
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 43-50

A New Version of the Ant-Miner Algorithm
Discovering Unordered Rule Sets

James Smaldon
University of Kent

Computing Laboratory
 Canterbury, CT2 7NF, UK

James.Smaldon@gmail.com

Alex A. Freitas
University of Kent

Computing Laboratory
 Canterbury, CT2 7NF, UK

A.A.Freitas@kent.ac.uk

ABSTRACT
The Ant-Miner algorithm, first proposed by Parpinelli and
colleagues, applies an ant colony optimization heuristic to the
classification task of data mining to discover an ordered list of
classification rules. In this paper we present a new version of the
Ant-Miner algorithm, which we call Unordered Rule Set Ant-
Miner, that produces an unordered set of classification rules. The
proposed version was evaluated against the original Ant-Miner
algorithm in six public-domain datasets and was found to produce
comparable results in terms of predictive accuracy. However, the
proposed version has the advantage of discovering more modular
rules, i.e., rules that can be interpreted independently from other
rules – unlike the rules in an ordered list, where the interpretation
of a rule requires knowledge of the previous rules in the list.
Hence, the proposed version facilitates the interpretation of
discovered knowledge, an important point in data mining.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – concept learning,
induction.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Ant Colony Optimization, Data Mining, Classification Rules.

1. INTRODUCTION
Data Mining is the process of extracting useful knowledge from
real-world data. Among the several data mining tasks – such as
clustering and classification - this paper focuses on classification.
In this task the aim is to discover, from training data (containing
cases, or records, whose class is known), a classification model
that can be used to predict the class of cases in the test data
(containing unknown-class cases). One popular category of
classification model consists of classification rules, which is the

model category used in this paper. In this context, the aim of the
classification algorithm is to discover a set of classification rules.

One algorithm for solving this task is Ant-Miner, proposed by
Parpinelli and colleagues [5], which employs ant colony
optimization techniques [1] to discover classification rules of the
form:

IF (term1 AND term2 AND ….. termm) THEN (predicted class)

where each term is of the form <attribute = value>, and different
rules can have different number of terms in their antecedent (IF
part). The consequent of a rule is a predicted class, i.e., the value
that the rule predicts for the class attribute when an example
satisfies the conjunction of terms in the rule antecedent.

Classification rules have the advantage of representing knowledge
at a high level of abstraction, so that they are intuitively
comprehensible to the user [7].

Ant-Miner has produced good results when compared with more
conventional data mining algorithms [5], [8] and it is still a
relatively recent algorithm, which motivates further research
trying to improve it. This work proposes a modification to the
Ant-Miner data mining algorithm called Unordered Rule Set Ant-
Miner, with the aim of improving or at least maintaining the level
of predictive accuracy obtained by the original Ant-Miner, whilst
at the same time facilitating the interpretation of the discovered
classification rules, as follows. In the original Ant-Miner, the goal
of the algorithm was to produce an ordered list of rules, which
was then applied to test data in the order in which they were
discovered. This makes it difficult to interpret the rules at the end
of the list, since their conditions make sense only in the context of
all the previous rules in the ordered list of rules [7]. The new
version of Ant-Miner proposed in this paper discovers, from
training data, an unordered set of rules that can be applied to test
data in any order. This makes the discovered rules easier for the
user to interpret, since now the interpretation of each rule is
independent from all the other discovered rules.

Although some modifications to the Ant-Miner algorithm have
already been proposed [2][3][4], to the best of our knowledge, an
unordered rule set modification to the original Ant-Miner
algorithm is an area of research that has not yet been explored.

This paper is organised as follows. Section 2 presents an outline
of the original Ant-Miner algorithm. Section 3 explains the
proposed Unordered Rule Set Ant-Miner. Section 4 discusses
computational results and performance of the algorithm. Section 5
concludes the paper and suggests further areas of research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2004, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 43-50

2. A BRIEF DESCRIPTION OF THE ANT-
MINER ALGORITHM
The original Ant-Miner algorithm, upon which the Unordered
Rule Set Ant-Miner proposed in this paper is based, is described
in the pseudo code of Algorithm 1, taken from [5]. We provide
here just a brief overview of the algorithm; for more details the
reader is referred to that reference.

Algorithm 1 – Original Ant-Miner

TrainingSet = {all training cases};

DiscoveredRuleList = []; /* initialize rule list with empty list */

WHILE (TrainingSet > Max_uncovered_cases)

 t = 1; /* ant index, and also rule index */

 j = 1; /* convergence test index */

 Initialize all trails with the same amount of pheromone;

 REPEAT

 Antt starts with an empty rule and incrementally
 constructs a classification rule Rt by adding one
 term at a time to the current rule;

 Prune rule Rt; /* remove irrelevant terms from rule */

 Update the pheromone of all trails by increasing
 pheromone in the trail followed by Antt (proportional
 to the quality of Rt) and decreasing pheromone in the
 other trails (simulating pheromone evaporation);

 IF (Rt is equal to Rt – 1) /* update convergence test */

 THEN j = j + 1;

 ELSE j = 1;

 END IF

 t = t + 1;

 UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg)

 Choose the best rule Rbest among all rules Rt constructed by
 all the ants;

 Add rule Rbest to DiscoveredRuleList;

 TrainingSet = TrainingSet - {set of cases correctly covered
 by Rbest};

END WHILE

Ant-Miner discovers an ordered list of classification rules based
on a heuristic function involving information gain – a popular
heuristic function in data mining [6] – and positive feedback
involving artificial pheromone. For each iteration of the Repeat-
Until loop, an ant attempts to discover a rule by selecting terms in
a probabilistic manner, until all the attributes have been used to
make the current rule, or adding any other available term would
make the rule coverage less than min_cases_per_rule – a user-
specified threshold. The discovered rule is then pruned in an
attempt to reduce over-fitting to the training data and increase rule
quality. Afterwards, the pheromone values for the terms in the

current rule are increased, in order to increase the probability that
other ants will select those terms, and then the pheromone values
for all terms are normalised. The While loop iterates until the
number of training examples remaining in the dataset becomes
less than or equal to Max_uncovered_cases – another user-
specified threshold. The rule discovered in the Repeat-Until loop
that has the highest quality is then added to the list of discovered
rules, and the training examples correctly covered by that rule are
removed from the training dataset. An example is correctly
covered by a rule if the example satisfies the rule antecedent and
has the class predicted by the rule.

2.1 Pheromone Initialisation
Pheromone values for each term are all initialised to the same
value at the beginning of each While loop iteration. The initial
value of each pheromone is given by the function:

()
∑a

=i
i

ij

b
==tτ

1

1
0

Where a is the total number of attributes, i is the index of an
attribute, j is the index of a value in the domain of attribute i, and
bi is the number of values in the domain of attribute i.

2.2 Pheromone Updating
In Ant-Miner pheromone levels are increased for all terms in a
rule just constructed by an ant, based on the quality of that rule, as
measured by the rule quality formula “sensitivity * specificity”,
defined as follows:

TN+FP

TN

FN+TP

TP
=Q ⋅

where TP / (TP + FN) is the sensitivity, TN / (FP + TN) is the
specificity, and:

TP (true positives) is the number of cases covered by the rule that
have the class predicted by the rule.

FP (false positives) is the number of cases covered by the rule that
have a class different from the class predicted by the rule.

FN (false negatives) is the number of cases that are not covered
by the rule but that have the class predicted by the rule.

TN (true negatives) is the number of cases that are not covered by
the rule and that do not have the class predicted by the rule.

2.3 Term Selection
The probability that a term will be added to the current rule is
given by the following formula:

()

()()∑∑ ⋅⋅

⋅
ib

j=
ijij

a

=i
i

ijij

ij

tτηx

tτη
=P

11

where:

ηij is the value of a problem-dependent heuristic function – more
precisely information gain [6] – for termij (a condition of the form
attributei = valuej). The higher the value of ηij the more relevant

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 43-50

for classification the termij is, and so the higher its probability of
being chosen.

τij(t) is the amount of pheromone associated with termij at
iteration t.

a is the total number of attributes.

xi is set to 1 if the attribute ai was not yet used by the current ant,
0 otherwise.

bi is the number of values in domain of the ith attribute.

3. UNORDERED RULE SET
MODIFICATIONS TO THE ANT-MINER
ALGORITHM
As mentioned in the Introduction, we propose a modification to
the original Ant-Miner so that the algorithm discovers a set of
rules which do not need to be applied to test data in the order in
which they were discovered. The pseudocode of the new
algorithm is described in Algorithm 2.

In the original Ant-Miner, ants chose terms for a rule with the
goal of decreasing entropy in the class distribution of examples
matching the rule in construction. The consequent of the rule was
then assigned afterwards by determining the class value that
would produce the highest quality rule. In Unordered Rule Set
Ant-Miner, by contrast, an extra For-Each loop is added as the
outer loop of the algorithm, iterating over the values in the class
attribute domain, as indicated in Algorithm 2. As a result of this
loop, the consequent for the rule is known by the ant during rule
construction and does not change. The current ant tries to choose
terms that will produce the rule predicting the class value in the
current iteration of the For-Each loop with an optimum level of
accuracy. In theory, such an approach should lead to faster
convergence on good rules, by comparison with the original Ant-
Miner. The reason is that in Unordered Rule Set Ant-Miner each
term’s pheromone value directly represents that term’s relevance
for predicting a fixed target class value. By contrast, in the
original Ant-Miner each term’s pheromone is associated with that
term’s relevance in reducing the entropy associated with the entire
class distribution, a less focused relevance.

Each iteration of the For-Each loop discovers an unordered set of
rules, all of which predict the current class value. At the
beginning of each iteration, the entire training set is reinstated, so
that a maximal number of negative examples are available to the
algorithm. Ants discover rules from the training data until the
number of positive examples (belonging to the current class)
remaining in the dataset that have not been covered by a
discovered rule is less than or equal to the value determined by
the max_uncovered_cases parameter. Note that in the original
Ant-Miner max_uncovered_cases referred to all examples in the
training set, rather than to the positive examples only as in the
proposed algorithm.

Rule construction occurs as follows. For each iteration of the
WHILE loop, the amount of pheromone for each term is set to an
initial value. This initialization is the same as the one used in the
original Ant-Miner. However, unlike the original Ant-Miner, in
the proposed algorithm an ant starts with a rule containing the
known consequent (the current class value of the FOR loop) and
an empty antecedent. The rule is constructed incrementally by

selecting terms with a probabilistic method that favours terms
with a large amount of pheromone and a high Laplace-corrected
confidence value (see below). The ant stops constructing a rule if
all the attributes have been used in the rule antecedent constructed
so far, or if there are no terms available that, when added to the
rule antecedent, would not make the rule cover fewer cases than
the limit min_cases_per_rule. The rule is then pruned in an
attempt to increase its quality, and if the rule is of a high enough
confidence, the terms making up the rule have their pheromone
levels increased. The best rule discovered during the REPEAT
UNTIL loop is added to the unordered set of discovered rules.

Algorithm 2 – Proposed Unordered Rule Set Ant-Miner

Discovered Rule Set = {} /* initialize rule set with empty set */

FOR EACH Class

 TrainingSet = {all training cases}

 PositiveSet = {training cases of current class}

 NegativeSet = TrainingSet – PositiveSet

 WHILE (|PositiveSet| > max_uncovered_cases)

 t = 1;

 j = 1;

 initialise all trails to the same amount of pheromone;

 REPEAT

 Antt starts with an empty rule and incrementally
 constructs a classification rule Rt by adding one term
 at a time to the current rule;

Prune rule Rt;

 IF (LaplaceCorrectedConfidence(Rt) >
 RuleConfidenceThreshold)

 THEN increase pheromone of terms in rule Rt
END IF

Update pheromones in all other terms by normalising
the pheromone values (simulating evaporation)

IF (Rt equals Rt -1)

 THEN j = j + 1;

 ELSE j = 1;

END IF

t = t+1;

 UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg)

 Choose the best rule Rbest among all rules Rt constructed
 by all ants;

 Add rule Rbest to DiscoveredRuleSet;

 TrainingSet = TrainingSet – {set of positive cases
 covered by Rbest };

 PositiveSet = PositiveSet – {set of positive cases
 covered by Rbest};

 END WHILE

END FOR

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 43-50

3.1 Problem dependent heuristic function
Since the consequent of the rule is already known when the ants
discover rules, the heuristic function of the original Ant-Miner
must be altered to favour the selection of terms that increase the
probability that the rule will predict the current class of the For-
Each loop. The problem dependent heuristic function chosen is
the Laplace-corrected confidence for each term, given by:

sesNo_of_clas

1

+|term|

+|k,term|
=η

ij

ij

ij

where |termij, k| is the number of training cases having termij and
the current positive class k, |termij| is the number of training cases
having termij and No_of_classes is the number of values in the
class attribute’s domain. The Laplace correction is also used in
other rule induction algorithms such as CN2 [9], and it has the
advantage of penalizing rules that are too specific (covering too
few cases), helping to reduce overfitting. For instance, suppose a
terms occurs in just one case, and that case has the current
positive class, so that |termij| = |termij, k| = 1. Without the Laplace
correction, the confidence of that term would be 1 / 1 = 100%, a
too optimistic value for such an extremely specific rule, which is
unlikely to generalize well for test data unseen during training.
With the Laplace correction, and supposing No_of_classes = 2,
the confidence of the rule is corrected to (1 + 1) / (1 + 2) = 67%, a
more realistic value. Note that the Laplace correction will have
little effect when |termij| is large, which is consistent with the fact
that there is a lot of statistical support for such a generic rule.

3.2 Pheromone Updating
As mentioned earlier, in the unordered rule set algorithm the
consequent (predicted class) of each rule is fixed during the
construction of the rule by an ant. Due to the probabilistic nature
of the algorithm, it is possible to generate rules where the number
of true positives (TP) is less that the number of false positives
(FP). Such rules tend to be bad rules, because they have a low
predictive accuracy. It is important that the pheromone of terms
occurring in the rule be increased only when the just-constructed
rule has an acceptable confidence value. The threshold that
determines if a rule is acceptable or not (i.e., whether or not the
pheromone of its terms should be increased) is expressed by the
following formula.

)
||

|k|
(=oldenceThreshRuleConfid

set training
0.5,MAX

Where |k| is the number of training cases with the current
(positive) class, and |training set| is the total number of cases in
the current training set.

The rule confidence threshold is therefore the maximum of the
relative frequency of the predicted class and 0.5. The motivation
for the use of the max operator in this formula is as follows. In the
case of a predicted class whose relative frequency is “large”
(greater than 0.5), the rule is considered acceptable only if its
confidence is at least as great as the relative frequency of that
class. For instance, if the relative frequency of a class is 70%, a
rule predicting that class with a confidence of 60% is clearly a
bad rule. This requirement is not enough, however, when the

predicted class has a “small” relative frequency (lower than 50%).
For instance, suppose a class has a relatively frequency of 10%. A
rule with a confidence of 15% satisfies the criterion of having a
confidence greater than the relative frequency of the predicted
class, but it is still a weak rule. Hence, the use of the max operator
guarantees that, when the predicted class has a low relative
frequency, the confidence threshold is raised to 50%. We make no
claim that the threshold value 0.5 is an optimal value, but this
value worked well in our preliminary experiments. Optimizing
this parameter is a topic left for future research.

Once a rule has been considered acceptable, the amount of
pheromone increase to be applied to each of the terms in that rule
is determined by the following formula.

() () ()()δtτ+tτ=tτ ijijij ⋅+1

where τij(t) is the current (at time index t) amount of pheromone
associated with termij, and δ is set to the rule quality Q (the
formula in section 2.2, which is also the formula used in the
original Ant-Miner) if the Laplace-corrected confidence for the
rule was above RuleConfidenceThreshold or set to 0 otherwise.
The basic idea of the Laplace-correction was already explained in
section 3.1, in the context of the problem-dependent heuristic
function. A conceptually similar idea is used in the context of the
confidence of a rule. A rule’s confidence (before the use of
Laplace correction) is defined as follows. Let IF A THEN C be a
rule, where A is the antecedent (conjunction of terms) and C be
the predicted class. The confidence of a rule is given by:

|A and C| / |A|

i.e., the number of training cases satisfying both A and C divided
by the total number of cases satisfying A. The Laplace-corrected
confidence is then given by:

(|A and C| + 1) / (|A| + No_of_classes) .

The effect of the Laplace correction in the confidence of a rule is
conceptually similar to the effect of this correction in the value of
the problem-dependent function, as explained in section 3.1.

3.3 Rule Pruning
It is necessary to make some alterations to the rule pruning in the
Ant-Miner algorithm to support unordered rule sets. In the
original Ant-Miner rules were pruned to remove irrelevant terms
and to improve the predictive accuracy of rules. This involved
speculatively removing each term in turn and evaluating the
quality of the rule without that term; and then definitely removing
the term whose removal provided the largest increase in rule
quality. This process was then repeated until there was only one
term left in the rule antecedent or no increase in rule quality was
observed during the speculative removal process. A new
consequent – namely, the class with the largest frequency among
all cases covered by the rule – was assigned to the rule after each
term was speculatively removed. For Unordered Rule set Ant-
Miner the consequent must remain the same during this process,
and so the rule pruning procedure is simplified. After each term is
speculatively removed, there is no need to compute the quality of
the new reduced rule for all possible classes in the consequent,
just the quality for the current positive class is computed.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 43-50

3.4 Classifying Test Data with an Unordered
Rule Set
In the original Ant-Miner algorithm, classifying test data with the
ordered list of rules was accomplished by finding for each case
the first rule in the ordered list that covered the case (i.e. the
case’s attribute values matched the rule antecedent), and then
assigning the consequent class value of that rule to the case. A
default rule that assigned the majority class in the training set to a
case was used to classify a test case if none of the discovered
rules matched the test case.

When classifying test data with Unordered Rule Set Ant-Miner, a
different approach is required as a case might be covered by more
than one rule. One of the following scenarios will occur when
classifying a given test case with rules discovered by the
Unordered Rule Set Ant Miner.

1. If none of the discovered rules cover the test case, that
case is assigned the default class, which is the majority class
in the training data set.

2. If only one of the discovered rules covers the test case,
that case is assigned the class predicted by that rule.

3. If more than one of the discovered rules covers the test
case, but all those rules predict the same class, the case is
assigned that class.

4. If more than one of the discovered rules covers the test
case, but the rules do not all predict the same class, a rule
conflict strategy is required to determine which class should
be assigned to that case.

Two rule conflict strategies were evaluated in this work:

1. Classify the test case with the rule that has the highest
rule quality.

2. Apply a rule conflict resolution procedure based on the
class distribution of the rules covering the current test case to
determine that case’s class value [9]. The pseudocode for this
procedure is shown in Algorithm 3.

Algorithm 3 –Rule Conflict Resolution Procedure Based on
the Class Distribution of the Rules Covering a Case

FOR EACH Class c

 Count(c) = 0;

END FOR

FOR EACH Rule r covering the current test case

 FOR EACH Class c

 Count(c) = Count(c) + Coverage(r, c);

 END FOR

END FOR

Assign to the current test case the class with maximum value of
Count(c), among all candidate classes.

The first For-Each-Class loop of Algorithm 3 initializes the class
counts to zero. The For-Each-Rule loop up iterates over all the

rules covering the current test case, i.e., the rules whose conflict
must be solved. The function Coverage(r, c) returns the number of
training cases having class c covered by rule r. Hence, for each of
the rules covering the current test case, the Algorithm adds, to
each class count, the number of training cases covered by the
current rule. Therefore, at the end of the For-Each-Rule loop, each
class count will contain the frequency of the corresponding class
in the total class distribution associated with all rules covering the
current test case. Finally, the test case is assigned the class with
the largest value of class count, i.e., the most frequent class in the
total class distribution associated with all conflicting rules.

4. COMPUTATIONAL RESULTS
4.1 Datasets Used in the Experiments
The performance of the proposed Unordered Rule Set Ant-Miner
was evaluated using six public-domain data sets from the UCI
(University of California at Irvine) data set repository – available
from: http://www.ics.uci.edu/~mlearn/MLRepository.html. Table
1 shows the main characteristics of the datasets, which were the
same datasets used to evaluate the original Ant-Miner in [5].

Note that Ant-Miner (both the original one and the unordered rule
set version proposed in this paper) cannot cope directly with
continuous attributes, i.e., continuous attributes have to be
discretized in a preprocessing step. For the datasets having
continuous attributes in Table 1, we used the same discretized
version of the data used in the experiments with the original Ant-
Miner reported in [5]. Those discretized datasets were kindly
provided by Parpinelli.

Table 1 – Dataset Characteristics

DataSet
Number of
examples

Number of
categorical
attributes

Number of
continuous
attributes

Number of
classes

Ljubljana breast
cancer 282 9 0 2
Wisconsin breast
cancer 683 0 9 2
Cleveland heart
disease 303 8 5 5

Dermatology 366 33 1 6
Hepatitis 155 13 6 2

Tic-tac-toe 958 9 0 2

4.2 Comparison of Results
Both the original Ant-Miner algorithm and the proposed
Unordered Rule Set Ant-Miner have four parameters:

1. Number of ants (No_of_ants).

2. Minimum number of cases per rule
(Min_cases_per_rule).

3. Maximum number of uncovered cases in the training set
(Max_uncovered_cases).

4. Number of rules used to test convergence of the ants
(No_rules_converg).

As explained earlier, in Unordered Rule Set Ant-Miner,
Max_uncovered_cases refers to the maximum number of
uncovered positive cases in the training set, whilst in the original

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 43-50

Ant-Miner it refers to the maximum number of cases (either
positive or negative ones) in the training set. For this reason, this
parameter may need to be set lower in Unordered Rule Set Ant-
Miner than in the original Ant-Miner. The value of 5 (half the
value used for the original Ant-miner) was used in this work as a
reasonable value. The other parameters of Unordered Rule Set
Ant-Miner were set to the same values as in the original Ant-
Miner, since those other parameters have the same meaning in
both versions of the algorithm. We make no claim that these are
optimal parameter values, and finding the optimum values for
Unordered Rule Set Ant-Miner’s parameters is an area requiring
further research. (In any case, the optimum value for a parameter
tends to be strongly problem-dependent, as usual in bio-inspired
algorithms.) Table 2 shows the parameter settings used when
testing both versions of Ant-Miner.

Table 2 – Parameter settings

Parameter
Original

Ant-Miner
Unordered Rule
Set Ant-Miner

No_of_ants 3000 3000

Min_cases_per_rule 5 5

Max_uncovered_cases 10 5

No_rules_converg 5 5

Ten-fold cross validation [7] was performed on each of the
datasets with the following versions of the Ant-Miner algorithm:

1. Original, Ordered Rule List Ant-Miner.

2. Unordered Rule Set Ant-Miner using highest-quality
rule conflict resolution strategy.

3. Unordered Rule Set Ant-Miner using class-distribution
rule conflict resolution strategy.

Table 3 shows a comparison of the mean classification accuracy
(%) on the test set and corresponding standard deviation of the
rule sets discovered by each version of Ant-Miner during the
cross validation procedure. In the last two columns of that table,
the presence of the symbol (+) or (-) in a cell indicates that the
predictive accuracy of the corresponding version of Unordered
Rule Set Ant-Miner is significantly better or worse than the
predictive accuracy of the original Ordered List Ant-Miner in the
corresponding dataset. A difference in predictive accuracy is
considered significant if the standard deviation intervals
(containing plus or minus one standard deviation around the
mean) of the two accuracies do not overlap.

Table 3 – Mean accuracy (%) of discovered rules

DataSet Ordered List
Unordered Rules
Class Distribution

Unordered Rules
Highest Quality

Ljubljana
breast cancer 72.98 +/- 1.97 78.42 +/- 1.70 (+) 60.31 +/- 3.52 (-)
Wisconsin
breast cancer 95.91 +/- 0.48 92.38 +/- 0.84 (-) 95.61 +/- 0.92
Cleveland
heart disease 57.20 +/- 1.77 64.84 +/- 2.60 (+) 56.38 +/- 1.49

Dermatology 92.74 +/- 1.38 80.50 +/- 1.56 (-) 96.05 +/- 1.46 (+)

Hepatitis 88.81 +/- 2.94 95.42 +/- 2.50 (+) 96.35 +/- 1.88 (+)

Tic-tac-toe 72.24 +/- 1.24 72.45 +/- 0.87 64.39 +/- 1.57 (-)

The results in Table 3 show that the accuracy of both versions of
Unordered Rule Set Ant-Miner is comparable to the accuracy of
the original Ant-Miner algorithm in most cases. The largest gain
in accuracy occurred in the Hepatitis dataset, where both versions
of Unordered Rule Set Ant-Miner obtained a significantly higher
accuracy than the original Ordered Rule List Ant-Miner. The only
datasets in which there was no improvement associated with the
Unordered Rule Set versions of Ant-Miner were the Tic-tac-toe
and Wisconsin breast cancer sets.

Table 3 also shows that the rule conflict resolution strategy used
by Unordered Rule Set Ant-Miner when classifying test data is
very important. The difference in accuracy between the Highest
Rule Quality-based and Class Distribution-based strategies is
almost 20% for the Ljubljana Cancer dataset, and the
Dermatology and Cleveland HD datasets also show large
discrepancies between the results for the two strategies. Overall,
Class Distribution-based rule conflict resolution strategy slightly
outperformed Highest Rule Quality-based rule conflict resolution.
In particular, the Class Distribution-based strategy obtained a
predictive accuracy significantly better (worse) than the original
Ant-Miner in 3 (2) datasets; whilst the Highest Quality-based
strategy obtained a predictive accuracy significantly better
(worse) than the original Ant-Miner in 2 (2) datasets.

One could argue that, although the Class Distribution-based rule
conflict resolution strategy slightly outperformed the Highest
Rule Quality-based rule conflict resolution strategy with respect
to predictive accuracy, the former hinders the interpretability of
the discovered rules, because it involves combining the
predictions of several rules, rather than just using the prediction of
an individual rule. This is to some extent a concern, but there is a
reply to this argument. The reply is that the interpretation of the
rules by the user is, conceptually, independent of whether or not
the rules are combined for making a prediction about the class of
a specific example in the test. The rules were discovered by
following a sequential covering strategy, consisting of
discovering one rule at a time. Due to the details of the procedure
used for discovering the rules (in the Unordered Rule Set version
of Ant-Miner), each rule does have a modular meaning
independent of the others – regardless of how the rule is used to
classify test examples. In addition, note that it is not practical to
ask the user to interpret at the same time the set of all rules used
to classify a test example because this set varies from example to
example. I.e., a given rule can sometimes be the only rule used to
classify a certain test example (if the rule is the only to cover that
example), whilst in other occasions the same rule might be
combined with other rules to classify another test example (if
there are two or more rules of different classes covering the same
test example). The main motivation for showing the rules to the
user is to try to give the user more insight about the data and the
application domain. Users can potentially get such insight by
interpreting the rules individually, one rule at a time, even when
using the Class Distribution-based rule conflict resolution
strategy.

We now consider the simplicity of the rules discovered by the
Unordered Rule Set Ant-Miner. As usual in the data mining
literature, simplicity is measured by the number of rules and the
number of terms per rule – the smaller these values, the simpler
the rule set is. The original Ant-Miner was competitive with CN2
and C4.5 with respect to accuracy, while producing much more
simple rules [5], [8]. This is desirable as discovered rule sets that

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 43-50

are more simple are easier to interpret and understand, and are
potentially less likely to over fit the training data. A comparison
of the mean number of rules discovered by the different versions
of Ant-Miner is shown in Table 4 and the mean number of terms
per rule is shown in Table 5. The values after the mean are
standard deviations. In Table 4 in the last two columns, the
presence of the symbol (+) or (-) in a cell indicates the mean
number of rules discovered by the corresponding version of
Unordered Rule Set Ant-Miner is significantly greater or smaller
than the mean number of rules discovered by the Ordered Rule
List Ant-Miner in the corresponding dataset. In Table 5 in the last
two columns, the presence of the symbols (+) or (-) in a cell
indicates the number of terms in the rules discovered by the
corresponding version of Unordered Rule Set Ant-Miner is
significantly greater or smaller that the number of terms in the
rules discovered by the Ordered Rule List Ant-Miner in the
corresponding dataset. As in Table 3, a difference between two
results is considered significant if the standard deviation intervals
do not overlap.

Table 4 – Mean number of rules discovered without counting
the default rule

DataSet Ordered List
Unordered Rules

Class
Distribution

Unordered Rules
Highest Quality

Ljubljana
breast cancer 6.70 +/- 0.37 6.10 +/- 0.11 (-) 6.00 +/- 0.00 (-)
Wisconsin
breast cancer 5.60 +/- 0.30 6.50 +/- 0.19 (+) 6.20 +/- 0.15 (+)
Cleveland
heart disease 14.20 +/- 0.43 11.00 +/- 0.00 (-) 11.00 +/- 0.00 (-)
Dermatology 6.00 +/- 0.00 6.00 +/- 0.00 6.00 +/- 0.00
Hepatitis 2.70 +/- 0.17 3.00 +/- 0.00 (+) 3.00 +/- 0.00 (+)
Tic-tac-toe 4.60 +/- 0.48 6.30 +/- 0.17 (+) 6.30 +/- 0.17 (+)

Table 5 – Average No. of terms per rule

DataSet Ordered List
Unordered Rules

Class
Distribution

Unordered Rules
Highest Quality

Ljubljana
breast cancer 1.79 +/- 0.08 1.85 +/- 0.02 1.83 +/- 0.00
Wisconsin
breast cancer 2.27 +/- 0.09 2.55 +/- 0.08 (+) 2.37 +/- 0.08
Cleveland heart
disease 2.69 +/- 0.10 2.54 +/- 0.01 (-) 2.53 +/- 0.02 (-)

Dermatology 13.25 +/- 0.14 13.10 +/- 0.07 13.28 +/- 0.11
Hepatitis 3.81 +/- 0.15 3.33 +/- 0.05 (-) 3.33 +/- 0.00 (-)

Tic-tac-toe 1.26 +/- 0.10 1.10 +/- 0.04 (-) 1.10 +/- 0.04 (-)

The two versions of Unordered Rule Set Ant-Miner produced
significantly fewer rules for the Ljubljana breast cancer and
Cleveland heart disease datasets. The largest difference was for
the Cleveland HD dataset, where the original, Ordered Rule List
Ant-Miner produced 14.20 rules on average, whereas the two
versions of Unordered Rule Set Ant-Miner produced 11, with the
number of terms per rule being significantly smaller for the rules

discovered by Unordered Set Ant Miner than for the rules
discovered by Ordered List Ant-Miner in that dataset.

Although the two versions of Unordered Rule Set Ant-Miner
produced a significantly increased number of rules for three out of
the six data sets (Wisconsin breast cancer, Hepatitis and Tic-tac-
toe), the unordered rule sets discovered for two of those three
datasets (Hepatitis and Tic-tac-toe) had a significantly smaller
number of terms per rule than the corresponding rule lists
discovered by Ordered Rule List Ant-Miner. In any case, overall
the two versions of Ant-Miner (with Ordered and Unordered
Rules) obtained rule sets with similar levels of simplicity.

Interestingly for the Cleveland HD, Dermatology and Hepatitis
datasets there was no deviation from the mean number of rules
during the cross validation, for the two versions of Unordered
Rule Set Ant-Miner.

5. CONCLUSIONS AND FUTURE
RESEARCH
Our experimentation has shown that, overall, the proposed
Unordered Rule Set Ant-Miner is capable of discovering rules
that are comparable to those discovered by the original Ant-Miner
algorithm, in terms of both predictive accuracy and rule set
simplicity (size of the classification model). In any case, it should
be recalled that the rules discovered by Unordered Rule Set Ant-
Miner are more modular than the rules discovered by the original
Ordered List Ant-Miner. This is the case because in the former
kind of algorithm each rule can be interpreted independently from
the others, whereas in the rule list discovered by the original Ant-
Miner a given rule should be interpreted only in the context of all
the previous rules in the list. This modularity facilitates the
interpretation of the rules by the user, an important point in data
mining [7], and therefore an advantage of the Unordered Rule Set
Ant-Miner proposed in this paper.

The results also highlight the importance of the rule conflict
resolution strategy in the application of discovered unordered
rules to test data. Further research in this area could be focused on
developing rule conflict resolution strategies that are more robust
across a number of datasets.

In this work the algorithm parameters were not optimised for any
particular data set, since the focus was on comparing the different
versions of Ant-Miner, rather than optimizing parameters for each
data set. Hence, another area of further research might be to
attempt to determine the optimum parameter settings that would
maximise the accuracy of the discovered classification rules for
each dataset.

6. ACKNOWLEDGMENTS
Discretized versions of the data sets Wisconsin breast cancer,
Cleveland heart disease, Dermatology and Hepatitis – which
originally contained one or more continuous attributes – were
kindly provided by Rafael Parpinelli.

The Ljubljana breast cancer data set was obtained from the
University Medical Centre, Institute of Oncology, Ljubljana,
Yugoslavia. Thanks go to M. Zwitter and M. Soklic for providing
the data.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 43-50

7. REFERENCES
[1] M. Dorigo, A. Colorni and V. Maniezzo, “The Ant System:

optimization by a colony of cooperating agents,” IEEE
Transactions on Systems, Man, and Cybernetics-Part B, vol.
26, no. 1, pp. 29-41, 1996.

[2] B. Liu, H.A. Abbass, B. Mckay. Classification rule discovery
with ant colony optimization. Proceeding of the IEEE/WIC
International Conference on Intelligent Agent Technology,
Beijing, China (2003), pp. 83–88.

[3] M. P. Oakes, “Ant Colony Optimisation for Stylometry: The
Fedaralist Papers.” International Conference on Recent
Advances in Soft Computing, November 2004.

[4] Ziqiang Wang, Boqin Feng, Classification Rule Mining with
an Improved Ant Colony Algorithm, Lecture Notes in
Computer Science, Volume 3339, Jan 2004, pp. 357 – 367.

[5] R.S. Parpinelli, H.S. Lopes, and A.A. Freitas. Data mining
with an ant colony optimization algorithm. IEEE

Transactions on Evolutionary Computing 6(4), 2002, pp.
321–332.

[6] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[7] I.H. Witten and E. Frank. Data Mining: practical machine
learning tools and techniques. 2nd Edition. Morgan
Kaufmann, 2005.

[8] R.S. Parpinelli, H.S. Lopes and A.A. Freitas. An Ant Colony
Algorithm for Classification Rule Discovery. In: H.A.
Abbass, R.A. Sarker, C.S. Newton. (Eds.) Data Mining: a
Heuristic Approach, pp. 191-208. London: Idea Group
Publishing, 2002.

[9] P. Clark and R. Boswell. Rule induction with CN2: some
recent improvements. Proc. European Working Session on
Learning (EWSL-91), LNAI 482, pp. 151-163. Springer,
1991.

