, while each node in TAN can have only one parent be-
sides the class node, and in Näıve-Bayes only the class node is allowed to be
the parent, each node in BAN can have k of parents (dependencies) besides
the class node. Another variation of the Chow-Liu algorithm that is used to
build TANs, is utilized to BANs as well [4].

• General Bayesian Network (GBN): Unlike the other BN classifier learn-
ers, the GBN treats the class variable node as an ordinary node. The idea is
to build a general purpose Bayesian network, find the Markov blanket of the
class node, delete all the other nodes outside it and use the resulting network
as a Bayesian classifier. One Markov blanket of a node n is the union of the
n’s parents, n’s children, and the parents of n’s children.

Friedman et al. provided an excellent study of these algorithms in [10]. A com-
prehensive investigation and comparisons of these various Bayesian classifiers by
Cheng and Greiner are found in [3, 4] .

3 ACO Related Work

Ant Colony Optimization has an effective contribution in tackling the classifi-
cation problem. Ant-Miner [15] is the first ant-based classification algorithm.
Several extensions on this algorithm have been introduced in the literature, such
as AntMiner+ [13], cAnt-Miner [14], and multi-pheromone Ant-Miner [18]. How-
ever, the Ant-Miner algorithm as well as its various versions handles the classi-
fication problem by building a list of <IF Antecedent THEN Class> classifi-
cation rules. On the other hand, this paper proposes a new ant-based algorithm
that handles classification problems, yet with a different approach; learning a
Bayesian network to be used as classifier.

As for the use of ACO for building Bayesian networks, to date, there has
been only a few research utilizing such a heuristic in learning BN structure,
namely: ACO-B [2], MMACO [16, 17], ACO-E [7, 8] and CHAINACO - K2ACO
[21]. Moreover, none of them has been used for building BN classifiers. As far
as we know, our proposed ABC-Miner is the first algorithm to use ACO, or any
evolutionary algorithm, in the task of learning Bayesian networks specific for the
classification problem.

Campos et al. introduced the first ant-based algorithm for learning Bayesian
networks, ACO-B [2], where each ant iteratively constructs a complete Bayesian
network from scratch by selecting edges to be added to the network and up-
dates the pheromone on the construction graph according to the quality of the
constructed BN. Edge selection is carried out in stochastic fashion, according to
the pheromone and the heuristic values associated with the edge. The heuristic
function used is the same function used for evaluating the quality of the BN,
which is the K2 scoring metric [6].

Pinto et al. used a different local discovery approach for learning BNs in [16,
17]. This is hybrid approach, MMACO, based on the local discovery algorithm
Max-Min Parents and Children (MMPC) and ant colony optimization (ACO).
MMPC is used to construct the skeleton of the Bayesian network and then ACO
is used to orientate its edges, thus returning the final structure. Here all the
ants are involved in building a single solution by testing several possible edge
additions and orientation at the same iteration. BDEu [12] is the function used
by MMACO to calculate the heuristics and evaluates the BN quality.

Daly et al. studied learning the structure of a Bayesian network by performing
a search through the space of its equivalence classes via extending traditional
ACO-based algorithm, ACO-E [7, 8]. An equivalence class includes all network
structures where changing the orientation (dependency relationship) of one or
more edges in a BN obtains the same quality according to a given scoring metric.
In which case, not all the edges in an equivalence class of a BN are oriented,
since the direction of the dependencies of some edge does not change the quality
of the network.

Yanghui et al. proposed two novel ACO approaches for Bayesian network
structure learning, CHAINACO and K2ACO [21]. The former is based on a
GA algorithm. It consists of two phases; constructing chains (the order of nodes
according to dependencies) using ACO instead of GA, then applies K2 to the best
ordering found and returns the best structure. K2ACO is also based on another
algorithm, K2GA, which only consists of a single phase. The quality of each node
ordering chosen by an ant is evaluated by running the K2 search algorithm to
construct a BN calculating the score of the network structure found. The best
structure returned is that generated by K2 from the best ordering evaluated in
this fashion.

Note that the goal of the aforementioned algorithms is to build general pur-
poses BNs. In other words, the selection of the heuristics, quality evaluation
metric and other elements of the algorithm are suitable for this aim, but not
for building BN classifiers. Hence, in spite of having some similarities, essential
aspects of our algorithm are different due to the diversion in the target; our
algorithm is only focused on learning BN classifiers. Next we will explore these
aspects as we describe our novel Ant-based Bayesian Classifier.

4 A Novel ACO Algorithm for Learning BN Classifiers

4.1 ABC-Miner Algorithm

The overall process of ABC-Miner is illustrated in Algorithm 1. The core ele-
ment of any ACO-based algorithm is the construction graph that contains the
decision components in the search space, with which an ant constructs a candi-
date solution. As for the problem at hands, the decision components are all the
edges X → Y where X ̸= Y and X,Y belongs to the input attributes of a given
training set. These edges represent the variable dependencies in the resulting
Bayesian network classifier.

At the beginning of the algorithm, the pheromone amount is initialized for
each decision component with the same value. The initial amount of pheromone
on each edge is 1/|TotalEdges|. In addition, the heuristic value for each edge
X → Y is set using the conditional mutual information, which is computed as
follows:

I(X,Y |C) =
∑
c∈C

p(c)
∑
x∈X

∑
y∈Y

p(x, y|c) log p(x, y|c)
p(x|c)p(y|c)

(2)

where C is the class variable. p(x, y|c) is the conditional probability of value x ∈
X and y ∈ Y given class value c, p(x|c) is the conditional probability of x given c,
p(y|c) is the conditional probability of y given c and p(c) is the prior probability
of value c in the class variable. Conditional mutual information is a measure
of correlation between two random variables given a third one. In our case, we
want to lead the ant during the search process to the edges between correlated
variables given the class variable, and so we use such a function as heuristic
information associated with the selectable edges. Note that the procedure of
heuristic calculation is called only once at the beginning and its calculations
used throughout the algorithm.

Algorithm 1 Pseudo-code of ABC-Miner.

Begin ABC-Miner
BNCgbest = ϕ; Qgbest = 0
InitializePheromoneAmounts();
InitializeHeuristicV alues();
t = 0;
repeat

BNCtbest = ϕ; Qtbest = 0;
for i = 0 → colony size do

BNCi = CreateSolution(anti);
Qi = ComputeQuality(BNCi);
if Qi > Qtbest then

BNCtbest = BNCi;
Qi = Qtbest;

end if
end for
PerformLocalSearch(BNCtbest);
UpdatePheromone(BNCtbest);
if Qtbest > Qgbest then

BNCgbest = BNCtbest;
end if
t = t+ 1;

until t = max itrations or Convergence()
return BNCgbest;
End

The outline of the algorithm is as follows. In essence, each anti in the colony
creates a candidate solution BNCi, i. e. a Bayesian network classifier. Then
the quality of the constructed solution is evaluated. The best solution BNCtbest

produced in the colony is selected to undergo local search before the ant updates
the pheromone trail according to the quality of its solution Qtbest. After that,
we compare the iteration best solution BNCtbest with the global best solution
BNCgbest to keep track of the best solution found so far. This set of steps
is considered an iteration of the repeat − until loop and is repeated until the
same solution is generated for a number of consecutive trials specified by the
conv iterations parameter (indicating convergence) or until max iterations

is reached. The values of conv iterations, max iterations and colony size

are user-specified thresholds. In our experiments (see section 5), we used 10, 500
and 5 for each of these parameters respectively.

4.2 Solution Creation

Instead of having the user selecting the optimum maximum number of depen-
dencies that a variable in the BN can have (at most k parents for each node), this
selection is carried out by the ants in ABC-Miner. Prior to solution creation, the
ant selects the maximum number of dependencies (k) as a criterion for the cur-
rently constructed BN classifier. This selection of k value is done probabilistically
from a list of available numbers. The user only specifies max parents parameter
(that we set to 3 in our experiments), and all the integer values from 1 to this
parameter are available for the ant to use in the BN classifier construction. The
various values of the k are treated as decision components as well. More precisely,
the ant updates the pheromone on the value k of the maximum number of par-
ents after solution creation according to the quality of this solution, which used
value k as a criterion in the BN classifier construction. This pheromone amount
represents the selection probability of this value by subsequent ants, leading
to convergence on an optimal value of k dependencies. Algorithm 2 shows the
outline of the solution creation procedure.

Algorithm 2 Pseudo-code of Solution Creation Procedure.

Begin CreateSolution()
BNCi ← {Näıve-Bayes structure};
k = anti.SelectMaxParents();
while GetV alidEdges() <> ϕ do

{i→ j} = anti.SelectEdgeProbablistically();
BNCi = BNCi ∪ {i→ j};
RemoveInvalidEdges(BNCi, k);

end while
BNCi.LearnParameters();
return BNCi;
End

Each ant starts with the network structure of the Näıve-Bayes classifier, i. e. a
BN in which all the variables have only the class variable as a parent. From that
point, it starts to expand this Näıve-Bayes network into a Bayesian Augmented
Näıve-Bayes (BAN) by adding edges to the network. The selection of the edges
is performed according to the following probabilistic state transition formula:

Pij =
[τij(t)]

α · [ηij]β∑I
a

∑J
b [τab(t)]

α · [ηab]β
(3)

In this equation, Pij is the probability of selecting the edge i → j, τij(t) is
the amount of pheromone associated with edge i → j at iteration t and ηij is
the heuristic information for edge i → j computed using conditional mutual
information (equation 2). The edge a → b represents a valid selection in the
available edges. The exponents α and β are used to adjust the relative emphases
of the pheromone (τ) and heuristic information (η), respectively. Note that edges
available for selection are directed, i. e. i → j ̸= j → i .

ABC-Miner adapts the “ants with personality” approach, proposed by the
author in [18]. Each anti is allowed to have its own personality by allowing
it to have its own values of the αi and βi parameters. In other words, some
ants will give more importance to pheromone amount, while others will give
more importance to heuristic information. The αi and βi parameters are each
independently drawn from a Gaussian distribution centered at 2 with a standard
deviation of 1. This approach aims to advance exploration and improve search
diversity in the colony.

An edge i → j is valid to be added in the BN classifier being constructed if
the following two criteria are justified: 1) its inclusion does not create a directed
cycle, 2) the limit of k parents (chosen by the current ant) for the child variable
j is not violated by the inclusion of the edge. After the ant adds a valid edge
to the BN classifier, all the invalid edges are eliminated from the construction
graph. The ant keeps adding edges to the current solution until no valid edges are
available. When the structure of BNCi is finished, the parameters Θ are learnt
by calculating the CPT for each variable, according to the network structure,
producing a complete solution. Afterward, the quality of the BN classifier is
evaluated, and all the edges become available again for the next ant to construct
another candidate solution.

4.3 Quality Evaluation and Pheromone Update

Unlike the traditional Bayesian networks, the target of our algorithm is to build
an effective BN in terms of predictive power with respect to a specific class
attribute. In other words, BN learning algorithms aim to maximize a scoring
function that seeks a structure that best represents the dependencies between
all the attributes of a given dataset. This structure should fit the knowledge
representation and inference purposes of a BN, which treats all the variables
in the same way, without distinguishing between the predictor and the class
attributes. On the other hand, the purpose of learning a BN classifier is to build

a structure that can calculate the probability of a class value given an instance
of the input predictor variables, and predict the class value with the highest
probability to label the instance.

Therefore, using traditional scoring functions to evaluate the quality of a BN
classifier should not fit the purpose of building a classifier [10]. According to this
reasoning, we evaluate the quality of the constructed network directly as a clas-
sifier, where the predictive efficiency is the main concern. We use the accuracy,
a conventional measure of predictive performance, to evaluate the constructed
BN model, computed as follows:

Accuracy =
|Correctly Classified Cases|

|V alidation Set|
(4)

The best BN classifier BNCtbest constructed amongst the ants in the colony
undergoes local search, which aims to improve the predictive accuracy of the
classifier. The local search operates as follows. It temporarily removes one edge
at a time in a reverse order (removing last the edge that was added to the net-
work first). If the quality of the BN classifier improves, this edge is removed
permanently from the network, otherwise it is added once again. Then we pro-
ceed to the next edge. This procedure continues until all the edges are tested to
be removed from the BN classifier and the BN classifier with the highest quality
– with respect to classification accuracy – is obtained.

After BNCtbest is optimized via local search, pheromone levels are increased
on decision components (edges) in the construction graph included in the struc-
ture of the constructed BN classifier, using the following formula:

τij(t+ 1) = τij(t) + τij(t).Qtbest(t) (5)

To simulate pheromone evaporation, normalization is then applied as in [15]; each
τij is divided over the total pheromone amounts in the construction graph. Note
that pheromone update is carried out for the decision components representing
the number of dependencies used for building the BN classifier structure as well.

5 Experimental Methodology and Results

The performance of ABC-Miner was evaluated using 15 public-domain datasets
from the UCI (University of California at Irvine) dataset repository [19]. Datasets
containing continuous attributes were discretized in a pre-possessing step, using
the C4.5-Disc [20] algorithm. The main characteristics of the datasets are shown
in Table 1. We compare the predictive accuracy of our proposed ant-based algo-
rithm with three other widely used algorithms for learning Bayesian classifiers.
In our experiment, we used Weka [20] implementations for these algorithms.
Table 2 presents the main characteristics of the used algorithms.

The experiments were carried out using 10-fold cross validation procedure. In
essence, a dataset is divided into 10 mutually exclusive partitions, were each time
a different partition is used as the test set and the other 9 partitions are used

Table 1. Description of Datasets Used in Experimental Results

Dataset Size Attributes Classes

balance scale 625 4 3

breast cancer (wisconsin) 286 9 2

car evaluation 1,728 6 4

contraceptive method choice 1,473 9 3

statlog credit (australian) 690 14 2

statlog credit (german) 1,000 20 2

dermatology 366 33 6

hayes-roth 160 4 3

heart (cleveland) 303 12 3

iris 150 4 3

monks 432 6 2

nursey 12,960 8 5

soybean 307 35 19

tic-tac-to 958 9 2

voting records 435 16 2

Table 2. Summary of the BN Classifier Learning Algorithms Used in the Experiments

Algorithm Type Search Strategy Optimization

Näıve-Bayes Deterministic - -

TAN Deterministic Finding Max. Spanning Tree Cond. Mutual Info.

GBN Deterministic Greedy Hill Climbing K2 Function

ABC-Miner Stochastic Ant Colony Optimization Predictive Accuracy

as the training set. The results (accuracy rate on the test set) are then averaged
and reported in Table 3 as the accuracy rate of the classifier. Since ABC-Miner
is a stochastic algorithm, we run it 10 times – using a different random seed to
initialize the search each time – for each cross-validation fold. In the case of the
deterministic algorithms, each is run just once for each fold.

Table 3 reports the mean and the standard error of predictive accuracy values
obtained by 10-fold cross validation for the 15 datasets, where the highest accu-
racy for each dataset is shown in bold face. As shown, ABC-Miner has achieved
the highest predictive accuracy amongst all algorithms in 12 datasets (with 2
ties), while Näıve-Bayes achieved the highest accuracy in 3 datasets (with 2 ties),
TAN in 2 datasets (both are ties) and finally GBN in 4 datasets (with 3 ties).

Ranking the algorithms in descending order of accuracy for each dataset
and taking the average ranking for each algorithm across all 15 datasets, ABC-
Miner obtained a value of 1.6, which is the best predictive accuracy average rank

Table 3. Predictive Accuracy % (mean± standard error) Results.

Dataset Näıve-Bayes TAN GBN ABC-Miner

bcw 92.1 ± 0.9 95.4 ± 0.9 93.8 ± 0.9 95.4 ± 0.6

car 85.3 ± 0.9 93.6 ± 0.6 86.2 ± 0.9 97.2 ± 0.3

cmc 52.2 ± 1.2 49.8 ± 1.2 49.8 ± 1.2 67.3 ± 0.6

crd-a 77.5 ± 1.2 85.1 ± 0.9 85.7 ± 0.9 87.3 ± 0.6

crd-g 75.6 ± 0.9 73.7 ± 1.2 75.6 ± 1.2 69.5 ± 0.9

drm 96.2 ± 0.6 97.8 ± 0.9 97.2 ± 0.6 99.1 ± 0.3

hay 80.0 ± 2.8 67.9 ± 3.1 83.1 ± 2.5 80.0 ± 3.1

hrt-c 56.7 ± 2.2 58.8 ± 2.5 56.7 ± 2.2 73.3 ± 0.9

iris 96.2 ± 1.5 94.2 ± 1.8 92.9 ± 1.8 96.2 ± 0.9

monk 61.6 ± 0.6 58.8 ± 0.6 61.6 ± 0.9 51.9 ± 0.9

nurs 90.1 ± 0.9 94.3 ± 0.9 90.1 ± 0.9 97.0 ± 0.9

park 84.5 ± 2.5 91.7 ± 2.2 84.5 ± 2.5 94.2 ± 2.8

pima 75.4 ± 1.2 77.8 ± 1.5 77.8 ± 1.5 77.8 ± 1.5

ttt 70.3 ± 0.3 76.6 ± 0.6 70.3 ± 0.3 86.4 ± 0.6

vot 90.3 ± 0.6 92.1 ± 0.4 90.3 ± 0.6 94.6 ± 0.9

amongst all algorithms. On the other hand Näıve-Bayes, TAN and GBN have
obtained 3.1, 2.5, 2.8 in predictive accuracy average rank respectively. Note that
the lower the average rank, the better the performance of the algorithm.

Statistical test according to the non-parametric Friedman test with the Holm’s
post-hoc test was performed on the average rankings. Comparing to Näıve-Bayes
and GBN, ABC-Miner is statistically better with a significance level of 5% as the
tests obtained p - values of 0.0018 and 0.013 respectively. Comparing to TAN,
ABC-Miner is statistically better with a significance level of 10% as the tests
obtained p -value of 0.077.

6 Concluding Remarks

In this paper, we introduced a novel ant-based algorithm for learning Bayesian
network classifiers. Empirical results showed that our proposed ABC-Miner sig-
nificantly out performs the well-known Näıve-Bayes, TAN, and GBN algorithms
in term predictive accuracy. Moreover, the automatic selection of the maximum
number of k-parents value makes ABC-Miner more adaptive and autonomous
than conventional algorithms for learning BN classifiers. As a future work, we
would like to explore the effect of using different scoring functions for computing
the heuristic value used by ABC-Miner, as well as other scoring functions to
evaluate the quality of a constructed BN classifier. Another direction is to ex-
plore different methods of choosing the value of k parents for building a network
structure for the Bayesian classifier.

References

1. Buntine, W. : Theory refinement on Bayesian networks. 17th Conference on Un-
certainty in Artificial Intelligence, Morgan Kaufmann, pp. 52–60 (1991).

2. De Campos, L.M., Gmez, J.A., Puerta, J.M. : Learning Bayesian network by ant
colony optimisation. Mathware and Soft Computing, pp. 251–268 (2002).

3. Cheng, J. and Greiner, R. : Comparing Bayesian network classifiers. 15th Annual
Conference on Uncertainty in Artificial Intelligence, pp. 101–108 (1999).

4. Cheng, J. and Greiner, R. : Learning Bayesian Belief Network Classifiers: Algo-
rithms and System. 14th Biennial Conference: Advances in Artificial Intelligence,
pp. 141–151 (2001).

5. Chickering, D., Geiger, M., Heckerman, D. : Learning Bayesian networks is NP-
complete. Advanced Technologies Division, Microsoft Corporation, Redmond, WA,
Technical Report, (1994).

6. Cooper, G.F. and Herskovits, E. : A Bayesian method for the induction of proba-
bilistic networks from data. Machine Learning Journal, pp. 309–348 (1992).

7. Daly, R., Shen, Q., Aitken, S. : Using ant colony optimization in learning Bayesian
network equivalence classes. Proceedings of UKCI, pp. 111–118 (2006).

8. Daly, R. and Shen, Q. : Learning Bayesian network equivalence classes with ant
colony optimization. Journal of Artificial Intelligence Research, pp. 391–447 (2009).

9. Dorigo, M. and Stützle, T. : Ant Colony Optimization. MIT Press, (2004).
10. Friedman, N., Geiger, D., Goldszmidt, M. : Bayesian Network Classifiers. Machine

Learning Journal, pp. 131–161 (1997).
11. Friedman, N. and Goldszmidt, M. : Learning Bayesian networks with local struc-

ture. Learning in Graphical Models, Norwell, MA: Kluwer, pp. 421–460 (1998).
12. Heckerman, D., Geiger, D., Chickering, D.M. : Learning Bayesian networks: the

combination of knowledge and statistical data. Machine Learning Journal, pp.
197–244 (1995).

13. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B. :
Classification with ant colony optimization. IEEE TEC, pp. 651–665 (2007).

14. Otero, F., Freitas, A., Johnson, C.G. : cAnt-Miner: an ant colony classification
algorithm to cope with continuous attributes. Ant Colony Optimization and Swarm
Intelligence, pp. 48–59 (2008).

15. Parpinelli, R.S., Lopes, H.S., Freitas, A. : Data mining with an ant colony opti-
mization algorithm. IEEE TEC, pp. 321–332 (2002).

16. Pinto, P.C., Ngele, A., Dejori, M., Runkler, T.A., Costa, J.M. : Learning of
Bayesian networks by a local discovery ant colony algorithm. IEEE World Congress
on Computational Intelligence, pp. 2741–2748 (2008).

17. Pinto, P.C., Ngele, A., Dejori, M., Runkler, T.A., Costa, J.M. : Using a Local
Discovery Ant Algorithm for Bayesian Network Structure Learning. IEEE TEC,
pp. 767–779 (2009).

18. Salama, K.M., Abdelbar, A.M., Freitas A.A. : Multiple pheromone types and other
extensions to the Ant-Miner classification rule discovery algorithm. Swarm Intel-
ligence Journal, pp. 149–182 (2011).

19. UCI Repository of Machine Learning Databases. Retrieved Oct 2011 from,
URL:http://archive.ics.uci.edu/ml/index.html

20. Witten, H. and Frank, E. Data Mining: Practical Machine Learning Tools and
Techniques. second edition, Morgan Kauffman, (2005).

21. Yanghui, Wu., McCall, J., Corne, D. : Two novel Ant Colony Optimization ap-
proaches for Bayesian network structure learning. IEEE World Congress on Evo-
lutionary Computation, pp. 1–7 (2010).

