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Abstract. Despite the recent advances in Molecular Biology, the func-
tion of a large amount of proteins is still unknown. An approach that
can be used in the prediction of a protein function consists of searching
against secondary databases, also known as signature databases. Diffe-
rent strategies can be applied to use protein signatures in the prediction
of function of proteins. A sophisticated approach consists of inducing a
classification model for this prediction. This paper applies five hierar-
chical classification methods based on the standard Top-Down approach
and one hierarchical classification method based on a new approach na-
med Top-Down Ensembles - based on the hierarchical combination of
classifiers - to three different protein functional classification datasets
that employ protein signatures. The algorithm based on the Top-Down
Ensembles approach presented slightly better results than the other al-
gorithms, indicating that combinations of classifiers can improve the per-
formance of hierarchical classification models.

1 Introduction

Proteins are large organic compounds that perform almost all the functions
related to cell activity, such as biochemical reactions, cell signaling, structural
and mechanical functions. These large molecules consist of long sequences of
amino acids, which fold into specific structures so that the protein can function
properly.

In functional genomic, an important problem is the prediction of the function
of proteins. Due to the recent advances in Molecular Biology methods and the



consequent generation of biological data in large scale, data analysis has become
a central issue for the investigation of proteins whose functions are unknown.

An approach that can be used in the prediction of a protein function involves
searching against secondary databases, also known as signature databases. These
databases contain results of analysis performed in primary databases, which con-
tain linear sequences of amino acids, and can be used to verify the presence of
particular patterns in the query proteins. These patterns represent information
about conserved motifs in proteins, which are frequently useful to help the pre-
diction of protein functions. Protein signatures can be used to assign a query
protein to a specific family of proteins and thus to formulate hypotheses about
its function [1]. Examples of signature databases include InterPro [2], Prosite
[3], Pfam [4] and Prints [5].

Different strategies can be applied to use protein signatures in the prediction
of function of proteins. A sophisticated approach consists of inducing a classi-
fication model for this prediction. Accordingly, each protein is represented by
an attribute set, describing the presence or absence of patterns in the protein,
and a learning algorithm captures the most important relationships between the
attributes and the classes involved in the classification problem.

In the context of prediction of protein function, a classification model needs
to be induced according to a special kind of classification problem named hierar-
chical classification, since protein functional data is inherently hierarchical (for
example, the Enzyme Commission hierarchy [6]).

In this paper, three protein function datasets are analyzed - each one em-
ploying one different kind of protein signature - for a comparative study among
six hierarchical classification algorithms. The algorithm based on the Top-Down
Ensembles approach - a variation of the Top-Down approach that uses combina-
tion of classifiers for the induction of the classification model - presented better
results across the three different kinds of protein signatures - Prosite, Pfam and
Prints. The main contribution of this paper is to show that combinations of
classifiers can improve the performance of hierarchical classification models, a
result that was consistent even for different types of protein signatures.

The paper is organized as follows: Section 2 introduces important concepts of
hierarchical classification; Section 3 introduces the Top-Down Ensembles appro-
ach; Section 4 discusses the materials and methods employed in the experiments
performed in this work; Section 5 presents the experimental results; and Section
6 has the main conclusions from this work.

2 Hierarchical Classification

Classification is one of the most important problems in Machine Learning (ML)
and Data Mining (DM) [7]. Given a dataset composed of n pairs (xi, yi), where
each xi is a data item (example) and yi represents its class, a classification
algorithm must find a function, through a training or adjustment phase, which
maps each data item to its correct class.



Conventional classification problems involve a finite (and usually small) set
of flat classes. Each example is assigned to a class out of this set, in which
the classes do not have direct relationships to each other, such as subclass and
superclass relationships. For this reason, these classification problems are named
flat classification problems. Nevertheless, there are more complex classification
problems where the classes to be predicted are hierarchically related [8–10].
These problems are known in the ML literature as hierarchical classification
problems.

The classes involved in a hierarchical classification problem can be disposed
either as a tree or as a Directed Acyclic Graph (DAG). The main difference
between these structures is that, in the tree structure (Figure 1.a), each node
has just one parent node, while in the DAG structure (Figure 1.b), each node
may have more than one parent. The nodes represent the classes involved in the
classification problem and the root node corresponds to “any class”, denoting a
total absence of knowledge about the class of an object.

Fig. 1. Examples of hierarchies of classes: (a) Tree and (b) DAG.

The deeper the class in the hierarchy, the more specific and useful is its
associated knowledge in the classification of a new data item. Hierarchical clas-
sification problems often have as objective to assigning a data item into one of
the leaf nodes. It may be the case, however, that the classifier does not have
the desired reliability to classify a data item into deeper classes. In this case,
it would be safer to perform a classification into higher levels of the hierarchy.
When all examples must be associated to classes in leaf nodes, the classification
problem is named “mandatory leaf node prediction problem”. When this obliga-
tion does not hold, the classification problem is an “optional leaf node prediction
problem”.

A simple approach to deal with a hierarchical classification problem consists
of reducing it into one or more flat classification problems. This reduction is
possible because a flat classification problem may be viewed as a particular case
of hierarchical classification, in which there are no subclasses and superclasses.



However, the main disadvantage of this approach is to ignore the hierarchical
relationships among the classes, which can provide valuable information for the
induction of a classification model. Two more sophisticated approaches that
consider these relationships are the Top-Down and Big-Bang approaches [8].

The Top-Down approach uses the “divide and conquer” principle to induce
the classification model. The main idea of this approach is to produce one or
more classifiers for each node of the hierarchy. Initially, a classifier is induced
for the root node using all training examples in order to distinguish among the
classes at the first level of the hierarchy. At the next class level, each classifier
is trained with just a subset of the examples. As an example, consider the class
tree of Fig. 1(a). In this structure, a classifier associated with class node 1 would
be induced only with data belonging to classes 1.1 and 1.2, ignoring objects
from classes 2.1 and 2.2. This process proceeds until classifiers predicting the
leaf class nodes are produced. At the end of this training phase, a tree of classi-
fiers is obtained. Although this approach considers the hierarchical relationships
between the classes, each classifier is built by a flat classification algorithm. In
the test phase, beginning at the root node, an example is classified in a top-down
manner, according to the predictions produced by a classifier in each level. An
inherent disadvantage of this approach is that errors made in higher levels of the
hierarchy are propagated to the most specific levels.

In the Big-Bang approach, a classification model is created in a single run of
the algorithm, considering the hierarchy of classes as a whole, presenting then
a higher algorithmic complexity. After the classification model induction, the
prediction of the class of a new instance is carried out in just one step. For
this reason, in contrast to the other approaches, Big-Bang cannot use pure flat
classification techniques.

In this paper, only Top-Down algorithms were considered. The aim of the
experiments were to compare standard Top-Down algorithms with an algorithm
based on a variation of the Top-Down approach, described in the next section.

3 The Proposed Top-Down Ensembles Approach

A possible extension of the Top-Down approach consists of using various classifi-
ers in each node of the tree of classifiers, instead of using just one classifier. This
can be carried out through the combination of classifiers. This new approach
was named Top-Down Ensembles.

Combination methods, also known as ensemble methods, use a set of classi-
fiers to obtain the output (prediction) of the classification model [11]. The main
idea behind these methods is to induce various classifiers, also named base clas-
sifiers, from the training data. In the test phase, the output for each unseen
example is given by the combination of the outputs of the base classifiers.

For the combination of the outputs of the base classifiers, the strategy em-
ployed in this paper was to train a meta-classifier to perform this task. Initially,
all base classifiers are trained by using training examples. A new training data-
set is then produced, in which the input attributes are the outputs of the base



classifiers. One alternative to generate this new training data consists of using
the original training data as input for the base classifiers and storing the outputs
produced by them. These outputs, along with the true class (expected output)
for each example, are used to generate the new training dataset. This dataset
is then used to induce the meta-classifier, which is in charge of combining the
outputs from the base classifiers. In the test phase, the examples are given as
inputs for each base classifier and the outputs of these classifiers are given as
inputs of the meta-classifier, which performs the final classification.

The main motivation for exploiting Top-Down algorithms based on ensemble
methods is the advantage of using the combined power of several techniques
instead of choosing just one of them to induce the classifier in each node of the
class hierarchy.

4 Materials and Methods

This section presents the materials and methods employed in the experiments.

4.1 Datasets

Three datasets involving G-Protein-Coupled Receptors (GPCRs) were used in
the experiments reported in this paper. In each dataset, the GPCR sequences
were described through one kind of protein signature, allowing the comparison
of the results of an algorithm across three different protein signatures - Pro-
site, Pfam and Prints. These datasets were first proposed in [12], but they were
modified for the purpose of our experiments, as explained later.

GPCRs are particularly important for medical applications due to the im-
portant influence of this type of protein in the chemical reactions within the cell.
According to [13], 40% to 50% of current medical drugs interact with GPCRs.
The protein functional classes of GPCR are given by unique hierarchical indexes
in the GPCRDB [14]. The GPCR classes are arranged in the structure of a tree,
with four levels - where the top-level refers to generic classes, which are divided
into sub-classes, and so on, up to the fourth level.

In essence, the protein signatures used in the datasets have the following
characteristics. Prosite signatures are regular expressions or patterns describing
short fragments of protein sequences that can be used to identify protein do-
mains, families and functional sites. Currently, the Prosite database stores pat-
terns and profiles specific for more than a thousand protein families or domains.
Each of these signatures comes with documentation providing background in-
formation on the structure and function of these proteins [15]. Pfam signatures
are based on multiple alignments and Hidden Markov Models (HMMs), which
consider probability theory methods, allowing a direct statistical approach to
identify and score matches. Prints signatures are based on a pattern recognition
approach named “fingerprinting”. Such signatures use several motifs to identify
an unknown protein rather than just one motif. This renders fingerprinting a



powerful diagnostic technique, because there is a higher chance of identifying a
distant relative, even though mismatches with some motifs may have occurred.

The three datasets were constructed from data extracted from UniProt [16],
a well-known protein database, and GPCRDB [14], a database specialised on
GPCR proteins. In each of the three datasets, each protein signature was encoded
as a binary attribute, where 1 indicates the presence of a protein signature and 0
its absence. Additionally, all datasets contain the attributes “molecular weight”
and “sequence length”.

Besides the preprocessing steps explained in [12], another preprocessing step
was included because a small subset of data belonged only to internal nodes of
the hierarchy. As the developed algorithms consider mandatory leaf node predic-
tion, some problems could take place during the evaluation of the classification
model. Suppose that an example belonging to an internal node was classified
into a class represented by a leaf node. During the evaluation, it would not be
possible to answer whether the prediction to the more specific node was success-
ful or not. Therefore, examples belonging to internal nodes were not used in the
experiments.

In Table 1, the configuration obtained after preprocessing of the three data-
sets, regarding the total number of examples, number of predictor attributes and
number of classes per level (number of classes at level 1/2/3/4, respectively), are
shown. As can be noticed in the table, the fourth level of the class hierarchies
contain less classes than the third levels. It occurs because of the presence of
several leaf nodes in the third level of these hierarchies. Some leaf-nodes are also
present in the first and second levels.

Table 1. Total number of examples, number of predictor attributes and number of
classes per level (number of classes at level 1/2/3/4, respectively) of the three datasets
used in the experiments.

Examples Attributes Classes per level

Prosite 5728 127 9/50/79/49

Pfam 6524 73 12/52/79/49

Prints 4880 281 8/46/76/49

All datasets were divided according to the 5-fold cross-validation methodo-
logy. Accordingly, each dataset is divided into five parts of approximately equal
size. At each round, one fold is left for test and the remaining folds are used in
the classifiers training. This makes a total of five train and test sets. The final
accuracy rate of a classification model is given by the mean of the predictive
accuracies on the test sets from cross-validation.



4.2 Top-Down hierarchical classification techniques

For developing the algorithm based on the hierarchical combination of classifiers,
five different ML techniques selected, following distinct learning paradigms: De-
cision Trees [17], induced with the C4.5 algorithm [18]; Sets of Rules induced by
the RIPPER algorithm [19]; Support Vector Machines (SVMs) [20]; K-nearest
neighbors (KNN) [21]; and Bayesian Networks (BayesNet) [22]. In order to com-
bine the outputs of the base classifiers, another classifier was used. For each node
of the class hierarchies, the technique that induces the meta-classifier is chosen
among the ML techniques used to produce the base classifiers - the five ML
techniques previously mentioned. The adopted criterion consists of selecting the
technique whose classifier presents the highest accuracy for the original training
set.

In order to compare the results from the algorithm based on the Top-Down
Ensembles approach with the other algorithms, the experiments also included
five standard Top-Down hierarchical algorithms: one algorithm for each one of
the five ML techniques employed in the hierarchical combination of classifiers.

All the Top-Down algorithms were implemented using packages from the R
tool [23]. The following packages were used: e1071 [24] and RWeka [25]. The
package e1071 was used to generate classifiers based on SVMs. The package
RWeka was used to generate classifiers for the other ML techniques. The default
parameters were adopted for all techniques, except for SVM. For this technique,
two parameters were modified: the cost was set to 100 and γ in the Gaussian
Kernel was set to 0.01. These values were adopted because they are often used in
previous works involving SVMs, presenting good results. Besides, the continuous
attributes were normalized before their use by SVMs. For the other techniques,
the normalization was not necessary, either because this procedure does not affect
their results or because the technique internally implements this procedure.

4.3 Evaluation of the classification models

The evaluation of the classification models was carried out level by level in
the classification hierarchy. For each hierarchical level, a value resulting from
the evaluation of the predictive performance in the level is reported through a
measure called depth-dependent accuracy. This measure is based on an approach
of attributing misclassification costs proposed in [26].

This approach takes into account that classes closer in the hierarchy tend to
be more similar to each other than classes more distant, and that predictions
in deeper levels are more difficult. Thus, misclassification costs for classes more
distant are higher than misclassification costs for classes closer to each other,
and misclassification costs in the shallower levels are higher than in the deeper
levels. Accordingly, weights are attributed to the edges of the class tree and the
misclassification costs are defined as the shortest weighted path between the true
class and the predict class.

In the calculation of the depth-dependent accuracy, the misclassification cost
of each prediction is initially estimated through the division of the shortest



weighted path between the true class and the predicted class by the value of
the farthest weighted path from the node that represents the true class (i.e,
the more distant class). After calculating the normalized distance for each mis-
classification (for each test example), an average of all normalized distances is
obtained. This average is the error rate of the classification model. Once the
error rate is obtained, the accuracy is defined by the complement of this value.
The final accuracy rate of the classification model is then given by the mean of
the predictive depth-dependent accuracies on the test sets generated by using
5-fold cross-validation.

The weights used in the edges of the hierarchy for calculating the depth-
dependent accuracy were: (0.26,0.13,0.07,0.04), where 0.26 is the weight of an
edge between the root node and any of its subclasses (i.e, the classes of the first
level), 0.13 is the weight of an edge between a class in the first level and any of
its subclasses, and so on. These weights were used originally in [12].

Statistical tests were employed in order to verify statistical significances (at
95% of confidence level) among the results from the several hierarchical classifi-
cation models induced. The statistical test employed was the corrected t-Student
for paired data, which considers the differences of results between pairs of classifi-
ers in the cross-validation test sets [27]. As multiple comparisons are performed,
the significance level of the tests was adjusted with the Bonferroni correction
strategy [28], so the level of significance was set to 1%.

5 Experiments

Experiments were performed in order to evaluate the hierarchical classification
methods described in Section 4.2 using the datasets described in Section 4.1.

5.1 Results

The results obtained for the investigated algorithms in the GPCR datasets are
illustrated in tables 2, 3 and 4. These tables show, for each level of the GPCR
hierarchy, the mean depth-dependent accuracy rates of the hierarchical classi-
fiers for the 5-fold cross-validation partitions. The standard deviation rates of
the accuracies obtained in the cross-validation data partitions are shown in pa-
rentheses. The best results for each dataset and hierarchy level are highlighted
in boldface.

5.2 Discussion

It can be observed from tables 2 to 4 that TD-Ens in general performed better
for all levels of the three datasets employed. Only in two cases out of twelve
TD-KNN showed a higher accuracy value. These results show that the Top-
Down Ensembles approach may be considered promising and that combinations
of classifiers can improve the performance of hierarchical classification models.



TD-KNN TD-C4.5 TD-SVM TD-RIPPER TD-BayesNet TD-Ens

88.06 (0.51) 87.92 (0.51) 84.37 (0.28) 86.70 (0.69) 85.00 (0.88) 88.35 (0.94)

82.68 (0.65) 82.36 (0.60) 77.83 (0.36) 80.24 (0.78) 78.37 (0.86) 82.86 (0.86)

76.99 (0.52) 76.68 (0.68) 70.52 (0.31) 73.53 (0.87) 71.88 (0.44) 76.83 (0.68)

73.40 (0.41) 72.31 (1.26) 63.77 (0.65) 70.63 (1.69) 66.80 (0.83) 72.73 (0.61)

Table 2. Mean depth-dependent accuracy results in the GPCR dataset that employs
Prosite signatures

TD-KNN TD-C4.5 TD-SVM TD-RIPPER TD-BayesNet TD-Ens

92.90 (0.50) 92.66 (0.46) 92.55 (0.24) 91.74 (0.30) 89.88 (0.71) 93.01 (0.68)

86.34 (0.44) 85.99 (0.62) 82.69 (0.34) 83.83 (0.51) 81.16 (0.61) 86.62 (0.74)

78.34 (0.56) 78.03 (0.63) 75.86 (0.37) 75.20 (0.60) 72.77 (0.72) 78.48 (0.73)

70.05 (1.25) 68.51 (1.08) 57.85 (0.68) 66.47 (1.00) 61.25 (1.20) 70.15 (1.19)

Table 3. Mean depth-dependent accuracy results in the GPCR dataset that employs
Pfam signatures

TD-KNN TD-C4.5 TD-SVM TD-RIPPER TD-BayesNet TD-Ens

92.52 (0.55) 91.02 (0.54) 91.74 (0.75) 90.43 (0.22) 86.78 (0.71) 92.75 (0.57)

90.72 (0.66) 88.78 (0.48) 89.18 (0.84) 87.38 (0.17) 83.36 (0.79) 90.96 (0.69)

86.25 (0.77) 84.11 (0.48) 84.23 (0.53) 82.28 (0.13) 77.24 (1.02) 86.18 (0.77)

85.25 (1.40) 81.35 (1.58) 81.22 (2.26) 78.10 (1.60) 72.21 (1.31) 85.35 (2.40)

Table 4. Mean depth-dependent accuracy results in the GPCR dataset that employs
Prints signatures



Among the standard Top-Down algorithms, TD-KNN obtained better results
than the other algorithms for all datasets.

Comparing statistically the results of the standard top-down hierarchical
classifiers to those of TP-Ens, some differences were detected at 95% of confi-
dence. For instance, TD-Ens was better than TD-BayesNet for all levels of all
datasets. TD-Ens was better than TD-SVM for all levels of Prosite dataset, for
levels two and three from Pfam dataset and for the last level of the Prints da-
taset. Compared to RIPPER, TD-Ens was better in levels two and three from
Prosite dataset, in the third level of Pfam and in all levels of Prints dataset.
TD-Ens was also better than TD-C4.5 for levels two and four from Prints da-
taset. No statistical difference was found between the results of TD-KNN and
TD-Ens.

For all algorithms a decrease of performance may also be observed for deeper
classes in the hierarchies. This behavior can be attributed to two facts: (1) the
propagation of errors from general levels to the specific levels, a characteristics
inherent to the Top-Down approach; and (2) the predictions in deeper levels are
more difficult.

In an analysis of the predictions of the different classifiers obtained by each
classification technique in the test phase, a low diversity of results was observed.
In other words, the classifiers commit in general common hits and mistakes,
that is, similar predictions. A diversity of predictions is important to improve
the predictive performance of an ensemble of classifiers. Although the diversity
between the classifiers was not large, it was still useful to improve the predictive
performance of TD-Ens compared to the isolate algorithms.

Regarding the results in different datasets, all algorithms showed a similar
predictive behavior in terms of accuracy rate. In general, all algorithms perfor-
med better for Prints dataset, followed by Pfam and Prosite, in this order. In
datasets Pfam and Prints the predictive performances were close in the first layer,
but this difference raises for the other levels. The worst results were obtained in
Prosite dataset, except from its last level.

6 Conclusions

In this paper, we presented a comparative study of six hierarchical classification
algorithms for different kinds of protein signatures - Prosite, Pfam and Prints.
Five of the algorithms were developed according to the standard Top-Down
approach, using the following ML techniques: C4.5, RIPPER, SVMs, KNN and
BayesNet. The results from these algorithms were compared with the results of
an algorithm based on a variation of the Top-Down approach named Top-Down
Ensembles approach, which combines results from classifiers induced by the five
ML techniques previously mentioned.

In order to evaluate the performance of these algorithms, experiments were
performed using three bioinformatics datasets, which are related with G-Protein-
Coupled Receptors (GPCRs). Each dataset was generated based on one of the



three protein signatures considered in this work, allowing the comparison of the
results of an algorithm across different kinds of protein signatures.

According to the experimental results, TD-Ens outperformed the other algo-
rithms for all datasets, with some exceptions. Therefore, the results of the Top-
Down Ensembles approach may be considered promising. This indicates that
combinations of classifiers can improve the performance of hierarchical classifi-
cation models. Among the standard Top-Down algorithms, TD-KNN obtained
better results than the other algorithms for all datasets.

As the algorithms investigated in this work were developed to deal with
class hierarchies structured as trees, strategies to extend them to the context of
hierarchies structured as DAGs should be addressed in future research. Besides,
the authors plan to investigate the performance of the hierarchical approaches for
optional leaf node predictions, eliminating the restriction that the classifications
occur in the leaf nodes only. The authors also plan to investigate the use of
diversity measures for the selection of base classifiers in the Top-Down Ensembles
approach. Finally, it would be of great interest to investigate the use of different
kinds of protein signatures in the same dataset.

Acknowledgments. The authors would like to thank the Brazilian research
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