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Abstract

This work addresses the well-known
classification task of data mining. In this context,
small disjuncts are classification rules covering a
small number of examples. One approach for
coping with small disjuncts, proposed in our
previous work, consists of using a decision-
tree/genetic algorithm method. The basic idea is
that examples belonging to large disjuncts are
classified by rules produced by a decision-tree
algorithm (C4.5), while examples belonging to
small disjuncts are classified by a genetic
algorithm (GA) designed for discovering small-
disjunct rules. In this paper we follow this basic
idea, but we propose a new GA which consists of
several major modifications to the original GA
used for coping with small disjuncts. The
performance of the new GA is extensively
evaluated by comparing it with two versions of
C4.5, across several data sets, and with several
different sizes of small disjuncts.

1 INTRODUCTION
This paper addresses the well-known classification task of
data mining (Hand, 1997). In this task, the discovered
knowledge is often expressed as a set of rules of the form:
IF <conditions> THEN <prediction (class)>.
This knowledge representation has the advantage of being
intuitively comprehensible for the user, and it is the kind
of knowledge representation used in this paper.
From a logical viewpoint, typically the discovered rules
are in disjunctive normal form, where each rule represents

a disjunct and each rule condition represents a conjunct. A
small disjunct can be defined as a rule which covers a
small number of training examples (Holte et al., 1989).
In general rule induction algorithms have a bias that
favors the discovery of large disjuncts, rather than small
disjuncts. This preference is due to the belief that it is
better to capture generalizations rather than
specializations in the training set, since the latter are
unlikely to be valid in the test set (Danyluk & Provost,
1993).
Hence, at first glance, small disjuncts are not important,
since they tend to be error prone. However, small
disjuncts are actually quite important in data mining. The
main reason is that, even though each small disjunct
covers a small number of examples, the set of all small
disjuncts can cover a large number of examples. For
instance (Danyluk & Provost, 1993) report a real-world
application where small disjuncts cover roughly 50% of
the training examples. In such cases we need to discover
accurate small-disjunct rules in order to achieve a good
classification accuracy rate.
One approach for coping with small disjuncts, proposed
in our previou work (Carvalho & Freitas 2000a, 2000b),
consists of using a decision-tree/genetic algorithm
method. The basic idea is that examples belonging to
large disjuncts are classified by rules produced by a
decision-tree algorithm (C4.5), while examples belonging
to small disjuncts are classified by a genetic algorithm
(GA) designed for discovering small-disjunct rules.
In this paper we follow this basic idea, but we propose a
new GA which consists of several major modifications to
the original GA proposed for coping with small disjuncts.
The rest of this paper is organized as follows. Section 2
describes the hybrid decision tree/genetic algorithm
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method proposed in our previous work. This section
assumes that the reader is familiar with decision trees, a
well-known kind of data mining algorithm. Section 3
describes the new GA proposed in this paper for
discovering small-disjunct rules. In that section we
explain the motivation for the design of this new GA and
describe in detail the major modifications that it
introduces, by comparison with original GA used in our
hybrid method. Section 4 reports the results of extensive
experiments evaluating the performance of the proposed
method. Finally, section 5 concludes the paper.

2 THE BASIC HYBRID DECISION-
TREE / GENETIC-ALGORITHM
METHOD FOR RULE DISCOVERY

We have previously proposed a hybrid method for rule
discovery that combines decision trees and genetic
algorithms (GAs) (Carvalho & Freitas, 2000a; 2000b).
The basic idea is to use a decision-tree algorithm to
classify examples belonging to large disjuncts and use a
GA to discover rules classifying examples belonging to
small disjuncts. Decision-tree algorithms have a bias
towards generality that is well suited for large disjuncts,
but not for small disjuncts. On the other hand, GAs are
robust, flexible algorithms which tend to cope well with
attribute interactions (Dhar et al, 2000), (Freitas, 2001;
2002), and can be more easily tailored for coping with
small disjuncts.
The method discovers rules in two training phases. In the
first phase it runs C4.5, a well-known decision tree
induction algorithm (Quinlan, 1993). The induced, pruned
tree is transformed into a set of rules (or disjuncts). Each
of these rules is considered either as a small disjunct or as
a “large” (non-small) disjunct, depending on whether or
not its coverage (the number of examples covered by the
rule) is smaller than or equal to a given threshold.
The second phase consists of using a GA to discover rules
covering the examples belonging to small disjuncts. In the
previous version of our method, each run of the GA
discovers rules classifying examples belonging to a
separated small disjunct. In this paper we introduce a
major modification of this phase: all small disjuncts are
grouped together into a single training set and given to the
GA, so that a single run of the GA discovers rules
classifying examples belonging to the total set of small-
disjunct examples. This new approach (as well as the
motivation for it) will be described in the next section.
Before we move to the next section, however, we review
in the following the main characteristics of our previous
GA (Carvalho & Freitas 2000a), hereafter called GA-
Small (standing for GA with Small training set), in order
to make this paper self-contained. Hereafter the new GA
introduced in this paper will be called GA-Large-SN
(standing for GA with Large training set and with
Sequential Niching), since it not only uses a larger
training set but also uses a sequential niching method, as
will be described later.

In GA-Small each individual represents the antecedent (IF
part) of a small-disjunct rule. The consequent (THEN
part) of the rule, which specifies the predicted class, is not
represented in the genome. Rather, it is fixed for a given
GA-Small run, so that all individuals have the same rule
consequent during all that run.
Each run of GA-Small discovers a single rule (the best
individual of the last generation) predicting a given class
for examples belonging to a given small disjunct. Since it
is necessary to discover several rules to cover examples of
several classes in several different small disjuncts, GA-
Small is run several times for a given dataset. More
precisely, one needs to run GA-Small d * c times, where d
is the number of small disjuncts and c is the number of
classes to be predicted. For a given small disjunct, the k-th
run of GA-Small, k = 1,...,c, discovers a rule predicting
the k-th class.
The genome of an individual consists of a conjunction of
conditions composing a given rule antecedent. Each
condition is an attribute-value pair, as shown in Figure 1.
In this figure Ai denotes the i-th attribute and Opi denotes
a logical/relational operator comparing Ai with one or
more values Vij belonging to the domain of Ai, as follows.
If attribute Ai is categorical (nominal), the operator Opi is
“in”, which will produce rule conditions such as “Ai in
{Vi1,...,Vik}”, where {Vi1,...,Vik} is a subset of the values of
the domain of Ai. By contrast, if Ai is continuous (real-
valued), the operator Opi is either “≤“ or “>“, which will
produce rule conditions such as “Ai ≤ Vij”, where Vij is a
value belonging to the domain of Ai. Each condition in the
genome is associated with a flag, called the active bit Bi,
which takes on the value 1 or 0 to indicate whether or not,
respectively, the i-th condition is present in the rule
antecedent (phenotype). This allows GA-Small to use a
fixed-length genome (for the sake of simplicity) to
represent a variable-length rule antecedent (phenotype).

 A1 Op1{V1j..}   B1   . . . Ai Opi{Vij..}   Bi    . . .   An Opn{Vnj..}   Bn

Figure 1: Structure of the genome of an individual.
For a given GA-Small run, the genome of an individual
consists of n genes (conditions), where n = m - k, m is the
total number of predictor attributes in the dataset and k is
the number of ancestor nodes of the decision tree leaf
node identifying the small disjunct in question. Hence, the
genome of a GA-Small individual contains only the
attributes that were not used to label any ancestor of the
leaf node defining that small disjunct.
To evaluate the quality of an individual GA-Small uses
the fitness function:
Fitness = (TP / (TP + FN)) * (TN / (FP + TN))              (1)
where TP, FN, TN and FP – standing for the number of
true positives, false negatives, true negatives and false
positives – are well-known variables often used to
evaluate the performance of classification rules – see e.g.
(Hand, 1997). In formula (1) the term (TP / (TP + FN)) is



usually called sensitivity (Se) or true positive rate,
whereas the term (TN / (FP + TN)) is usually called
specificity (Sp) or true negative rate. These two terms are
multiplied to foster the GA to discover rules having both
high Se and high Sp.
GA-Small uses tournament selection, with tournament
size of 2 (Michalewicz, 1996). It also uses standard one-
point crossover with crossover probability of 80%, and
mutation probability of 1%. Furthermore, it uses elitism
with an elitist factor of 1 – i.e., the best individual of each
generation is passed unaltered into the next generation.
GA-Small also includes an operator especially designed
for simplifying candidate rules. The basic idea of this
rule-pruning operator is to remove several conditions
from a rule to make it shorter. This operator is applied to
every individual of the population, right after the
individual is formed.
     Unlike the usually simple operators of GA, GA-
Small’s rule-pruning operator is an elaborate procedure
based on information theory (Cover & Thomas, 1992).
Hence, it can be regarded as a way of incorporating a
classification-related heuristic into a GA for rule
discovery. The heuristics in question is to favor the
removal of rule conditions with low information gain,
while keeping the rule conditions with high information
gain. In other words, the larger information gain of a rule
condition has the smaller probability of removing that
condition from the rule – see (Carvalho & Freitas, 2000a;
2000b) for details.
Once all the d * c runs of GA-Small are completed,
examples in the test set are classified. For each test
example, the system pushes the example down the
decision tree until it reaches a leaf node. If that node is a
large disjunct, the example is classified by the decision
tree algorithm. Otherwise the system tries to classify the
example by using one of the c rules discovered by the GA
for the corresponding small disjunct. If there is no small-
disjunct rule covering the test example it is classified by a
default rule, which predicts the majority class among the
examples belonging to the current small disjunct. If there
are two or more rules discovered by the GA covering the
test example, the conflict is solved ty using the rule with
the largest fitness (on the training set) to classify that
example.

3 THE EXTEND HYBRID DECISION-
TREE / GENETIC-ALGORITHM
METHOD FOR RULE DISCOVERY

In the previous section we have reviewed GA-Small, the
GA algorithm for discovering small disjunct rules
previously proposed as part of our hybrid decision-
tree/GA method. The two main limitations of that GA are:
(a) Each run of GA-Small has access to a very small
training set, consisting of just a few examples belonging
to a single leaf node of a decision tree. Intuitively, this

makes it difficult to induce reliable classification rules in
some cases.
(b) Although each run of the GA is relatively fast (since it
uses a small training set), the hybrid method as a whole
has to run the GA many times (since the number of GA-
Small runs is proportional to the number of small
disjuncts and the number of classes). Hence, the hybrid
C4.5/GA-Small method turns out to be considerably
slower than the use of C4.5 alone.
These two limitations were our motivation to develop a
new GA for discovering small disjunct rules. We stress
that in this paper we propose just a new GA, without
modifying the decision-tree algorithm of the above-
mentioned hybrid method.
By comparison with GA-Small, the new GA proposed in
this paper – denoted GA-Large-SN,  as mentioned above
– involves five major modifications. These modifications
are described in the detail in the next subsections.

3.1 INCREASING THE CARDINALITY OF THE
TRAINING SET

In our new GA-Large-SN, all the examples belonging to
all the leaf nodes considered small disjuncts are grouped
in a single training set, called the “second training set” (to
distinguish it from the original training set used by C4.5
to build the decision tree).  This second training set is
provided as input data for the GA. This is the most
important characteristic of GA-Large-SN, and it is the
basis for the other characteristics discussed below.

(a) GA-Small                           (b)GA-Large-SN
Figure 2: Differences in the training sets of the GAs

This characteristic of GA-Large-SN is illustrated in
Figure 2(b), where one can clearly see that all small
disjuncts are grouped into a single, relatively large
training set. This is in sharp contrast with the approach
used by GA-Small (described in section 2), illustrated in
Figure 2(a), where one can clearly see that each small
disjunct is used as a small training set.



3.2 USING A NICHING METHOD TO FOSTER
THE DISCOVERY OF MULTIPLE RULES

As a result of the above-discussed increase in the
cardinality of the training set, one needs to discover
several rules to cover the examples of each class. (Recall
that this was not the case with the approach described in
section 2, since in that approach it was assumed that a
GA-Small run had to discover a single rule for each
class.) Therefore, in our new GA-Large-SN it is essential
to use some kind of niching method, in order to foster
population diversity and avoid its convergence to a single
rule. In this work we use a sequential niching method
(Beasley et al., 1993). We chose this kind of method for
two reasons. First, its simplicity. Second, and most
important, it does not require the specification of
additional parameters for its execution, unlike well-
known niching methods such as fitness sharing (Goldberg
& Richardson, 1987) and crowding (Mahfoud, 1995).
BEGIN
/* TrainingSet-2 contains all examples belonging to all small disjuncts */
  RuleSet = ∅;
  build TrainingSet-2;
  WHILE cardinality(TrainingSet-2) > 5
      run the GA;
      add the best rule found by the GA to RuleSet;
      remove from TrainingSet-2 the examples
          correctly covered by that best rule;
  END-WHILE
END-BEGIN

Figure 3: GA with sequential niching for discovering
small disjunct rules

The pseudo-code of our GA with sequential niching is
shown, at a high level of abstraction, in Figure 3. It starts
by initializing the set of discovered rules (denoted
RuleSet) with the empty set and building the second
training set (denoted TrainingSet-2), as explained above.
Then it iteratively performs the following loop. First, it
runs the GA, using TrainingSet-2 as the training data for
the GA. The best rule found by the GA (i.e., the best
individual of the last generation) is added to RuleSet.
Then the examples correctly covered by that rule are
removed from TrainingSet-2, so that in the next iteration
of the WHILE loop TrainingSet-2 will have a smaller
cardinality. An example is “correctly covered” by a rule if
the example’s attribute values satisfy all the conditions in
the rule antecedent and the example belongs to the same
class as predicted by the rule. This process is iteratively
performed while the number of examples in TrainingSet-2
is greater than 5. (It is assumed that when the cardinality
of TrainingSet-2 is smaller than 5 there are too few
examples to allow the discovery of a reliable
classification rule.)
It should be noted that the sequential niching method used
in this work is a variation of the one proposed by (Beasley
et al., 1993). The latter actually requires the specification
of a parameter, associated with a distance metric, for
modifying the fitness landscape according to the location
of solutions found in previous iteractions. In order to

implement this parameter, the author uses an Euclidian
distance.
By contrast, there is no need for this kind of parameter in
our version of sequential niching. In order to avoid that
the same search spaced be explored several times, the
examples that are correctly covered by the discovered
rules are removed from the training set. Hence, the nature
of the fitness landscape is automatically updated as rules
are discovered along different iterations of the sequential
niching method.

3.3 MODIFICATION OF THE METHOD USED
TO DETERMINE A RULE’S CONSEQUENT

Each run of GA-Large-SN still discovers a single rule,
and a rule’s consequent (the class predicted by the rule) is
not encoded into the genome, like in the GA-Small
described in section 2. However, unlike GA-Small, in
GA-Large-SN the consequent of each rule is not fixed
upfront for all rules (individuals) in the population.
Rather, the consequent of each rule is dynamically chosen
as a function of the rule’s antecedent. More precisely, a
rule’s consequent is chosen as the most frequent class in
the set of examples covered by that rule’s antecedent.

3.4 A NEW HEURISTICS FOR RULE PRUNING
The GA-Large-SN proposed in this paper uses a new
heuristic measure for rule pruning. This measure is based
on the idea of using the decision tree built by C4.5 to
compute a classification accuracy rate for each attribute,
according to how accurate were the classifications
performed by the decision tree paths in which that
attribute occurs. That is, the more accurate were the
classifications performed by the decision tree paths in
which a given attribute occurs, the higher the accuracy
rate associated with that attribute, and the smaller the
probability of removing that a condition with attr ibute
from a rule. The computation of an accuracy rate for each
attribute is performed by the procedure shown in Figure 4.
The computation of the accuracy rate associated with
each attribute is performed as follows. For each attribute
Ai, the algorithm checks each path of the decision tree
built by C4.5 in order to determine whether or not Ai
occurs in that path. (The term path is used here to refer to
each complete path from the root node to a leaf node of
the tree.) For each path p in which Ai occurs, the
algorithm computes two counts, namely the number of
examples classified by the rule associated with path p,
denoted #Classif(Ai,p), and the number of examples
correctly classified by the rule associated with path p,
denoted #CorrClassif(Ai,p).



BEGIN
   Count_of_Unused_Attr = 0;
   FOR each attribute Ai, i=1,...,m
       IF attribute Ai occurs in at least one path in the tree
          THEN compute the accuracy rate of Ai, denoted Acc(Ai) (see text);
          ELSE increment Count_of_Unused_Attr by 1;
       END-IF
   END-FOR
   Min_Acc = the smallest accuracy rate among all attributes
                      that occur in at least one path in the tree;
   FOR each of the attributes Ai, i=1,...,m, such that Ai

            does not occur in any path in the tree
       Acc(Ai) = Min_Acc / Count_of_Unused_Attr;
   END-FOR
                        m
   Total_Acc = Σ Acc(Ai) ;
                        i=1

   FOR each attribute Ai, i=1,...,m
        Compute the normalized accuracy rate of Ai,
           denoted Norm_Acc(Ai), as:
           Norm_Acc(Ai) = Acc(Ai) / Total_Acc ;
   END-FOR
END-BEGIN

Figure 4: Computation of each attribute’s accuracy rate,
for rule pruning purposes

where Zi is the number of decision tree paths where
attribute Ai occurs. Note that formula (2) is used only for
attributes that occur in at least one path of the tree. All the
attributes that do not occur in any path of the tree are
assigned the same value of Acc(Ai), and this value is
determined by the formula:
Acc(Ai) = Min_Acc / Count_of_Unused_Attr ,               (3)
where Min_Acc and Count_of_Unused_Attr are
determined as shown in Figure 4.
Finally, the value of Acc(Ai) for every attribute Ai,
i=1,...,m, is normalized by dividing its current value by
Total_Acc, which is determined as shown in Figure 3.
Once the normalized value of accuracy rate for each
attribute Ai, denoted Norm_Acc(Ai), has been computed
by the procedure of Figure 4, it is directly used as a
heuristic measure for rule pruning. The basic idea here is
the same as the basic idea of the rule pruning procedure
mentioned in section 2. In that section, where the heuristic
measure was the information gain, it was mentioned that
the larger the information gain of a rule condition, the
smaller the probability of removing that condition from
the rule. In GA-Large-SN, we replace the information
gain of a rule condition with Norm_Acc(Ai), the
normalized value of the accuracy rate of the attribute
included in the rule condition. Hence, the larger the value
of Norm_Acc(Ai), the smaller the probability of removing
the i-th condition from the rule. The remainder of the rule
pruning procedure proposed in (Carvalho & Freitas
2000a) remains essentially unaltered.
Note that the accuracy rate-based heuristic measure for
rule pruning proposed here effectively exploits
information from the decision tree built by C4.5. Hence, it

can be considered as a kind of hypothesis-driven measure,
since it is based on a hypothesis (in our case, a decision
tree) previously constructed by a data mining algorithm.
By contrast, the previously-mentioned information gain-
based heuristic measure does not exploit such
information. Rather, it is a measure whose value is
computed directly from the training data, independent of
any data mining algorithm. Hence, it can be considered as
a kind of data-driven measure.

3.5 INCREASING THE GENOME LENGTH
Recall that in GA-Small (reviewed in section 2) the
genome contained only the attributes which were not used
to label any ancestor of the leaf node defining the small
disjunct being processed by the GA. That approach made
sense because GA-Small was using as the training set
only the examples belonging to a single leaf node.
Clearly, the attributes in the ancestor nodes of that leaf
node were not useful to distinguish between classes of
examples in the leaf node, since all those examples had
the same values for those attributes.
However, the situation is different in the case of the new
GA-Large-SN proposed in this paper. Now the training
set of the GA consists of all the examples belonging to all
the leaf nodes that are considered small disjuncts – i.e., all
those examples are effectively mixed into a single training
set. Hence, the above notion of “attributes in the ancestor
nodes of a single leaf node” is not meaningful any more.
Therefore, in GA-Large-SN the genome contains m
genes, where m is the number of attributes of the data
being mined. I.e., all attributes can occur in the rule
represented by an individual, so that in theory a rule can
contain at most m conditions in its antecedent. Of course,
in practice the number of conditions in a rule will be
much smaller than m, due to the use of the above-
discussed rule pruning operator.

4 COMPUTATIONAL RESULTS
We have evaluated the performance of GA-Large-SN
across eight public-domain data sets of the the well-
known data repository of the UCI (University of
California at Irvine), available at:
 http://www.ics.uci.edu/~mlearn/MLRepository.html.
The examples that had some missing value were removed from
these data sets. In the Adult data set we have used the
predefined division of the data set into a training and a
test set. In the Connect data set we have randomly
partitioned the data into a training and a test set with
47290 and 20267 examples, respectively. In the other
datasets we have run a well-known 10-fold cross-
validation procedure, which essentially works as follows.
The data set is randomly partitioned into 10 mutually-
exclusive and exhaustive partitions. Then the
classification algorithm is run 10 times. In the i-th run, i =
1,...,10, the i-th partition is used as the test set, and the
remaining nine partitions are grouped and used as the



training set. After the 10 runs are over, the reported
accuracy rate is the average accuracy rate over all those
10 runs.
In our experiments we have used a commonplace
definition of small disjunct, based on a fixed threshold of
the number of examples covered by the disjunct. The
definition is: “A decision-tree leaf is considered a small
disjunct if and only if the number of examples belonging
to that leaf is smaller than or equal to a fixed size S.”
In order to better evaluate the performance of GA-Large-
SN, it is important to compare it against other
classification method(s). In particular, we wanted to
compare the hybrid system against another method that
induces rules or trees (which can be straightforwardly
converted to rules). In this case the kind of knowledge
representation used by the systems being compared is the
same, and the difference in the results will reflect mainly
differences in search strategies. Hence, we can compare
the evolutionary search strategy of GA-Large-SN against
the local, greedy search strategy of a rule induction or
decision tree algorithm.
Within this spirit we report the results of experiments
comparing our hybrid C4.5/GA-Large-SN system with
two other classification methods. The first is C4.5 alone,
which is used to classify all examples – i.e., both large-
disjunct examples and small-disjunct examples. The
second is a “double run” of C4.5, hereafter called “double
C4.5“ for short. The later is a new way of using C4.5 to
cope with small disjuncts, as follows.
The main idea of our “double C4.5” is to build a classifier
running twice the algorithm C4.5. The first run considers
all examples in the original training set, producing a first
decision-tree. Once all the examples belonging to small
disjuncts have been identified by this decision tree, the
system groups all those examples into a single example
subset, creating the “second training set”, as described
above for GA-Large-SN (see Figure 2(b)). Then C4.5 is
run again on this second, reduced training set, producing a
second decision tree. In other words, the second run of
C4.5 uses as training set exactly the same “second
training set” used by GA-Large-SN. This makes the
comparison between GA-Large-SN and “double C4.5”
very fair.
In order to classify a new example, the rules discovered
by both runs of C4.5 are used as follows. First, the system
checks whether the new example belongs to a large
disjunct of the first decision tree. If so, the class predicted
by the corresponding leaf node is assigned to the new
example. Otherwise (i.e., the example belongs to one of
the small disjuncts of the first decision tree), the new
examples are classified by the second decision tree.
The motivation for this more elaborated use of C4.5 was
an attempt to create a simple algorithm that was more
effective in coping with small disjuncts.
Recall that the hybrid C4.5/GA-Large-SN method has an
important parameter, namely the small-disjunct size
threshold (S). In order to evaluate how robust the method

is with respect to this parameter, we have done
experiments with four different values of S, namely 3, 5,
10 and 15. For each of these four S values, we have done
ten different experiments, varying the random seed used
to generate the initial population of individuals. The
results reported below, for each value of S, are an
arithmetic average of the results over these ten different
experiments. Therefore, the total number of experiments
is 40 (4 values of S * 10 different random seeds). In
addition, recall that each of these 40 experiments actually
consists of a 10-fold cross-validation run for most data
sets (with the exception of the Adult and Connect data
sets, where a single division of the data into training and
test sets was used).
Each run of GA-Large-SN is relatively fast, so that each
of these 40 experiments took a processing time on the
order of six minutes for the biggest data set, Connect, and
for the largest value of S (15), on a Pentium III with
192Mb of RAM.
We now report results comparing the classification
accuracy rate (on the test set) of the proposed hybrid
C4.5/GA-Large-SN with C4.5 alone (Quinlan, 1993) and
with the above-described “double C4.5“. We have used
C4.5’s default parameters. In each GA-Large-SN run the
population has 200 individuals, and the GA is run for 50
generations.

Table 1: Accuracy Rate (%) of  C4.5, “double C4.5”
(C4.5 (2)) and our hybrid C4.5/GA-Large-SN for S = 3

Data set C4.5 C4.5(2) C4.5/GA

Connect 72.60 (0.3) 78.06 (0.3) 77.86 (0.1) +  -

Adult 78.62 (0.3) 81.19 (0.3) 85.45 (0.1) + +

Crx 91.79 (2.1) 92.57 (1.2) 93.69 (1.2)

Hepatitis 80.78(13.3) 78.95 (6.9) 89.25 (9.5)

House-votes 93.62 (3.2) 97.32 (2.4) 97.18 (2.5)

Segmentation 96.86 (1.1) 76.62 (2.8) 81.46 (1.1) -  +

Wave 75.78 (1.9) 68.18 (3.7) 83.86 (2.0) + +

Splice 65.68 (1.3) 55.65 (6.0) 70.62 (8.6)    +

The results are shown in Tables 1, 2, 3 and 4 referring to
S values of 3, 5, 10 and 15, respectively. In these tables
the first column indicates the data sets. The second
column shows the accuracy rate on the test set achieved
by C4.5 alone, classifying both large-disjunct and small-
disjunct examples. The third column reports the accuracy
rate for C4.5(2). The fourth column reports the accuracy
rate achieved by our hybrid C4.5/GA-Large-SN system,
using C4.5 to classify large-disjunct examples and our
GA classify small-disjunct examples. The values between
brackets are standard deviations. For each data set, the
highest accuracy rate among the three classifiers is shown
in bold.
(



In addition, in the fourth column we indicate, for each
data set, whether or not the accuracy rate of C4.5/GA-
Large-SN is significantly different from the accuracy
rates of the other two methods. More precisely, the cases
where the accuracy rate of C4.5/GA-Large-SN is
significantly better (worse) than the accuracy rate of each
of the other two methods is indicated by the “+” (“-“)
symbol. A difference between two methods is deemed
significant when the corresponding accuracy rate intervals
(taking into account the standard deviations) do not
overlap.
Let us now analyze the results of Tables 1, 2, 3 and 4
starting with Table 1 (where S = 3). In this table
C4.5/GA-Large-SN outperforms both C4.5 alone and
C4.5(2) in 5 of the 8 data sets. C4.5/GA-Large-SN is
significantly better than C4.5 alone in 3 data sets, and the
reverse is true in only 1 data set. In addition, C4.5/GA-
Large-SN is significantly better than C4.5(2) in 4 data
sets, and the reverse is true in only 1 data set.

Table 2: Accuracy Rate (%) of  C4.5, “double C4.5”
(C4.5 (2)) and our hybrid C4.5/GA-Large-SN for S = 5

Data set C4.5 C4.5(2) C4.5/GA

Connect 72.60 (0.3) 77.09 (0.3) 77.85 (0.2) + +

Adult 78.62 (0.3) 79.27 (0.3) 85.50 (0.2) + +

Crx 91.79 (2.1) 92.03 (1.0) 93.06 (1.6)

Hepatitis 80.78(13.3) 75.67 (17.1) 89.48 (9.7)

House-votes 93.62 (3.2) 93.54 (3.9) 97.44 (2.9)

Segmentation 96.86 (1.1) 74.49 (3.4) 80.41 (1.0) - +

Wave 75.78 (1.9) 65.59 (4.4) 85.31 (2.4) + +

Splice 65.68 (1.3) 57.45 (8.7) 70.44 (7.8)

In Table 2 (where S = 5) C4.5/GA-Large-SN outperforms
both C4.5 alone and C4.5(2) in 7 of the 8 data sets.
C4.5/GA-Large-SN is significantly better than C4.5 alone
in 3 data sets, and the reverse is true in only 1 data set.
C4.5/GA-Large-SN is significantly better than C4.5(2) in
4 data sets, and the reverse is not true in any data set.

Table 3: Accuracy Rate (%) of  C4.5, “double C4.5”
(C4.5 (2)) and our hybrid C4.5/GA-Large-SN for S = 10

Data set C4.5 C4.5(2) C4.5/GA

Connect 72.60 (0.3) 76.19 (0.3) 76.95 (0.1) + +

Adult 78.62 (0.3) 76.06 (0.3) 80.04 (0.1) + +

Crx 91.79 (2.1) 90.78 (1.2) 91.66 (1.8)

Hepatitis 80.78(13.3) 82.36 (18.7) 95.05 (7.2)

House-votes 93.62 (3.2) 89.16 (8.0) 97.65 (2.0)

Segmentation 96.86 (1.1) 72.93 (5.5) 78.68 (1.1) -

Wave 75.78 (1.9) 64.93 (3.9) 83.95 (3.0) + +

Splice 65.68 (1.3) 61.51 (6.6) 70.70 (6.3)

In Table 3 (where S = 10) C4.5/GA-Large-SN
outperforms both C4.5 alone and C4.5(2) in 6 of the 8
data sets. C4.5/GA-Large-SN is significantly better than
C4.5 alone in 3 data sets, and the reverse is true in only 1
data set. C4.5/GA-Large-SN is significantly better than
C4.5(2) in 3 data sets, and the reverse is not true in any
data set.
In Table 4 (where S = 15) C4.5/GA-Large-SN
outperforms both C4.5 alone and C4.5(2) in 6 of the 8
data sets. C4.5/GA-Large-SN is significantly better than
C4.5 alone in 3 data sets, and the reverse is true in only 1
data set. C4.5/GA-Large-SN is significantly better than
C4.5(2) in 3 data sets and the reverse is not true in any
data set.

Table 4: Accuracy Rate (%) of  C4.5, “double C4.5”
(C4.5 (2)) and our hybrid C4.5/GA-Large-SN for S = 15

Data set C4.5 C4.5(2) C4.5/GA

Connect 72.60 (0.3) 74.95 (0.3) 76.01 (0.3) + +

Adult 78.62 (0.3) 74.29 (0.3) 79.32 (0.2) + +

Crx 91.79 (2.1) 90.02 (0.8) 90.40 (2.4)

Hepatitis 80.78(13.3) 66.16 (19.1) 82.52 (7.0)

House-votes 93.62 (3.2) 88.53 (8.4) 95.91 (2.3)

Segmentation 96.86 (1.1) 73.82 (5.8) 77.11 (1.9) –

Wave 75.78 (1.9) 65.53 (4.0) 82.65 (3.7) + +

Splice 65.68 (1.3) 64.35 (4.7) 70.62 (5.5)

We can summarize the results of the above four tables as
follows.
• C4.5/GA-Large-SN outperformed C4.5 alone in

87.50% of the data sets for S = 3 and S =5, and in
75% for S  = 10 and S  = 15.

• C4.5/GA-Large-SN outperformed C4.5(2) in 75% of
the data sets for S = 3, and in 100% for S = 5, S = 10
and S = 15.

• Considering the results of the three methods for every
data set and every value of S, the best accuracy rate
was obtained by C4.5/GA in 78.2% of the cases, by
C4.5 alone in 15.6% of the cases, and by C4.5(2) in
only 6,2% of the cases.

Finally, a brief comment on computational time is
appropriate here. We have mentioned, at the beginning of
section 3, that one of our motivations for designing GA-
Large-SN was to reduce processing time, by comparison
with GA-Small. We have done an experiment comparing
the processing time of both GA-Large-SN and GA-Small,
on the same machine, in the same data set, namely the
Connect data set – which is the largest data used in the
above-reported experiments with GA-Large-SN. We
observed that GA-Large-SN takes about only 12% of the
processing time of GA-Small in the Connect data set.



5 CONCLUSIONS AND FUTURE
RESEARCH

In this paper we have described a new hybrid decision-
tree/GA (C4.5/GA-Large-SN) method. The GA
component of this method, called GA-Large-SN, consists
of major modifications of the original GA (here called
GA-Small) proposed by (Carvalho & Freitas 2000a), as
discussed throughout section 3.
We have compared the new hybrid C4.5/GA-Large-SN
system with 2 algorithms based on the use of C4.5 alone,
namely: (a) the default version of C4.5; (b) a “double run
of C4.5”, which uses the same training set as GA-Large-
SN. This comparison was performed across four different
values for a parameter defining the size of a small
disjunct.

Overall, the hybrid C4.5/GA-Large-SN obtained
considerably better accuracy rates than both above-
mentioned versions of C4.5 alone, in all the four
definitions of small-disjunct size used in this paper.
In this paper we have focused on comparing the
performance of the hybrid C4.5/GA-Large-SN with the
performance of C4.5 alone, since C4.5 is a very well-
known algorithm that is often used in comparison with
other algorithms in the literature. In future research we
also intend to compare the predictive accuracy of the rules
discovered by C4.5/GA-Large-SN with the predictive
accuracy of the rules discovered by the GA alone.
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