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Summary. Most classification problems associate a single class to each example 

or instance. However, there are many classification tasks where each instance can 

be associated with one or more classes. This group of problems represents an area 

known as multi-label classification. One typical example of multi-label 

classification problems is the classification of documents, where each document 

can be assigned to more than one class. This tutorial presents the most frequently 

used techniques to deal with these problems in a pedagogical manner, with 

examples illustrating the main techniques and proposing a taxonomy of multi-label 

techniques that highlights the similarities and differences between these 

techniques. 

1 Introduction 

Machine Learning (ML) is a sub-area of Artificial Intelligence (AI) concerned with 

the induction of a model through a learning process. A particular area of ML, 

named Inductive Learning, consists of techniques that induce these models by 

using a set of previously known instances or examples, called training instances. 

After the model has been induced, it can then be applied to new, previously unseen, 

data.  

ML models have been applied to a wide range of tasks. These tasks can be broadly 

divided into five main classes: Association, Classification, Regression, Clustering 

and Optimization tasks. This paper is concerned with classification tasks, which 

can be formally defined as:  

 

Given a set of training examples composed of pairs {xi, yi}, find a 

function f(x) that maps each attribute vector  xi to its associated class yi, i 

= 1, 2, …, n, where n is the total number of training examples.  

 

Once it has been trained, the classification model can have its predictive accuracy 

estimated by applying it to a set of new, previously unknown, examples. Its 

accuracy measure for these new instances estimates the generalization ability 

(predictive accuracy) of the classification model induced. 

Classification problems can be categorized according to the number of class labels 

that can be assigned to a particular input instance. The most common approach is 

to have mutually exclusive classes. For example, suppose a document classification 

problem where each document should be classified according to the language it 

was written. If a document could be written in just one idiom and the possible 



idioms were Chinese, English, French, German, Portuguese and Spanish, each 

document would be classified in one and only one of these six classes. In this case, 

each input instance is assigned to only one of the possible classes. This is known as 

single-label classification. Most of the classification problems investigated in ML 

are single-label classification problems.  

However, there is a large number of relevant problems where each instance can be 

simultaneously associated with more than one class. These problems, where the 

classes are not disjoint, are known as multi-label classification problems.  

The majority of the works on multi-label classification started as an attempt to deal 

with ambiguities found in document classification problems [51]. In a document 

categorization problem, each document may simultaneously belong to more than 

one topic or label. For example, a document can be classified as belonging to 

Computer Science, Physics and Application, another document can be assigned to 

the areas of Biology and Theory and a third can be a Mathematics document 

related to an Application in Physics. This problem would then have at least six 

classes or labels (Computer Science, Physics, Application, Biology, Theory and 

Mathematics). Even now, text classification is the main application area of multi-

label classification techniques [21][24][26][28][29][30][36][42][48][50]. However, 

relevant works can also be found in areas like bioinformatics [11] [51], [14], 

medical diagnosis [25], scene classification [4][37] and map labeling [53].  

Different approaches have been proposed in the literature for dealing with multi-

label problems. One of them combines single-label classifiers to deal with the 

multi-label classification task. A second approach modifies single-label classifiers, 

by the adaptation of their internal mechanisms, to allow their use in multi-label 

problems. A third group proposes new algorithms specifically designed to deal 

with multi-label problems. 

This text is organized as follows. In the next section, the main methods found in 

the literature for dealing with multi-label classification are organized and 

described. First, the authors define the structure and main characteristics of multi-

label problems, without worrying about the learning algorithms used. Later, the 

authors discuss some algorithm specific approaches. Section 3 discusses how new 

instances can be classified in a multi-label environment. Section 4 has the final 

considerations and main conclusions of this work. 

2. Categorizing Multi-Label Classification Problems 

In a trained classifier, a probability can be associated with each one of the existent 

classes and then be used for the classification of a new example. Thus, if the 

problem has N classes, a probability pi, 1 ≤ i ≤ N, where 0 ≤ pi ≤ 1, is assigned to 

each class. If the system is trained for single-label classification, there is a 

restriction that ∑pi = 1. For a multi-label problem, this restriction is not adopted.  

According to [13], binary classification, multi-class classification and ordinal 

regression problems can be seen as special cases of multi-label problems where the 

number of labels assigned to each instance is equal to 1. 

Some of the solutions to multi-label problems are restricted to binary classification. 

However, the largest number of methods found in the literature are used for are 

multi-class problems. For multi-class problems, the main focus of this text, the 

original multi-label problem is converted to one or more single-label problems.  



 In order to illustrate the different methods found in the literature for multi-label 

classification problems, these methods are organized in a hierarchical structure in 

Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Methods used in Multi-Label Classification Problems 

 

According to Figure 1, the existing methods can be divided into two main 

approaches: algorithm independent and algorithm dependent. The next sections 

describe the main characteristics of the methods belonging to each approach.  

2.1 Algorithm Independent Approach 

The algorithm independent multi-label methods can be used with any learning 

algorithm. In this approach, a multi-label classification problem is usually dealt 

with by transforming the original problem into a set of single-label problems. This 

transformation can be based on either the class labels, named label-based, or the 

instances, named instance-based.  

 

Label-based transformation 

 

In the label-based transformation, N classifiers, where N is the number of classes, 

are used in the multi-label problem. Each classifier is associated with one of the 

classes and trained to solve a binary classification problem, its class against the 

others. For this reason, this approach is also known as the binary approach or cross-

training [4]. Any classifier can be used for binary classification. Many popular 

classifiers can deal only with binary classification problems. 

As an example of the use of this approach, suppose a multi-label problem, 

illustrated by Figure 2, with 3 classes or labels. Since one classifier should be 

associated with each class, 3 classifiers would be trained. The multi-label problem 

with 3 classes is then divided into 3 binary problems, one for each class. The i
th
 

classifier would be trained to classify examples from the i
th
 class as positive and 

examples from the remaining classes as negative. Therefore, each classifier would 
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be specialized for a particular class. After the classifiers are trained, whenever a 

previously unknown example is presented, the classes whose classifier produced a 

positive label are assigned to it [1]. 

One of the first works in multi-label classification was due to [25]. In this work, the 

authors investigated the use of Decision Trees, DTs, in multi-label problems. They 

proposed a tree-based model, named MULTI-α, which divides the original multi-

label problem into N single-label sub-problems, where N is the number of classes. 

Thus, for each class Ci, 1 ≤ i ≤ N, it generates a decision tree using the classes Ci 

and ¬Ci. The outputs above a threshold value are assumed to be correct. The set of 

outputs produced by the individual classifiers provide the system’s final decision. 

The method was evaluated in a medical diagnosis problem. It is possible to see that 

this method is similar to one of the algorithm-independent methods, the Label-

based transformation. 

Similarities can be found between the label-based transformation and the one-

against-all approach employed for multi-class problems [23]. However, the one-

against–all approach is employed to allow the solution of problems with more than 

two classes using binary classifiers. Another difference is that, in a multi-class 

problem, each example is assigned to only one class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Label-based transformation 

 

This approach assumes that the labels of an instance are independent among 

themselves, which is not always true. By ignoring the possible correlation between 

labels, this approach may lead to poor generalization ability. 

A label-based transformation is reversible, since it is possible to recover the 

original multi-label problem from the new single-label problem. It requires N 

classifiers, where N is the number of classes. 

 

Instance-based transformation 
 

In the transformation based on instances, named instance-based, the set of labels 

associated to each instance is redefined in order to convert the original multi-label 

problem into one or more single-label problems. In this redefinition, one or more 

classification problems can be produced. Different from label based 

Multi-Label Problem: 

 

Instance       Classes 

     1             A, B 

     2              A 

     3            A, C 

     4            C 

     5            B 

     6            A  

Single-Label Problem: 

 

Classifier   Positive      Negative 

     A           1, 2, 3, 6     4, 5 

     B           1, 5             2, 3, 4, 6           

     C           3, 4             1, 2, 5, 6 



transformations, which produce only binary classification problems, instance based 

transformations may produce both binary and multi-class classification problems.  

 Three different groups of strategies have been proposed in the literature for 

instance-based transformation: 

 

• Elimination of multi-label instances; 

• Creation of new single-labels using the existent multi-labels, here named 

conversion 

• Conversion of multi-label instances into single-label instances: 

• Simplification; 

• Decomposition: 

• Additive; 

• Multiplicative. 

 

Instance elimination is the simplest, but probably the least effective instance-based 

strategy. It does not solve the original multi-label problem. The elimination of 

those instances with more than one label will change the current problem into 

another, much simpler problem, possibly not as relevant as the previous one.  An 

example of the use of this approach is shown in the Figure 3. According to this 

figure, the multi-label instances, 1 and 3, are eliminated in order to transform the 

original multi-label problem into a single-label problem. The negative aspect of 

this approach is that the instances eliminated can represent relevant information to 

characterize the problem domain.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Elimination of instances with more than one label 

 

For protein classification, for example, many proteins have more than one function. 

How would the user be able to predict the other functions? The elimination of these 

proteins from the data set would significantly reduce the significance of the model 

induced by the classifier. Since it is not possible to find out, in the new single-label 

problem, which instances were eliminated, this method is irreversible. It does not 

change the number of required classifiers.  

Multi-Label Problem: 

 

Instance       Classes 

     1           A, B 

     2           A 

     3           A, B 

     4           C 

     5           B 

     6           A  

Single-Label Problem: 

 

Instance  Class 

     2            A 

     4            C  

     5            B 

     6              A  



There are other methods reported in the literature that, although classifier 

independent, aim to improve the performance by pre-processing the data set rather 

than naively eliminating all multi-label instances. In [20], the authors propose the 

removal of the instances close to the decision hyperplane and the elimination of the 

instances in the confusing classes. The confusing classes are defined using the 

confusion matrix.  

When label creation is adopted, each possible combination of more than one class 

is converted to a new single class (label). The combination of the original classes 

can largely increase the number of classes and result in some classes with very few 

instances. This problem becomes increasingly worse as the number of possible 

labels for each instance increases. Figure 4 illustrates this approach. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Creation of new classes 

 

It can be easily observed in this figure that the labels of the two multi-label 

instances, 1 and 3, which were A and B in both cases, were combined to create a 

new label, D. 

The labels associated with each instance in the original multi-label problem are not 

lost in the creation of the new labels for the single-label problem. The number of 

classifiers is the same in both problems if a multi-class classifier is used. However, 

if a binary classifier is used, the number of classifiers required increases, by 

comparison with the original multi-label problem. 

For the case of label conversion, there are two variations. The first variation 

transforms each multi-label instance into a single label instance. It is named label 

simplification. In the second variation, named label decomposition, each multi-

label instance is decomposed into a set of single-label instances. 

When transforming a multi-label instance into a single-label one, if the instance has 

more than one label, one of its labels is selected. The other labels are just 

eliminated. Two alternatives can be followed for the label selection. This procedure 

can either use a deterministic criterion, selecting from the labels associated with the 

instance the most likely to be true, or randomly select one of the labels. Figure 5 

shows an example of this approach. 

 

Multi-Label Problem: 

 

Instance               Classes 

     1          A, B 

     2          A 

     3          A, B 

     4          C 

     5          B 

     6          A  

Single-Label Problem: 

 

Instance              Class 

     1         D 

     2         A 

     3         D 

     4         C 

     5         B 

     6         A  



 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Transform by label elimination of a multi-label problem into a set of single-

label problems 

 

It is easy to see in this example the simplification of the two multi-label instances, 

1 and 3, by randomly selecting one of the labels, in both cases A and B, associated 

with each of them. As a result, the label A was randomly assigned to the instance 1 

and the label B was randomly associated with the instance 2. 

The selection of one of the labels will over-simplify the problem. Suppose that the 

classification problem involves the functional classification of a protein. A protein 

with more than one function would be classified as having just one of the 

functions, thus ignoring possibly relevant information.  

If the deterministic criterion is adopted, it is possible to return to the original multi-

label problem from the new single-label problem. If the random criterion is chosen, 

this return is not possible. The same number of classifiers is generally used in the 

multi-label and the single-label problems. 

In the decomposition approach, the original multi-label problem with N classes and 

M instances is divided into K sets of single-label problems. The value of K varies 

from 1, when no instance has more than one label, to (N-1)
M

, if all the instances 

have N-1 labels. Two alternatives can be employed for this approach: the additive 

method and the multiplicative method. 

In the additive method, for each instance, each of the possible labels is considered 

to be the positive class in sequence. Therefore, the number of classifiers is given by 

∑ι (li-1), where li is the number of labels in the i
th
  instance. Thus, if the labels A, B 

and C appear in the multi-label instances, when the classifier for the class A is 

trained, all the multi-label instances that have the label A become single-label 

instances for the class A. The same happens for the other labels. This method was 

proposed in [37] and is named cross-training.  

The number of classifiers, K, is equal to the number of labels that belong to at least 

one multi-label instance. This method allows the recovery of the original multi-

label problem from the new single-label problems. Figure 6 illustrates this method. 

For this situation, the number of classifiers is given by 1 + 1 = 2. 

 

Multi-Label Problem: 

 

Instance       Classes 

     1  A, B 

     2  A 

     3  A, B 

     4  C 

     5  B 

     6  A  

Single-Label Problem: 

 

Instance       Class 

     1  A 

     2  A 

     3  B 

     4  C 

     5  B 

     6  A  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Transform by decomposition of a multi-label problem into a set of single-

label problems 

 

For classifiers based on density estimation, this method may favor the multi-label 

instances [37]. The authors argue that the multi-label instances are likely to be 

closer to the decision boundaries, making the use of SVMs very suitable. They also 

say that if the proportion of multi-label samples is too high, a sampling technique 

can be employed to use a subset of them for each classifier. 

The second decomposition method, here named multiplicative, is similar to another 

approach employed to divide multi-class problems into a set of binary problems, 

the one-against-one approach [23]. In this case, a combination of all the possible 

single-label classifiers is used.  

The number of classifiers is given by ∏li, which is the product of the number of 

labels for each instance. Figure 7 illustrates this approach. In this case, the number 

Multi-Label Problem: 

 

Instance       Classes 

     1  A, B 

     2  A 

     3  A, B 

     4  C 

     5  B 

     6  A  

Single-Label Problem 1: 

 

Instance       Class 

     1  A 

     2  A 

     3  A 

     4  C 

     5  B 

     6  A  

Single-Label Problem 2: 

 

Instance       Class 

     1  B 

     2  A 

     3  B 

     4  C 

     5  B 

     6  A  



of classifiers would be equal to 2x1x2x1x1x1 = 4. This method is clearly not 

scalable, since the number of classifiers grows exponentially with the number of 

labels in the instances. It is easy to see that the previous additive method produces 

a subset of the single-label problems generated by this method.  This method is 

reversible, allowing the restitution of the original multi-label problem. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Decomposition of a multi-label problem into a set of single-label problems 

according to the multiplicative method 

Multi-Label: 

 

Instance     Classes 

     1              A, B 

     2  A 

     3  A, B 

     4  C 

     5  B 

     6  A  

Single-label 3: 

 

Instance       Class 

     1  B 

     2  A 

     3  A 

     4  C 

     5  B 

     6  A  

Single Label 4: 

 

Instance       Class 

     1  B 

     2  A 

     3  B 

     4  C 

     5  B 

     6  A  

Single Label 2: 

 

Instance       Class 

     1  A 

     2  A 

     3  B 

     4  C 

     5  B 

     6  A  

Single-Label  1: 

 

Instance       Class 

     1  A 

     2  A 

     3  A 

     4  C 

     5  B 

     6  A  



 

Although the multiplicative decomposition method minimizes the deficiencies of 

those previous approaches where labels were combined or eliminated, the former, 

like the label creation method, does not take into account the 

interactions/correlations that can exist between the labels of a particular instance. 

As seen in this section, different methods have been proposed in the literature for 

the algorithm independent approach. Table 1 summarizes the main characteristics 

of these methods. 

Table 1. Summary of the algorithm-independent methods 

 

Transformation 

Approach 

Transformation 

Reversibility 

Number of 

classifiers 

Number of 

instances 

Label-based Yes L Same 

Instance Elimination No Same Reduced 

Label Creation Yes Same Same 

Label Elimination  

depends on the elimination 

criterion 

Same Same 

Label Decomp. Add. Yes ∑ (li-1) Increased 

Label Decomp. Mult. Yes ∏li Increased 

 

 

According to this table, where L represents the Number of labels and li the number 

of labels in the i
th
 instance, the methods differ, mainly, in the reversibility, number 

of classifiers used and size of the data set after the transformation.  

In [20], the authors change the input instances, represented by feature vectors, in 

order to explore the co-occurrence of relationships among the classes. They do so 

by expanding a feature set, adding a new feature for each label. Next, the 

algorithm-dependent methods are introduced. In  [19], dependencies between the 

different labels are explored through a collective approach. It does so by learning 

parameters for each possible pair of labels. 

2.2 Algorithm Dependent Approach 

 

As the name of this approach suggests, the methods following this approach have 

been proposed to specific algorithms. The advantage of this approach is that, by 

concentrating on a particular algorithm, the method may present a better 

performance in difficult real-world problems than the algorithm independent 

approaches. 

 

Decision Trees 

 

An extension of the alternating decision tree learning algorithm [17] for multi-label 

classification is also proposed in [12]. The alternating decision tree learning 

algorithm induces Alternating Decision Trees, a generalization of DTs. Its 

inductive principle is based on boosting.  The proposed multi-label version is based 

on AdaBoost [16] and ADTBoost [17] This multi-class algorithm extends ADTs by 



decomposing multi-class problems using the one-against-all approach.  

In another work with DTs [11], the authors modify the C4.5 algorithm [32] for the 

classification of genes according to their function. A gene of the yeast S. cerevisiae 

may simultaneously belong to more than one class. Thus, this is a typical multi-

label problem. The C4.5 algorithm uses a measure of entropy to define the tree 

nodes. This measure was originally defined for single-label problems. The authors 

modified the formulae in order to allow its use in multi-label problems. Another 

modification was the use of leaves of the tree to represent a set of class labels. 

When the leaf reached in the classification of an instance contains a set of classes, a 

separate rule is produced for each class. The authors claim that they could also 

have produced rules that predict a set of classes and improve the comprehensibility 

of the rules generated. 

 

Support Vector Machines 

 

Several of the recent works in multi-label classification employ Support Vector 

Machines (SVMs) [46]. SVMs are Large Margin Classifiers (LMC) [2] that 

minimize the ranking loss. LMC are ML techniques that place the decision frontier 

in a position that maximizes the distance between itself and the patterns belonging 

to each class. 

The binary decomposition approach for multi-label problems has been partially 

studied in [33]. In this work, the authors investigate the use of SVMs for the multi-

label classification of gene functional categories. The authors used a heterogeneous 

data set, generated by the combination of two data sets: gene expression data and 

phylogenetic profiles. According to the authors, this combination provided a more 

accurate picture of overlapping subsets of the gene functional classes. As a result, it 

leads to a better classification performance. They also observe that this 

improvement is not uniformly distributed among the different classes, thus the 

combination should only be tried if there is evidence of its benefits.  

In [13], a similar method based on SVMs is proposed by the authors. In this paper, 

the authors also propose a new feature selection method for multi-label data sets. In 

another paper from the same authors, [14], they propose Rank-SVM, a linear 

model based on Kernel functions. As the name might suggest, this model follows 

the ranking approach and minimizes the ranking loss. For this model, the authors 

define a ranking system, which orders the labels according to their output value, 

and a predictor for the number of labels to be selected, named threshold-based 

method. This model is compared against a Binary-SVM model for multi-label 

classification and Boostexter using a bioinformatics data set, the Yeast data set. 

This data set contains the gene expression levels and phylogenetic profiles of 

selected genes. The target function is the prediction of the functional classes of a 

gene.  In the experiments carried out, Rank-SVM outperformed the other two 

models. 

One more method based on SVMs is proposed in [1]. When SVMs are employed 

for multi-label classification problems, the classification task is divided among 

several SVMs. The processing time is proportional to the number of kernel 

computations performed. The authors employed modified SVMs, which allows the 

simultaneous training of a set of SVM classifiers by using a single optimization 

procedure. In their approach, a single optimization procedure for the classifiers 

allows a shared use of the kernel matrix information among them. As a result, a 



reduction in the learning complexity and training time are obtained, without loss in 

the classification performance. The performance of the proposed model was 

evaluated using a set of documents in a text mining task. 

A set of SVMs was also adopted by [40], where a multiclass problem was 

decomposed into a set of binary problems using the one-against-all strategy. 

Experiments were performed using a data set of protein subcellular localization 

prediction. Kernel functions are also used in [31] [34] and [35].  

 

Other Techniques 

 

Zhang and Zhou propose in [51] a new multi-label learning algorithm based on K-

NN, named ML-kNN. This model uses a lazy-learning approach. For each 

instance, the labels associated with the k-nearest neighbor instances are retrieved. 

A membership counting function is employed to count the number of neighbors 

associated with each label. The maximum a posteriori principle is used to define 

the label set for a new instance. The authors compare the performance of their 

algorithm against SVMs, ADTBoost.MH and BoosTexter. They use in the 

comparison the Hamming Loss, One-error, Coverage, Ranking Loss and Average 

Precision. In the experiments, they used the same Yeast gene functional data set 

used by [13]. In this data set, the maximum number of labels can be larger than 

190. The results were very similar to those obtained by the other approaches. 

Specific parametric mixture models are proposed by [44] [45] for multi-label and 

multi-class classification. The method was used for document classification using 

web pages. The experimental results were compared to several ML techniques, like 

Naive Bayes, K-NN and SVMs. 

Two extensions of the Adaboost algorithm to enable their efficient use in multi-

label problems are proposed and investigated in [38] [39]. The first extension is a 

modification of the evaluation of the prediction performance of the induced model 

by checking its ability to predict the correct set of labels for an input instance. The 

second extension changes the goal of the learning model to be the prediction of a 

ranking of labels for each input instance. The model is evaluated by its ability to 

correctly predict the high-ranking labels. These methods were evaluated using 

document classification data. Another work based on boosting was investigated in 

[49]. In this work, the author proposed an ensemble approach that is independent 

on the base classifier used. The proposed approach was applied to synthetic data 

and real multimedia data. 

A multi-label learning algorithm based on class association rules is proposed in 

[41]. The algorithm, named multi-class multi-label associative classification 

(MMAC), is divided into three modules: rules generation, recursive learning and 

classification. Three measures for accuracy evaluation were also investigated in 

this work. 

In [18], a maximal figure–of-merit (MfoM) learning algorithm initially proposed 

by three of the authors to binary classification is generalized for multi-label 

problems.  The algorithm is experimentally compared with other ML algorithms in 

a text classification task.  

In [22] the authors propose a new multi-label approach for dealing with data flows. 

For such, they use active learning in order to perform online multi label learning. 

Their approach is evaluated in a content-based video search application. 



Finally, in [53], a classification algorithm based on entropy is used for 

information retrieval. In this work, the authors use their model to explore 

correlations among categories in multi-labelled documents. 

3. Performance Evaluation 

Finally, it is necessary to define how to evaluate the classification results. Different 

from single-label classification, where the classification of an instance is either 

correct or wrong, in multi-label tasks, the result can also be partially correct (or 

partially wrong).  These would be the cases where the classifier correctly produces 

at least one of the correct labels but either misses one or more of the labels that 

should be assigned or includes one or more wrong labels in the list of assigned 

labels.  

A few measures have been proposed and investigated to evaluate multi-label 

classifiers [25] [4]  [37][41] [51]. The evaluation criteria can be based on either the 

multi-label classification made by a classifier, which uses the labels produced by 

the classifier for a given instance, or a ranking function, which uses the ranking 

position associated with each label by the classifier for a particular instance.  

A similar division is proposed in [14], which divides the methods used to define 

the cost function into binary approach and ranking approach. In the binary 

approach, an output vector with the number of elements equal to the number of 

classes is used. Given an input vector, a sign function defines the value of each 

element of the output vector. Those elements with positive values are the labels for 

the input instance. Thus, a binary classifier can be used for each output element or 

class. Figure 8 illustrates this binary representation approach. It is interesting to 

notice that a neural network with three output nodes could be easily trained with a 

data set based on this representation. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Binary representation for a multi-label problem 

It is important to observe although a sign function is similar to a threshold function, 

being equal if the threshold value is zero, a heuristic can be followed to define the 

threshold value. For example, it can be adaptively defined or associated with the 

prior probability of the classes. 

 For classification-based evaluation, a common metric is the Hamming Loss. In the 

case of a binary encoding of the labels, like in Figure 8, the Hamming Loss 

measures the number of times a pair (instance, label) is misclassified. For such, it 

uses the average binary error. The smaller the Hamming loss, the better the 

Multi-Label Problem:       Output vector: 

 

Instance       Classes          A    B   C 

     1  A, B         1    1    0 

     2  A         1    0    0 

     3  A, B         1    1    0 

     4  C         0    0    1 

     5   B   0    



situation. The perfect situation occurs when its value is equal to 0.  

In the ranking approach, it is assumed that the number of labels to be associated 

with the input instance, L, is previously known. When an input instance is 

presented to the multi-label classifier, the L labels with the highest output value are 

selected. An example of this system is the algorithm Boostexter [39]. 

For ranking-based evaluation, the metrics frequently employed in the literature are 

One-Error, Coverage and Average Precision. The One-Error measurement 

measures the number of times the label with the best rank computed by the 

classification algorithm is not in the set of correct labels of the input instance [37]. 

Another measurement, Coverage, says how far, on average, it is necessary to go 

down on the list of labels ordered by rank in order to include all the labels that 

should have been assigned to the input instance. The third method, Ranking Loss, 

calculates the average proportion of pairs that are not correctly ordered. The fourth 

metric, Average Precision, was originally proposed for Information Retrieval. It 

evaluates the average proportion of labels ranked above a particular desired label 

and that belong to the set of desired labels. 

In [40], the performance was measured by two criteria, the prediction of the 

number of classes and the set of classes or labels associated with each test example.  

4. Related Work and Discussion 

Framework proposals for multi-label problems can be found in [4][43] and [52]. 

The first framework was presented by [4]. In this framework, the authors describe 

the initial training approaches to deal with multi-label classification and organize 

them into 4 major groups. They also discuss alternative testing criteria for the 

evaluation of multi-label classifiers and propose new evaluation metrics. The 

authors compared the different models and testing criteria using the evaluation 

measurements proposed in a scene classification problem. In [43], the authors also 

present experimental results comparing several multi-class methods.  

Another work comparing different approaches for multi-label classification is 

presented in [27]. This paper includes a experimental comparison of six approaches 

using two data sets: bioinformatics and scene analysis. Several measures are used 

in this comparative work. 

This paper advances the work in [4] [43] and [52] by proposing a new framework 

to categorize the methods proposed in the literature for multi-label classification 

and expanding the review of the current works in this area. 

Several approaches for multi-label classification combine multi-label classification 

with hierarchical classification [11] [5] [6]. In hierarchical classification problems, 

the classes are disposed in a hierarchical structure. For this class of problems, the 

classes can be seen as nodes in either a tree-like or a direct acyclic graph (DAG) 

structure [15]. Several applications in text processing and bioinformatics combine 

these two issues [3][5] [6] [34] [35]. 

Recently, population-based meta-heuristics, like evolutionary computation [47] and 

ant colony optimization [10] have been used for multi-label classification 

problems. 

Another promising work is the use of ranking with multi-label classification, where 

the classifier should predict not only the classes associated with an instance, but the 

order these classes are associated with the instance [7] [8] [9].  



Finally, we believe that there will be a clear increase in the number of real multi-

label classification problems and challenges, particularly in the area of 

bioinformatics, and this is therefore a promising research topic in Machine 

Learning. 
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