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ABSTRACT  
The Ant-Miner algorithm, first proposed by Parpinelli and 
colleagues, applies an ant colony optimization heuristic to the 
classification task of data mining to discover an ordered list of 
classification rules. In this paper we present a new version of the 
Ant-Miner algorithm, which we call Unordered Rule Set Ant-
Miner, that produces an unordered set of classification rules. The 
proposed version was evaluated against the original Ant-Miner 
algorithm in six public-domain datasets and was found to produce 
comparable results in terms of predictive accuracy. However, the 
proposed version has the advantage of discovering more modular 
rules, i.e., rules that can be interpreted independently from other 
rules – unlike the rules in an ordered list, where the interpretation 
of a rule requires knowledge of the previous rules in the list. 
Hence, the proposed version facilitates the interpretation of 
discovered knowledge, an important point in data mining.   

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence ]: Learning – concept learning, 
induction. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Ant Colony Optimization, Data Mining, Classification Rules. 

1. INTRODUCTION 
Data Mining is the process of extracting useful knowledge from 
real-world data. Among the several data mining tasks – such as 
clustering and classification - this paper focuses on classification. 
In this task the aim is to discover, from training data (containing 
cases, or records, whose class is known), a classification model 
that can be used to predict the class of cases in the test data 
(containing unknown-class cases). One popular category of 
classification model consists of classification rules, which is the 

model category used in this paper. In this context, the aim of the 
classification algorithm is to discover a set of classification rules. 

One algorithm for solving this task is Ant-Miner, proposed by 
Parpinelli and colleagues [5], which employs ant colony 
optimization techniques [1] to discover classification rules of the 
form: 

IF (term1 AND term2 AND ….. termm) THEN (predicted class) 

where each term is of the form <attribute = value>, and different 
rules can have different number of terms in their antecedent (IF 
part). The consequent of a rule is a predicted class, i.e., the value 
that the rule predicts for the class attribute when an example 
satisfies the conjunction of terms in the rule antecedent. 

Classification rules have the advantage of representing knowledge 
at a high level of abstraction, so that they are intuitively 
comprehensible to the user [7].  

Ant-Miner has produced good results when compared with more 
conventional data mining algorithms [5], [8] and it is still a 
relatively recent algorithm, which motivates further research 
trying to improve it. This work proposes a modification to the 
Ant-Miner data mining algorithm called Unordered Rule Set Ant-
Miner, with the aim of improving or at least maintaining the level 
of predictive accuracy obtained by the original Ant-Miner, whilst 
at the same time facilitating the interpretation of the discovered 
classification rules, as follows. In the original Ant-Miner, the goal 
of the algorithm was to produce an ordered list of rules, which 
was then  applied to test data in the order in which they were 
discovered. This makes it difficult to interpret the rules at the end 
of the list, since their conditions make sense only in the context of 
all the previous rules in the ordered list of rules [7]. The new 
version of Ant-Miner proposed in this paper discovers, from 
training data, an unordered set of rules that can be applied to test 
data in any order. This makes the discovered rules easier for the 
user to interpret, since now the interpretation of each rule is 
independent from all the other discovered rules.  

Although some modifications to the Ant-Miner algorithm have 
already been proposed [2][3][4], to the best of our knowledge, an 
unordered rule set modification to the original Ant-Miner 
algorithm is an area of research that has not yet been explored. 

This paper is organised as follows. Section 2 presents an outline 
of the original Ant-Miner algorithm. Section 3 explains the 
proposed Unordered Rule Set Ant-Miner. Section 4 discusses 
computational results and performance of the algorithm. Section 5 
concludes the paper and suggests further areas of research. 
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2. A BRIEF DESCRIPTION OF THE ANT-
MINER ALGORITHM 
The original Ant-Miner algorithm, upon which the Unordered 
Rule Set Ant-Miner proposed in this paper is based, is described 
in the pseudo code of Algorithm 1, taken from [5]. We provide 
here just a brief overview of the algorithm; for more details the 
reader is referred to that reference. 

 

Algorithm 1 – Original Ant-Miner 

 

TrainingSet = {all training cases}; 

DiscoveredRuleList = [ ]; /* initialize rule list with empty list */ 

WHILE (TrainingSet > Max_uncovered_cases) 

       t = 1; /* ant index, and also rule index */ 

       j = 1; /* convergence test index */ 

       Initialize all trails with the same amount of pheromone; 

      REPEAT 

             Antt  starts with an empty rule and incrementally  
             constructs a classification rule Rt  by adding one 
             term at a time to the current rule; 

             Prune rule Rt;   /* remove irrelevant terms from rule */ 

             Update the pheromone of all trails by increasing  
             pheromone in the trail followed by Antt  (proportional 
             to the quality of Rt) and decreasing pheromone in the  
             other trails (simulating pheromone evaporation); 

             IF (Rt is equal to Rt – 1) /* update convergence test */ 

   THEN j = j + 1; 

   ELSE j = 1; 

             END IF 

             t = t + 1; 

       UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg) 

       Choose the best rule Rbest  among all rules Rt constructed by 
       all the ants; 

       Add rule Rbest to DiscoveredRuleList; 

       TrainingSet = TrainingSet - {set of cases correctly covered 
       by Rbest}; 

END WHILE 
 

Ant-Miner discovers an ordered list of classification rules based 
on a heuristic function involving information gain – a popular 
heuristic function in data mining [6] – and positive feedback 
involving artificial pheromone. For each iteration of the Repeat-
Until loop, an ant attempts to discover a rule by selecting terms in 
a probabilistic manner, until all the attributes have been used to 
make the current rule, or adding any other available term would 
make the rule coverage less than min_cases_per_rule – a user-
specified threshold. The discovered rule is then pruned in an 
attempt to reduce over-fitting to the training data and increase rule 
quality. Afterwards, the pheromone values for the terms in the 

current rule are increased, in order to increase the probability that 
other ants will select those terms, and then the pheromone values 
for all terms are normalised. The While loop iterates until the 
number of training examples remaining in the dataset becomes 
less than or equal to Max_uncovered_cases – another user-
specified threshold. The rule discovered in the Repeat-Until loop 
that has the highest quality is then added to the list of discovered 
rules, and the training examples correctly covered by that rule are 
removed from the training dataset. An example is correctly 
covered by a rule if the example satisfies the rule antecedent and 
has the class predicted by the rule. 

2.1 Pheromone Initialisation 
Pheromone values for each term are all initialised to the same 
value at the beginning of each While loop iteration. The initial 
value of each pheromone is given by the function: 
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Where a is the total number of attributes, i is the index of an 
attribute, j is the index of a value in the domain of attribute i, and 
bi is the number of values in the domain of attribute i. 

2.2 Pheromone Updating 
In Ant-Miner pheromone levels are increased for all terms in a 
rule just constructed by an ant, based on the quality of that rule, as 
measured by the rule quality formula “sensitivity * specificity”, 
defined as follows: 
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where TP / (TP + FN) is the sensitivity, TN /  (FP + TN) is the 
specificity, and: 

TP (true positives) is the number of cases covered by the rule that 
have the class predicted by the rule. 

FP (false positives) is the number of cases covered by the rule that 
have a class different from the class predicted by the rule. 

FN (false negatives) is the number of cases that are not covered 
by the rule but that have the class predicted by the rule. 

TN (true negatives) is the number of cases that are not covered by 
the rule and that do not have the class predicted by the rule. 

2.3 Term Selection 
The probability that a term will be added to the current rule is 
given by the following formula: 
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where: 

ηij is the value of a problem-dependent heuristic function – more 
precisely information gain [6] – for termij (a condition of the form 
attributei = valuej). The higher the value of ηij the more relevant 
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for classification the termij is, and so the higher its probability of 
being chosen. 

τij(t) is the amount of pheromone associated with termij at 
iteration t. 

a is the total number of attributes. 

xi is set to 1 if the attribute ai was not yet used by the current ant, 
0 otherwise. 

bi is the number of values in domain of the ith attribute. 

3. UNORDERED RULE SET 
MODIFICATIONS TO THE ANT-MINER 
ALGORITHM 
As mentioned in the Introduction, we propose a modification to 
the original Ant-Miner so that the algorithm discovers a set of 
rules which do not need to be applied to test data in the order in 
which they were discovered. The pseudocode of the new 
algorithm is described in Algorithm 2. 

In the original Ant-Miner, ants chose terms for a rule with the 
goal of decreasing entropy in the class distribution of examples 
matching the rule in construction. The consequent of the rule was 
then assigned afterwards by determining the class value that 
would produce the highest quality rule. In Unordered Rule Set 
Ant-Miner, by contrast, an extra For-Each loop is added as the 
outer loop of the algorithm, iterating over the values in the class 
attribute domain, as indicated in Algorithm 2. As a result of this 
loop, the consequent for the rule is known by the ant during rule 
construction and does not change. The current ant tries to choose 
terms that will produce the rule predicting the class value in the 
current iteration of the For-Each loop with an optimum level of 
accuracy. In theory, such an approach should lead to faster 
convergence on good rules, by comparison with the original Ant-
Miner. The reason is that in Unordered Rule Set Ant-Miner each 
term’s pheromone value directly represents that term’s relevance 
for predicting a fixed target class value. By contrast, in the 
original Ant-Miner each term’s pheromone is associated with that 
term’s relevance in reducing the entropy associated with the entire 
class distribution, a less focused relevance. 

Each iteration of the For-Each loop discovers an unordered set of 
rules, all of which predict the current class value. At the 
beginning of each iteration, the entire training set is reinstated, so 
that a maximal number of negative examples are available to the 
algorithm. Ants discover rules from the training data until the 
number of positive examples (belonging to the current class) 
remaining in the dataset that have not been covered by a 
discovered rule is less than or equal to the value determined by 
the max_uncovered_cases parameter. Note that in the original 
Ant-Miner max_uncovered_cases referred to all examples in the 
training set, rather than to the positive examples only as in the 
proposed algorithm. 

Rule construction occurs as follows. For each iteration of the 
WHILE loop, the amount of pheromone for each term is set to an 
initial value. This initialization is the same as the one used in the 
original Ant-Miner. However, unlike the original Ant-Miner, in 
the proposed algorithm an ant starts with a rule containing the 
known consequent (the current class value of the FOR loop) and 
an empty antecedent. The rule is constructed incrementally by 

selecting terms with a probabilistic method that favours terms 
with a large amount of pheromone and a high Laplace-corrected 
confidence value (see below). The ant stops constructing a rule if 
all the attributes have been used in the rule antecedent constructed 
so far, or if there are no terms available that, when added to the 
rule antecedent, would not make the rule cover fewer cases than 
the limit min_cases_per_rule. The rule is then pruned in an 
attempt to increase its quality, and if the rule is of a high enough 
confidence, the terms making up the rule have their pheromone 
levels increased. The best rule discovered during the REPEAT 
UNTIL loop is added to the unordered set of discovered rules. 

Algorithm 2 – Proposed Unordered Rule Set Ant-Miner 
 

Discovered Rule Set = {} /* initialize rule set with empty set */ 

FOR EACH Class 

      TrainingSet = {all training cases} 

      PositiveSet = {training cases of current class} 

      NegativeSet = TrainingSet – PositiveSet 

      WHILE (|PositiveSet| > max_uncovered_cases) 

            t = 1; 

            j = 1; 

            initialise all trails to the same amount of pheromone; 

            REPEAT 

               Antt  starts with an empty rule and incrementally  
               constructs a classification rule Rt  by adding one term  
               at a time to the current rule; 

Prune rule Rt; 

 IF (LaplaceCorrectedConfidence(Rt)  >  
                      RuleConfidenceThreshold) 

    THEN increase pheromone of terms in rule Rt  
END IF 

Update pheromones in all other terms by normalising 
the pheromone values (simulating  evaporation) 

IF (Rt equals Rt -1) 

     THEN j = j + 1; 

     ELSE j = 1; 

END IF 

t = t+1;  

            UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg) 

            Choose the best rule Rbest among all rules Rt  constructed 
            by all ants;  

            Add rule Rbest to DiscoveredRuleSet; 

            TrainingSet = TrainingSet – {set of positive cases  
                                                           covered by Rbest }; 

            PositiveSet = PositiveSet – {set of positive cases  
                                                          covered by Rbest}; 

      END WHILE 

END FOR 
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3.1 Problem dependent heuristic function 
Since the consequent of the rule is already known when the ants 
discover rules, the heuristic function of the original Ant-Miner 
must be altered to favour the selection of terms that increase the 
probability that the rule will predict the current class of the For-
Each loop. The problem dependent heuristic function chosen is 
the Laplace-corrected confidence for each term, given by: 
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where |termij, k| is the number of training cases having termij and 
the current positive class k, |termij| is the number of training cases 
having termij and No_of_classes is the number of values in the 
class attribute’s domain. The Laplace correction is also used in 
other rule induction algorithms such as CN2 [9], and it has the 
advantage of penalizing rules that are too specific (covering too 
few cases), helping to reduce overfitting. For instance, suppose a 
terms occurs in just one case, and that case has the current 
positive class, so that |termij| = |termij, k| = 1. Without the Laplace 
correction, the confidence of that term would be 1 / 1 = 100%, a 
too optimistic value for such an extremely specific rule, which is 
unlikely to generalize well for test data unseen during training. 
With the Laplace correction, and supposing No_of_classes = 2, 
the confidence of the rule is corrected to (1 + 1) / (1 + 2) = 67%, a 
more realistic value. Note that the Laplace correction will have 
little effect when |termij| is large, which is consistent with the fact 
that there is a lot of statistical support for such a generic rule. 

3.2 Pheromone Updating 
As mentioned earlier, in the unordered rule set algorithm the 
consequent (predicted class) of each rule is fixed during the 
construction of the rule by an ant. Due to the probabilistic nature 
of the algorithm, it is possible to generate rules where the number 
of true positives (TP) is less that the number of false positives 
(FP). Such rules tend to be bad rules, because they have a low 
predictive accuracy. It is important that the pheromone of terms 
occurring in the rule be increased only when the just-constructed 
rule has an acceptable confidence value. The threshold that 
determines if a rule is acceptable or not (i.e., whether or not the 
pheromone of its terms should be increased) is expressed by the 
following formula. 
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Where |k| is the number of training cases with the current 
(positive) class, and |training set| is the total number of cases in 
the current training set.  

The rule confidence threshold is therefore the maximum of the 
relative frequency of the predicted class and 0.5. The motivation 
for the use of the max operator in this formula is as follows. In the 
case of a predicted class whose relative frequency is “large” 
(greater than 0.5), the rule is considered acceptable only if its 
confidence is at least as great as the relative frequency of that 
class. For instance, if the relative frequency of a class is 70%, a 
rule predicting that class with a confidence of 60% is clearly a 
bad rule. This requirement is not enough, however, when the 

predicted class has a “small” relative frequency (lower than 50%). 
For instance, suppose a class has a relatively frequency of 10%. A 
rule with a confidence of 15% satisfies the criterion of having a 
confidence greater than the relative frequency of the predicted 
class, but it is still a weak rule. Hence, the use of the max operator 
guarantees that, when the predicted class has a low relative 
frequency, the confidence threshold is raised to 50%. We make no 
claim that the threshold value 0.5 is an optimal value, but this 
value worked well in our preliminary experiments. Optimizing 
this parameter is a topic left for future research. 

Once a rule has been considered acceptable, the amount of 
pheromone increase to be applied to each of the terms in that rule 
is determined by the following formula.  

 

( ) ( ) ( )( )δtτ+tτ=tτ ijijij ⋅+1  

where τij(t) is the current (at time index t) amount of pheromone 
associated with termij, and δ is set to the rule quality Q (the 
formula in section 2.2, which is also the formula used in the 
original Ant-Miner) if the Laplace-corrected confidence for the 
rule was above RuleConfidenceThreshold or set to 0 otherwise. 
The basic idea of the Laplace-correction was already explained in 
section 3.1, in the context of the problem-dependent heuristic 
function. A conceptually similar idea is used in the context of the 
confidence of a rule. A rule’s confidence (before the use of 
Laplace correction) is defined as follows. Let IF A THEN C be a 
rule, where A is the antecedent (conjunction of terms) and C be 
the predicted class. The confidence of a rule is given by: 

|A and C| / |A| 

i.e., the number of training cases satisfying both A and C divided 
by the total number of cases satisfying A. The Laplace-corrected 
confidence is then given by: 

(|A and C| + 1) / (|A| + No_of_classes) . 

The effect of the Laplace correction in the confidence of a rule is 
conceptually similar to the effect of this correction in the value of 
the problem-dependent function, as explained in section 3.1. 

3.3 Rule Pruning 
It is necessary to make some alterations to the rule pruning in the 
Ant-Miner algorithm to support unordered rule sets. In the 
original Ant-Miner rules were pruned to remove irrelevant terms 
and to improve the predictive accuracy of rules. This involved 
speculatively removing each term in turn and evaluating the 
quality of the rule without that term; and then definitely removing 
the term whose removal provided the largest increase in rule 
quality. This process was then repeated until there was only one 
term left in the rule antecedent or no increase in rule quality was 
observed during the speculative removal process. A new 
consequent – namely, the class with the largest frequency among 
all cases covered by the rule – was assigned to the rule after each 
term was speculatively removed. For Unordered Rule set Ant-
Miner the consequent must remain the same during this process, 
and so the rule pruning procedure is simplified. After each term is 
speculatively removed, there is no need to compute the quality of 
the new reduced rule for all possible classes in the consequent, 
just the quality for the current positive class is computed. 
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3.4 Classifying Test Data with an Unordered 
Rule Set 
In the original Ant-Miner algorithm, classifying test data with the 
ordered list of rules was accomplished by finding for each case 
the first rule in the ordered list that covered the case (i.e. the 
case’s attribute values matched the rule antecedent), and then 
assigning the consequent class value of that rule to the case. A 
default rule that assigned the majority class in the training set to a 
case was used to classify a test case if none of the discovered 
rules matched the test case.  

When classifying test data with Unordered Rule Set Ant-Miner, a 
different approach is required as a case might be covered by more 
than one rule. One of the following scenarios will occur when 
classifying a given test case with rules discovered by the 
Unordered Rule Set Ant Miner. 

 

1. If none of the discovered rules cover the test case, that 
case is assigned the default class, which is the majority class 
in the training data set. 

2. If only one of the discovered rules covers the test case, 
that case is assigned the class predicted by that rule. 

3. If more than one of the discovered rules covers the test 
case, but all those rules predict the same class, the case is 
assigned that class. 

4. If more than one of the discovered rules covers the test 
case, but the rules do not all predict the same class, a rule 
conflict strategy is required to determine which class should 
be assigned to that case. 

Two rule conflict strategies were evaluated in this work:  

1. Classify the test case with the rule that has the highest 
rule quality. 

2. Apply a rule conflict resolution procedure based on the 
class distribution of the rules covering the current test case to 
determine that case’s class value [9]. The pseudocode for this 
procedure is shown in Algorithm 3.  

 

Algorithm 3 –Rule Conflict Resolution Procedure Based on 
the Class Distribution of the Rules Covering a Case 

 

FOR EACH Class c 

     Count(c) = 0;   

END FOR 

FOR EACH Rule r covering the current test case 

          FOR EACH Class c 

       Count(c) = Count(c) + Coverage(r, c);  

   END FOR 

END FOR 

Assign to the current test case the class with maximum value of 
Count(c), among all candidate classes. 
 

The first For-Each-Class loop of Algorithm 3 initializes the class 
counts to zero. The For-Each-Rule loop up iterates over all the 

rules covering the current test case, i.e., the rules whose conflict 
must be solved. The function Coverage(r, c) returns the number of 
training cases having class c covered by rule r. Hence, for each of 
the rules covering the current test case, the Algorithm adds, to 
each class count, the number of training cases covered by the 
current rule. Therefore, at the end of the For-Each-Rule loop, each 
class count will contain the frequency of the corresponding class 
in the total class distribution associated with all rules covering the 
current test case. Finally, the test case is assigned the class with 
the largest value of class count, i.e., the most frequent class in the 
total class distribution associated with all conflicting rules. 

4. COMPUTATIONAL RESULTS 
4.1 Datasets Used in the Experiments 
The performance of the proposed Unordered Rule Set Ant-Miner 
was evaluated using six public-domain data sets from the UCI 
(University of California at Irvine) data set repository – available 
from: http://www.ics.uci.edu/~mlearn/MLRepository.html. Table 
1 shows the main characteristics of the datasets, which were the 
same datasets used to evaluate the original Ant-Miner in [5].  

Note that Ant-Miner (both the original one and the unordered rule 
set version proposed in this paper) cannot cope directly with 
continuous attributes, i.e., continuous attributes have to be 
discretized in a preprocessing step. For the datasets having 
continuous attributes in Table 1, we used the same discretized 
version of the data used in the experiments with the original Ant-
Miner reported in [5]. Those discretized datasets were kindly 
provided by Parpinelli. 

 

Table 1 – Dataset Characteristics 

DataSet
Number of 
examples

Number of 
categorical 
attributes

Number of 
continuous 
attributes

Number of 
classes

Ljubljana breast 
cancer 282 9 0 2
Wisconsin breast 
cancer 683 0 9 2
Cleveland heart 
disease 303 8 5 5

Dermatology 366 33 1 6
Hepatitis 155 13 6 2

Tic-tac-toe 958 9 0 2 

4.2 Comparison of Results 
Both the original Ant-Miner algorithm and the proposed 
Unordered Rule Set Ant-Miner have four parameters: 

1. Number of ants (No_of_ants). 

2. Minimum number of cases per rule 
(Min_cases_per_rule). 

3. Maximum number of uncovered cases in the training set 
(Max_uncovered_cases). 

4. Number of rules used to test convergence of the ants 
(No_rules_converg). 

As explained earlier, in Unordered Rule Set Ant-Miner, 
Max_uncovered_cases refers to the maximum number of 
uncovered positive cases in the training set, whilst in the original 
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Ant-Miner it refers to the maximum number of cases (either 
positive or negative ones) in the training set. For this reason, this 
parameter may need to be set lower in Unordered Rule Set Ant-
Miner than in the original Ant-Miner. The value of 5 (half the 
value used for the original Ant-miner) was used in this work as a 
reasonable value. The other parameters of Unordered Rule Set 
Ant-Miner were set to the same values as in the original Ant-
Miner, since those other parameters have the same meaning in 
both versions of the algorithm. We make no claim that these are 
optimal parameter values, and finding the optimum values for 
Unordered Rule Set Ant-Miner’s parameters is an area requiring 
further research. (In any case, the optimum value for a parameter 
tends to be strongly problem-dependent, as usual in bio-inspired 
algorithms.) Table 2 shows the parameter settings used when 
testing both versions of Ant-Miner. 

Table 2 – Parameter settings 

Parameter
Original 

Ant-Miner
Unordered Rule 
Set Ant-Miner

No_of_ants 3000 3000

Min_cases_per_rule 5 5

Max_uncovered_cases 10 5

No_rules_converg 5 5
 

 

Ten-fold cross validation [7] was performed on each of the 
datasets with the following versions of the Ant-Miner algorithm: 

1.  Original, Ordered Rule List Ant-Miner. 

2.  Unordered Rule Set Ant-Miner using highest-quality 
rule conflict resolution strategy. 

3.  Unordered Rule Set Ant-Miner using class-distribution 
rule conflict resolution strategy. 

Table 3 shows a comparison of the mean classification accuracy 
(%) on the test set and corresponding standard deviation of the 
rule sets discovered by each version of Ant-Miner during the 
cross validation procedure. In the last two columns of that table, 
the presence of the symbol (+) or (-) in a cell indicates that the 
predictive accuracy of the corresponding version of Unordered 
Rule Set Ant-Miner is significantly better or worse than the 
predictive accuracy of the original Ordered List Ant-Miner in the 
corresponding dataset. A difference in predictive accuracy is 
considered significant if the standard deviation intervals 
(containing plus or minus one standard deviation around the 
mean) of the two accuracies do not overlap.  
 

Table 3 – Mean accuracy (%) of discovered rules 

DataSet Ordered List
Unordered Rules 
Class Distribution

Unordered Rules 
Highest Quality

Ljubljana 
breast cancer 72.98 +/- 1.97 78.42 +/- 1.70 (+) 60.31 +/- 3.52 (-)
Wisconsin 
breast cancer 95.91 +/- 0.48 92.38 +/- 0.84 (-) 95.61 +/- 0.92
Cleveland 
heart disease 57.20 +/- 1.77 64.84 +/- 2.60 (+) 56.38 +/- 1.49

Dermatology 92.74 +/- 1.38 80.50 +/- 1.56 (-) 96.05 +/- 1.46 (+)

Hepatitis 88.81 +/- 2.94 95.42 +/- 2.50 (+) 96.35 +/- 1.88 (+)

Tic-tac-toe 72.24 +/- 1.24 72.45 +/- 0.87 64.39 +/- 1.57 (-)  

The results in Table 3 show that the accuracy of both versions of 
Unordered Rule Set Ant-Miner is comparable to the accuracy of 
the original Ant-Miner algorithm in most cases. The largest gain 
in accuracy occurred in the Hepatitis dataset, where both versions 
of Unordered Rule Set Ant-Miner obtained a significantly higher 
accuracy than the original Ordered Rule List Ant-Miner. The only 
datasets in which there was no improvement associated with the 
Unordered Rule Set versions of Ant-Miner were the Tic-tac-toe  
and Wisconsin breast cancer sets.  

Table 3 also shows that the rule conflict resolution strategy used 
by Unordered Rule Set Ant-Miner when classifying test data is 
very important. The difference in accuracy between the Highest 
Rule Quality-based and Class Distribution-based strategies is 
almost 20% for the Ljubljana Cancer dataset, and the 
Dermatology and Cleveland HD datasets also show large 
discrepancies between the results for the two strategies. Overall, 
Class Distribution-based rule conflict resolution strategy slightly 
outperformed Highest Rule Quality-based rule conflict resolution. 
In particular, the Class Distribution-based strategy obtained a 
predictive accuracy significantly better (worse) than the original 
Ant-Miner in 3 (2) datasets; whilst the Highest Quality-based 
strategy obtained a predictive accuracy significantly better 
(worse) than the original Ant-Miner in 2 (2) datasets. 

One could argue that, although the Class Distribution-based rule 
conflict resolution strategy slightly outperformed the Highest 
Rule Quality-based rule conflict resolution strategy with respect 
to predictive accuracy, the former hinders the interpretability of 
the discovered rules, because it involves combining the 
predictions of several rules, rather than just using the prediction of 
an individual rule. This is to some extent a concern, but there is a 
reply to this argument. The reply is that the interpretation of the 
rules by the user is, conceptually, independent of whether or not 
the rules are combined for making a prediction about the class of 
a specific example in the test. The rules were discovered by 
following a sequential covering strategy, consisting of 
discovering one rule at a time. Due to the details of the procedure 
used for discovering the rules (in the Unordered Rule Set version 
of Ant-Miner), each rule does have a modular meaning 
independent of the others – regardless of how the rule is used to 
classify test examples. In addition, note that it is not practical to 
ask the user to interpret at the same time the set of all rules used 
to classify a test example because this set varies from example to 
example. I.e., a given rule can sometimes be the only rule used to 
classify a certain test example (if the rule is the only to cover that 
example), whilst in other occasions the same rule might be 
combined with other rules to classify another test example (if 
there are two or more rules of different classes covering the same 
test example). The main motivation for showing the rules to the 
user is to try to give the user more insight about the data and the 
application domain. Users can potentially get such insight by 
interpreting the rules individually, one rule at a time, even when 
using the Class Distribution-based rule conflict resolution 
strategy.  

We now consider the simplicity of the rules discovered by the 
Unordered Rule Set Ant-Miner. As usual in the data mining 
literature, simplicity is measured by the number of rules and the 
number of terms per rule – the smaller these values, the simpler 
the rule set is. The original Ant-Miner was competitive with CN2 
and C4.5 with respect to accuracy, while producing much more 
simple rules [5], [8]. This is desirable as discovered rule sets that 
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are more simple are easier to interpret and understand, and are 
potentially less likely to over fit the training data. A comparison 
of the mean number of rules discovered by the different versions 
of Ant-Miner is shown in Table 4 and the mean number of terms 
per rule is shown in Table 5. The values after the mean are 
standard deviations. In Table 4 in the last two columns, the 
presence of the symbol (+) or (-) in a cell indicates the mean 
number of rules discovered by the corresponding version of 
Unordered Rule Set Ant-Miner is significantly greater or smaller 
than the mean number of rules discovered by the Ordered Rule 
List Ant-Miner in the corresponding dataset. In Table 5 in the last 
two columns, the presence of the symbols (+) or (-) in a cell 
indicates the number of terms in the rules discovered by the 
corresponding version of Unordered Rule Set Ant-Miner is 
significantly greater or smaller that the number of terms in the 
rules discovered by the Ordered Rule List Ant-Miner in the 
corresponding dataset. As in Table 3, a difference between two 
results is considered significant if the standard deviation intervals 
do not overlap. 

 

Table 4 – Mean number of rules discovered without counting 
the default rule 

DataSet Ordered List
Unordered Rules 

Class 
Distribution

Unordered Rules 
Highest Quality

Ljubljana 
breast cancer 6.70 +/- 0.37 6.10 +/- 0.11 (-) 6.00 +/- 0.00 (-)
Wisconsin 
breast cancer 5.60 +/- 0.30 6.50 +/- 0.19 (+) 6.20 +/- 0.15 (+)
Cleveland 
heart disease 14.20 +/- 0.43 11.00 +/- 0.00 (-) 11.00 +/- 0.00 (-)
Dermatology 6.00 +/- 0.00 6.00 +/- 0.00 6.00 +/- 0.00
Hepatitis 2.70 +/- 0.17 3.00 +/- 0.00 (+) 3.00 +/- 0.00 (+)
Tic-tac-toe 4.60 +/- 0.48 6.30 +/- 0.17 (+) 6.30 +/- 0.17 (+) 

 

Table 5 – Average No. of terms per rule 

DataSet Ordered List
Unordered Rules 

Class 
Distribution

Unordered Rules 
Highest Quality

Ljubljana 
breast cancer 1.79 +/- 0.08 1.85 +/- 0.02 1.83 +/- 0.00
Wisconsin 
breast cancer 2.27 +/- 0.09 2.55 +/- 0.08 (+) 2.37 +/- 0.08
Cleveland heart 
disease 2.69 +/- 0.10 2.54 +/- 0.01 (-) 2.53 +/- 0.02 (-)

Dermatology 13.25 +/- 0.14 13.10 +/- 0.07 13.28 +/- 0.11
Hepatitis 3.81 +/- 0.15 3.33 +/- 0.05 (-) 3.33 +/- 0.00 (-)

Tic-tac-toe 1.26 +/- 0.10 1.10 +/- 0.04 (-) 1.10 +/- 0.04 (-) 
 

The two versions of Unordered Rule Set Ant-Miner produced 
significantly fewer rules for the Ljubljana breast cancer and 
Cleveland heart disease datasets. The largest difference was for 
the Cleveland HD dataset, where the original, Ordered Rule List 
Ant-Miner produced 14.20 rules on average, whereas the two 
versions of Unordered Rule Set Ant-Miner produced 11, with the 
number of terms per rule being significantly smaller for the rules 

discovered by Unordered Set Ant Miner than for the rules 
discovered by Ordered List Ant-Miner in that dataset. 

Although the two versions of Unordered Rule Set Ant-Miner 
produced a significantly increased number of rules for three out of 
the six data sets (Wisconsin breast cancer, Hepatitis and Tic-tac-
toe), the unordered rule sets discovered for two of those three 
datasets (Hepatitis and Tic-tac-toe) had a significantly smaller 
number of terms per rule than the corresponding rule lists 
discovered by Ordered Rule List Ant-Miner. In any case, overall 
the two versions of Ant-Miner (with Ordered and Unordered 
Rules) obtained rule sets with similar levels of simplicity. 

Interestingly for the Cleveland HD, Dermatology and Hepatitis 
datasets there was no deviation from the mean number of rules 
during the cross validation, for the two versions of Unordered 
Rule Set Ant-Miner. 

5. CONCLUSIONS AND FUTURE 
RESEARCH 
Our experimentation has shown that, overall, the proposed 
Unordered Rule Set Ant-Miner is capable of discovering rules 
that are comparable to those discovered by the original Ant-Miner 
algorithm, in terms of both predictive accuracy and rule set 
simplicity (size of the classification model). In any case, it should 
be recalled that the rules discovered by Unordered Rule Set Ant-
Miner are more modular than the rules discovered by the original 
Ordered List Ant-Miner. This is the case because in the former 
kind of algorithm each rule can be interpreted independently from 
the others, whereas in the rule list discovered by the original Ant-
Miner a given rule should be interpreted only in the context of all 
the previous rules in the list. This modularity facilitates the 
interpretation of the rules by the user, an important point in data 
mining [7], and therefore an advantage of the Unordered Rule Set 
Ant-Miner proposed in this paper. 

The results also highlight the importance of the rule conflict 
resolution strategy in the application of discovered unordered 
rules to test data. Further research in this area could be focused on 
developing rule conflict resolution strategies that are more robust 
across a number of datasets.  

In this work the algorithm parameters were not optimised for any 
particular data set, since the focus was on comparing the different 
versions of Ant-Miner, rather than optimizing parameters for each 
data set. Hence, another area of further research might be to 
attempt to determine the optimum parameter settings that would 
maximise the accuracy of the discovered classification rules for 
each dataset. 
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