
Towards a Method for Automatically Selecting and Configuring
Multi-Label Classification Algorithms

Alex G. C. de Sá
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ABSTRACT
Given a new dataset for classi�cation in Machine Learning (ML),
�nding the best classi�cation algorithm and the best con�guration
of its (hyper)-parameters for that particular dataset is an open is-
sue. �e Automatic ML (Auto-ML) area has emerged to solve this
task. With this issue in mind, in this work we are interested in a
speci�c type of classi�cation problem, called multi-label classi�ca-
tion (MLC). In MLC, each example in the dataset can be associated
to one or more class labels, making the task considerably harder
than traditional, single-label classi�cation. In addition, the cost of
learning raises due to the higher complexity of the data. Although
the literature has proposed some methods to solve the Auto-ML
task, those methods address only the traditional, single-label classi-
�cation problem. By contrast, this work proposes the �rst method
(an evolutionary algorithm) for solving the Auto-ML task in MLC,
i.e., the �rst method for automatically selecting and con�guring
the best MLC algorithm for a given input dataset. �e proposed
evolutionary algorithm is evaluated on three MLC datasets, and
compared against two baseline methods according to four di�erent
multi-label predictive accuracy measures. �e results show that
the proposed evolutionary algorithm is competitive against the
baselines, but there is still room for improvement.
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1 INTRODUCTION
Classi�cation is one of the most important tasks in Machine Learn-
ing (ML) [2]. In a traditional single-label classi�cation problem, the
goal is to �nd/learn a model that expresses the relationships be-
tween a set of predictive a�ributes (features describing the example)
and a prede�ned set of class labels. Each class label is represented
by a discrete value. In a single-label classi�cation problem, each ex-
ample of the dataset is associated to a single label. In this work, we
study a more general type of classi�cation, namely multi-label clas-
si�cation [32]. In this case, each example in the dataset is associated
to one or more class labels. Recently, this type of classi�cation prob-
lem has a�racted signi�cant a�ention given the increasing number
of applications from di�erent sources [32, 41], such as bioinformat-
ics, music categorization into emotions, semantic annotation of
media and text mining.

It is important to mention that learning a suitable model in
multi-label classi�cation is more challenging than in a single-label
problem. �is can be justi�ed by the fact that the learning algorithm
should consider, in general, label correlations – detecting whether
or not they exist – before building the classi�cation model [41].
Additionally, the limited number of examples in the dataset for
each class label may make it harder to generalize as the learning
algorithm would need more examples to create a good model from
such complex data [7].

Nevertheless, we also have in ML the fundamental issue of choos-
ing appropriate algorithms and their parameters in order to prop-
erly solve a learning problem (a classi�cation problem, in our case).
Researchers and practitioners usually follow an ad-hoc approach,
either in single-label or multi-label classi�cation. For instance,
when an untrained user or an expert decides to solve a classi�-
cation problem associated to a dataset, this person will have to
evaluate whether it is valid to apply any set of preprocessing steps
and choose the classi�cation algorithm(s) that will be executed.
In the majority of cases, these decisions are based on trial and er-
ror when testing di�erent methods from the literature or on the
recommendation of other experienced data scientists.

�is scenario makes ML solutions biased and ine�cient, because
the selected algorithm to solve the problem at hand is not usually
the best. In order to solve this issue, the research area of Automatic
Machine Learning (Auto-ML) emerged [9, 18, 27, 30]. �e main
idea of Auto-ML is to create personalized solutions to ML problems,
aiming at recommending the best algorithm customized for each
dataset provided by a user, with minimum human intervention.

Although there are a few solutions available in the literature to
automatically generate complete ML solutions for classi�cation,
such as Auto-WEKA [30], Auto-SKLearn [9], TPOT (Tree-based



Pipeline Optimization Tool) [18] and RECIPE (REsilient ClassifI-
cation Pipeline Evolution) [27], none of them is able to provide
solutions to multi-label classi�cation problems. �is fact can be
justi�ed by the higher di�culty to learn over multi-label data and
by the computational cost involved. �ese particularities make the
Auto-ML task for multi-label classi�cation more challenging than
the Auto-ML task for single-label classi�cation.

Given the lack of Auto-ML techniques for multi-label data, the
main objective of this work is to propose an automatic method
for selecting and con�guring multi-label classi�cation (MLC) al-
gorithms. �us, we aim to generate and recommend the most
appropriate algorithm to a given input multi-label dataset, based
on a set of multi-label predictive accuracy measures.

To perform the Auto-ML task, we propose a new evolutionary
algorithm (EA). �e EA performs a search in a very large search
space of many di�erent types of MLC algorithms, while it avoids
generating invalid solutions to the problem at hand. As already
showed in Pappa et al. [20], EA approaches are generally suitable to
provide customized algorithms to speci�c ML problems, although
that work focused on traditional single-label classi�cation, rather
than multi-label classi�cation as in this work.

�e proposed EA was tested in three datasets extracted from
the Mulan Repository [33], and compared to two e�cient MLC
algorithms (as recommended by Madjarov et al. [14]): Binary Rel-
evance [31, 32] and Classi�er Chain [24]. Four MLC measures,
from di�erent evaluation perspectives, were used to analyze the
predictive performance of the proposed method and the baselines.
�e results showed that the proposed EA obtained the best result
according to two out of the four predictive accuracy measures, and
it was ranked as the second and third method (among the three
methods) in the other two measures. Overall, considering all three
datasets and all four predictive accuracy measures, the EA’s result
was statistically signi�cantly be�er than another method in 10
cases, whilst the EA was statistically worse than another method
in only 5 cases. However, there is still room for improvement of
these results, e.g., by improving the de�nition of the search space
of MLC algorithms.

�e reminder of this paper is organized as follows. Section 2
reviews related works on the MLC and Auto-ML areas. Section 3
details the proposed method, while Section 4 presents and discusses
the preliminary results obtained. Finally, Section 5 draws some
conclusions and discusses directions of future works.

2 RELATEDWORK
�is section is divided in two parts. �e �rst part describes the main
concepts of multi-label classi�cation, and discusses di�erent types
of algorithms present in the literature. �e second part refers to the
Auto-ML task, i.e., related work on methods to generate learning
algorithms customized to the input dataset.

2.1 Multi-label Classi�cation
�ere is a wide range of studies on single-label classi�cation in
machine learning (ML) [2, 12]. In this type of task, each example
of the dataset is associated to a single class λ ∈ L, where L is a
set of disjoint classes. Given that |L| > 1, if |L| = 2 the problem

is categorized as binary classi�cation. Otherwise, if |L| > 2 the
problem is categorized as multi-class classi�cation.

Nevertheless, there are application domains where each example
in the dataset can be associated to more than one class. In this case,
we have a multi-label classi�cation (MLC) problem, which is the
focus of this work. Among the several domains that this problem
encompasses, we can cite [32, 41]: tag recommendation, image and
video annotation, bioinformatics, Web mining, and information
retrieval. For instance, a Web document can be associated to two or
more di�erent class labels (e.g., sports and economics) at the same
time.

More precisely, we consider that each example (or instance) X is
a d−dimensional array, i.e., the examples are described by a list of
d categorical and/or numerical features. If X is associated to a set
of class labels, Y ⊆ L, this data is said to be multi-labeled.

According to Tsoumakas et al. [32], multi-label classi�cation
(MLC) is concerned with learning a model which returns a biparti-
tion of the set of class labels. Given a query instance, this bipartition
separates the labels into relevant and irrelevant ones. �e major-
ity of works in the literature follow the taxonomy proposed by
Tsoumakas et al. [31], which divides MLC methods into problem
transformation (PT) and algorithm adaptation (AA).

PT methods transform the multi-label dataset (task) into one
or more single-label classi�cation tasks. Using this concept, it is
possible to apply single-label classi�ers in order to obtain the clas-
si�cation outputs. However, a new step at the end of the process is
required to map the single-label output(s) to a multi-label output.
Among the several PT methods [3, 4, 32], it is important to mention
binary relevance (BR), which learns |L| independent binary classi-
�ers, one for each label in the label set L; and label powerset (LP),
which creates a single class for each unique set of labels that is
associated with at least one example in a multi-label training set.

Additionally, there are some PT methods which modify the pre-
viously cited PT approaches in order to improve the predictive
performance or to reduce the learning complexity. For example,
pruned problem transformation (PPT) [23] extends LP by pruning
label sets that occur less than a threshold. In another direction,
random k-labelsets (RAkEL) [34] builds an ensemble of LP classi-
�ers, training each classi�er with a di�erent and smaller random
subset of the set of labels. Finally, classi�er chain (CC) and ensem-
ble of classi�er chains (ECC) [24] change the BR method to take
into account label correlations. To do this, CC creates L binary
classi�ers, like BR. However, unlike BR, the classi�ers in CC are
also linked along a chain, where each classi�er deals with one BR
problem. �e a�ribute space of each link in the chain is increased
with the classi�cation outputs of all previous links. As the order of
the classi�ers in the chain is random, ECC tests di�erent orders for
CC in an ensemble fashion to improve its predictive performance.

On the other hand, AA methods aim to adapt traditional single-
label classi�cation algorithms to handle multi-label data. For in-
stance, the multi-label version of C4.5 [5] for inducing decision
trees modi�es how the entropy is measured. Another example
is BP-MLL, an adaptation of the back propagation algorithm to
generate multi-label neural networks [39]. �e main di�erence in
BP-MLL is how it de�nes the error function to consider multi-labels.
�e literature presents many other adaptations of algorithms, such



as k-Nearest Neighbors [40], Naı̈ve Bayes [38] and Support Vec-
tor Machines [8]. For more detail about MLC, see the surveys of
Tsoumakas et al. [32] and Zhang & Zhou [41].

It is important to emphasize that there is a very large variety
of MLC algorithms, each one having its own assumptions and
biases. For example, when BR is chosen, the label correlations are
disregarded. In the case of LP, RAkEL and CC, label correlations are
considered di�erently. Di�erent algorithm assumptions can lead to
di�erent predictive performances, depending on the characteristics
of the dataset and the algorithm. As Tsoumakas et al. [32] remark,
the label cardinality (average number of labels of the examples in
the dataset) and the label density (average number of labels of the
examples divided by the total number of labels in the dataset) di�er
for distinct MLC tasks. �ese two (and other) parameters related to
the dataset tend to in�uence the way the MLC algorithm performs
and, consequently, lead to good or poor class label predictions for
di�erent algorithms. �erefore, it is very di�cult to choose the best
MLC algorithm and its best parameter se�ing (i.e., the algorithm
and parameter se�ing that maximize the predictive accuracy) for a
particular dataset provided by a user. In this context, we propose an
evolutionary algorithm for automatically selecting and con�guring
the best MLC algorithm for a given input dataset, which is a type
of Automation of Machine Learning (Auto-ML) task, as discussed
in the next Section.

2.2 Automatic Machine Learning (Auto-ML)
Auto-ML has recently become a growing research �eld as the ML
community has been giving great a�ention to this topic. In spite
of this fact, the �eld itself is not new, and has received di�erent
names in di�erent works, such as constructive meta-learning, hyper-
heuristics and hyper-parameter optimization [20]. �e main reason
for this is because Auto-ML emerged in the (super-)�elds of ML
and optimization in di�erent time frames. Hence, the Auto-ML
methods were developed mostly independently by both �elds.

�e Auto-ML methods have primarily focused on looking for
the best combination of components of speci�c classi�cation algo-
rithms, instead of searching for complete classi�cation pipelines
with pre-processing, classi�cation and post-processing methods.
Six di�erent types of classi�cation algorithms had their compo-
nents optimized by Auto-ML approaches: (i) arti�cial neural net-
works [17, 29, 37], (ii) rule induction algorithms [19], (iii) support
vector machines [6, 15], (iv) decision trees [1], (v) Bayesian network
classi�ers [26] and (vi) Bayesian neural networks [28].

Following another direction, Auto-Weka [30], Auto-SKLearn [9],
TPOT (Tree-based Pipeline Optimization Tool) [18] and RECIPE (RE-
silient ClassifIcation Pipeline Evolution) [27] deal with the Auto-ML
task by generating complete classi�cation pipelines. In other words,
these methods produce customized classi�cation solutions for a
given dataset by considering the steps of pre-processing, classi�ca-
tion and/or post-processing.

Auto-WEKA and Auto-SKLearn are methods based on Bayesian
optimization and their main idea is to �nd the most appropriate
mapping between ML pipelines and their respective parameters.
Auto-WEKA works just for classi�cation, whereas Auto-SKLearn
deals with classi�cation and regression problems. Both methods
follow a hierarchical approach to �nd the “best” pipeline to a dataset

at hand. �us, they �rstly choose the classi�cation algorithm (or
the pre-processing method) and, only a�er that, its parameters
are optimized. Additionally, it is important to mention that Auto-
WEKA automates the process of selecting the “best” ML pipeline in
WEKA [10], whereas Auto-SKLearn aims to optimize the pipelines
in the SciKit-Learn library [21].

TPOT and RECIPE, in turn, use evolutionary algorithms to dis-
cover the “best” combination of ML pipelines and their parameters.
TPOT performs a genetic programing (GP) search to choose the
most suitable pipeline for a ML problem (classi�cation and regres-
sion). It also searches for methods available in the SciKit-Learn
library, but it has a smaller search space than Auto-SKLearn.

One of the major drawbacks of TPOT is that it can create ML
pipelines that are arbitrary/invalid, i.e., it can create a ML pipeline
that fails to solve a classi�cation problem, as there are no constraints
on which type of components can be combined. RECIPE handles
this problem by creating a grammar which organizes the knowl-
edge acquired from the literature on how successful ML pipelines
look like. A grammar-based genetic programing (GGP) [16] is
then applied to solve the Auto-ML task. RECIPE works only for
classi�cation problems, but it has a bigger search space of (valid)
classi�cation pipelines than Auto-SKLearn and TPOT. Although
this makes the search more challenging, it also provides the op-
portunity for producing a greater variety of pipelines. �is could
improve the classi�cation performance as the Auto-ML approach
is more likely to �nd a be�er ML pipeline.

It should be noted that all the previously described Auto-ML
methods were designed to solve the conventional single-label Auto-
ML task. By contrast, in this work we propose the �rst Auto-
ML method for the multi-label classi�cation task (i.e. multi-label
Auto-ML). In the next section, we describe in detail the proposed
evolutionary algorithm for automatically selecting and con�guring
the best MLC algorithm for a given input dataset.

3 AUTOMATICALLY SELECTING AND
CONFIGURING MULTI-LABEL
CLASSIFICATION ALGORITHMS

�is section presents the proposed method to automatically select
and con�gure MLC algorithms as illustrated in Figure 1. �e method
receives as input a speci�c multi-label dataset (with the a�ribute
space X and the class labels L1 to Lq ), and a set of possible compo-
nents (essential functional parts and parameters) identi�ed from
previously designed MLC algorithms. A�er that, an EA (which
performs the multi-label Auto-ML task) is used to exploit these
algorithms and their components, outpu�ing in the end an MLC
algorithm tailored to the input dataset. In other words, the MLC
algorithm is speci�cally selected and parameterized to this data,
although it could be applied to any multi-label dataset.

In the proposed method, each individual represents an MLC
algorithm (see Section 3.2) randomly generated from a combina-
tion of the available components in the search space (described in
Section 3.1). During the evaluation of the individuals, a mapping
between the individual and an MLC algorithm is performed (see
Section 3.3).

In each iteration of the evolutionary process, a�er selecting
individuals (MLC algorithms) with a probability proportional to
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Figure 1: Proposed method to select and con�gure MLC al-
gorithms.

their quality, uniform crossover and one-point mutation operations
are applied to the selected individuals in order to generate a new
population. Elitism is also used, copying the best individual from
the current population to the next one. When a stopping criterion
is reached (e.g., a prede�ned number of generations), the best MLC
algorithm in the �nal population is returned, and its associated
model is tested using a new data subset, which comes from the
same application domain used for training.

3.1 Multi-label Classi�cation Search Space
We developed an Auto-ML evolutionary approach for MLC using
the MEKA framework [25], which is a multi-label extension to the
WEKA so�ware [10]. MEKA has a large variety of algorithms, fo-
cusing mainly on problem transformation methods. It also includes
a variety of evaluation metrics from the literature, which are impor-
tant to measure the performance of MLC algorithms from di�erent
classi�cation perspectives.

�e �rst step of this work was to understand the MLC search
space in MEKA: the algorithms and their possible components, the
constraints associated with di�erent parameter se�ings for di�erent
types of data, the hierarchical nature of operations performed by
problem transformation algorithms and meta-algorithms, and other
issues. In total, we are using 31 MLC algorithms1, which have their
search spaces de�ned in Table 1. �is table shows the algorithms,
their numbers of parameters (#PAR.), and separates them into three
types: algorithm adaptation (AA), problem transformation (PT) and
Meta-Algorithms (Meta).

Most PT methods in Table 1 use a single-label classi�er (SLC)
in order to perform the transformed multi-label classi�cation at
a base level, except for MALC and MILC. Table 2 shows the used
SLC algorithms, i.e., the possible algorithms at the base level and
their (hyper-)parameters. We can observe that di�erent types of
SLC algorithms were selected to give a greater level of diversity to
the evolutionary Auto-ML method. As explained in Section 2.1, the
AA methods do not need to transform the data in a preprocessing
step, applying their learning process in a straightforward way.

�e meta-algorithms (with IDs 24-31 in Table 1) have at most
two base levels, the multi-label and the single-label base levels.
Except when the meta-algorithm chooses BPNN and DBPNN, the
1For more details, see h�p://meka.sourceforge.net/api-1.9/index.html

Table 1: Multi-label algorithms andmeta-algorithms [11, 14,
25, 32, 41] used in the MEKA data mining tool.

ID Algorithm Acronym Type #PAR.
1 Back Propagation Neural Network BPNN AA 4
2 Deep Back-Propagation Neural Network DBPNN AA 5
3 Majority Labelset Classi�er MALC PT 0
4 Minority Labelset Classi�er MILC PT 0
5 Bayesian Classi�er Chains BCC PT 1
6 Binary Relevance BR PT 0
7 Binary Relevance – Random Subspace Version BRq PT 1
8 Classi�er Chain CC PT 0
9 Classi�er Chain – Random Subspace Version CCq PT 1
10 Conditional Dependency Networks CDN PT 2
11 Conditional Dependency Trellis CDT PT 5
12 Classi�er Trellis CT PT 5
13 Four-class pairWise classi�cation FW PT 0
14 Label Powerset LP PT 0
15 Hierarchical Label Sets HASEL PT 3
16 Monte-Carlo Classi�er Chains MCC PT 2
17 Probabilistic Classi�er Chains PCC PT 0
18 Population of Monte-Carlo Classi�er Chains PMCC PT 5
19 Pruned Sets PS PT 2
20 Pruned Sets with �reshold PST PT 2
21 RAndom k-labEL pruned sets RakEL PT 4
22 RAndom k-labEL Disjoint pruned sets RakELD PT 3
23 Ranking and �reshold RT PT 0

24 Bagging of Multi-Label classi�ers BaggingML Meta 2
25 Bagging of Multi-Label classi�ers (Duplicate) BaggingMLDup Meta 2
26 Classi�cation Maximization CM Meta 1
27 Expectation Maximization EM Meta 1
28 Ensemble of Multi-Label classi�ers EnsembleML Meta 2
29 Random Subspace Multi-Label RSML Meta 3
30 Subset Mapper SM Meta 0
31 Meta-Learning for Binary Relevance MBR Meta 0

Table 2: Single-Label Classi�cation (SLC) algorithms [10, 36]
used in the WEKA data mining tool.

ID Algorithm Acronym Type #PAR.
1 Naı̈ve Bayes NB Bayes 0
2 Tree Augmented Naı̈ve Bayes TAN Bayes 2
3 Hill Climbing Bayesian Network Classi�er HC Bayes 3
4 Logistic Regression LR Function 1
5 Support Vector Machine SVM Function 2
6 K-Nearest Neighbors KNN Lazy 1
7 C4.5 C4.5 Trees 2
8 Random Forests RF Trees 1
9 PART PART Rules 2
10 OneR OneR Rules 1
11 Multilayer Perceptron MLP Function 4

other cases present both base levels. However, we perceived some
constraints that MEKA meta-algorithms have, which are:

• MBR (31) only works for BR (6).
• MALC (3) and MILC (4) do not work for any meta-algorithm.
• BCC (5) only can be used at the multi-label base level for

the methods CM (26), EM (27), RSML (29) and SM (30).
• the MLC algorithms that have the ID from 1 to 2 and from

6 to 23 showed a good compatibility to all possible meta-
algorithms (from 24 to 30).

• PMCC (18) does not work well with CM (26) and EM (27).
�e complete hierarchy of choices of MEKA’s MLC algorithms

and parameter constraints is shown in Figure 2, using the IDs of the



algorithms in Table 1. It is important to note in this �gure and in
the previous descriptions of these constraints that some algorithms
have much fewer constraints than others. �is must be considered
by the EA when it is generating the MLC algorithms.

MLC
Auto-ML

SLC

1-4 5-23
26-27
29-30

5

SLC

24-30

1-2
6-17
19-23

SLC

31

6

SLC

24-25
28-30

18

SLC

Figure 2: �e proposed hierarchy of choices of algorithms
and parameter constraints for the con�guration of multi-
label classi�cation algorithms in MEKA.

Taking into account the constraints in the choices of algorithms’
components and (hyper)-parameters in MEKA, we measured the
size of the search space for the EA. In total, the search space of
multi-label classi�cation algorithms has 3.649 × 1020 possible MLC
algorithm con�gurations. Next, we describe the proposed EA to
perform the Auto-ML MLC task in this huge search space.

3.2 EA, Representation and Genetic Operators
In this work, we used a real-coded genetic algorithm (GA) [26] to
search and explore the space of MLC algorithms. �e GA is guided
by the hierarchy of algorithm choices de�ned in the previous section
and, thus, only generates valid individuals. A set of con�guration
�les wraps the whole hierarchy.

Given the algorithms and their respective components, we fol-
lowed the hierarchy to create a suitable representation for them.
An individual is simply a real-valued array with 15 positions and
its values are within the [0, 1] interval. 15 is the maximum number
of options an MLC algorithm can have: choosing MLP at the single-
label base level (four parameters and the choice of the method
itself), CDT, CT or PMCC at the multi-label base level (�ve pa-
rameters and the choice of the method itself) and RSML as the
meta-algorithm (three parameters and the choice of the method
itself). Each position of the array simply represents one component
(parameter or the method itself). As mentioned earlier, di�erent
MLC algorithms may have di�erent numbers of components. Note
that for this reason, not all 15 positions in the array will be used,
as some positions will refer to no component.

Hence, the GA uses a dynamic representation, but only at the
phenotype level. �e individual genotype representation is static,
having always 15 positions. Crossover and mutation operations are
then applied on the individual genotype (real-coded array) to avoid
problems of individuals with di�erent sizes.

We perform a uniform crossover operation, which builds a dis-
tributed binary mask with the same size of the individual genotype.
In this case, if the value of the position in the mask is one, it means
that the real-coded values of the genes – in both selected individu-
als – will be exchanged. Otherwise, the corresponding gene in the

individuals is maintained and they do not su�er any modi�cation
in that position. Additionally, an one-point mutation operation is
carried out into one of the 15 possible genes. For this operation,
each gene has the same probability of being selected, and the value
of the selected gene is replaced by a random real value in the same
domain (which here varies from 0.0 to 1.0).

3.3 Fitness Function
In multi-label classi�cation, researchers and practitioners typically
evaluate the MLC algorithm using multiple measures because of
the additional degrees of freedom the MLC se�ing introduces [14].
Usually, these measures follow di�erent perspectives to quantify
how good a classi�cation algorithm is to a given dataset. For ex-
ample, a measure may or may not consider correlations among
the labels, or analyze the order (ranking) of the labels according to
their relevance to a given instance. �is performance evaluation
for MLC algorithms di�ers signi�cantly from single-label classi�-
cation, where researchers and practitioners are used to evaluate
the whole classi�cation system using one single measure, such as
F-measure [36].

Based on this MLC principle, we have to evaluate how e�ective
the generated MLC algorithms are for a given dataset during the
evolutionary process. In order to do this, the training set is divided
into two parts: a learning set and a validation set. Each individual
(MLC algorithm) builds a classi�cation model from the learning set
and measures its predictive accuracy on the validation set. Note
that the test set is not accessed during the evolution, and it will be
used only to measure the predictive accuracy of the MLC algorithm
returned by the EA. Figure 3 illustrates the whole process of the
evaluation of a given individual.

Individual (Integer)

Fitness

Learning
data

Validation
data

2 5 1 7 2
Mapping

0 6

MLC algorithm

Frameworks

.9  .5 .9 .8 .0.7

2 5 1 7 05 9

Configuration
files

Individual (Real)
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Conversion
Classification 

model generated 
by the MLC
algorithm

Figure 3: Evaluation process of one individual.

Initially, each individual in the GA is represented by a real-coded
array, where each position of the genotype determines the use of a
particular component option. Hence, the idea is to create a mapping
between an individual position and an MLC component, using a
set of con�guration �les that describe the algorithms and their
respective components, and their complete hierarchy, as explained
before in this section. �e real-coded chromosome is therefore
converted into an integer-coded chromosome of the same length,
based on the con�guration �les.

In this conversion, the real number of a gene is multiplied by the
maximum number of choices associated with that component, and
the resulting value is rounded into an integer number that indicates



a component option in the con�guration �le. For instance, given
that Table 2 is in one of the con�guration �les for a given PT method,
suppose that the real value of a gene representing the single-label
classi�cation algorithm (for PT methods) is equal to 0.20, and, as
we can see in this table, the total number of components for SLC
algorithms is equal to 11. In this case, the rounded integer value will
be 2, which means the second SLC algorithm – Tree Augmented
Naı̈ve Bayes (TAN) – in this con�guration �le will be selected.
When the mapping process �nishes, unused genes receive the value
-1. �e �rst position of the array is always used to choose one of
the seven types of algorithms in the hierarchy, as we can observe
in the number of tree leaves of Figure 2. �is process guarantees
that the GA will not generate invalid individuals.

Given the integer-coded individual, its chromosome is mapped
to an MLC algorithm based on the con�guration �les. A�er that,
we used the MEKA and WEKA frameworks to determine the MLC
algorithm. In the next step, the algorithm is run on a learning set
(part of the training set) to induce an MLC model, which is then
evaluated using a validation set (the other part of the training set).
�e �tness function is generated from the validation set, using
the average of four MLC measures [14, 32, 41]: Exact Match (EM),
Hamming Loss (HL), F1 Macro averaged by label (FM) and Ranking
Loss (RL), as indicated in Equation 1:

Fitness =
EM + (1 − HL) + FM + (1 − RL)

4 (1)

EM (also called subset accuracy) is considered a very strict eval-
uation metric, because it takes the value 1 when the predicted label
set is an exact match to the true label set for an example, and value
0 otherwise. HL, on the other hand, calculates how many times
an example-label pair is misclassi�ed. In other words, it counts
when a label not belonging to the example is predicted or when
a label belonging to the example is not predicted. FM, in turn, is
the harmonic mean between precision and recall, and its average is
�rstly calculated per label (across the examples in the dataset) and,
a�er that, across all the labels in the dataset. �is metric is inter-
esting because it accounts for di�erent levels of class imbalance of
the data. Finally, RL measures the number of times that irrelevant
labels are ranked higher than relevant labels, i.e., it penalizes the
label pairs that are reversely ordered in the ranking for a given
example. All four metrics are within the [0, 1] interval. However,
EM and FM are measures that should be maximized, whereas HL
and RL should be minimized. In order for the �tness function to be
maximized, in Equation 1, HL and RL are subtracted from one (1).

4 EXPERIMENTAL RESULTS
�is section presents the preliminary experimental results of the
proposed method in three datasets from the Mulan repository2.
Table 3 presents the main characteristics of the datasets, including
the number of instances (# instances), the number of features (# fea-
tures) and classes labels (# labels), and the label cardinality and
density. �e relatively low number of datasets is due to the compu-
tational cost of the generated solutions.

We run all the experiments following a 10-fold cross-validation
procedure with �ve repetitions varying the EA’s random seed. We

2Datasets are available in h�p://mulan.sourceforge.net/datasets-mlc.html

Table 3: Datasets used in the experiments.

dataset # instances # features # labels cardinality density
�ags 194 19 7 3.392 0.485
scene 2407 294 6 1.074 0.179
birds 645 260 19 1.014 0.053

evaluated the results with four MLC measures from di�erent per-
spectives, the same measures used in the EA’s �tness function (Sec-
tion 3.3). �e results reported in this section correspond to the
average and standard deviation obtained for the 50 executions (10-
fold cross-validation × 5 repetitions) of the methods in the test set.
Results were compared using the Wilcoxon Signed-Rank test [35]
with 5% of signi�cance. We also checked the general predictive
performance using the achieved average ranking of the methods.

�e proposed EA for the MLC Auto-ML task was run using the
following parameters: 100 individuals evolved for 100 generations,
tournament selection of size two, elitism of �ve individuals and
uniform crossover and mutation probabilities of 0.9 and 0.1, respec-
tively. If the best individual remains the same for �ve generations
and the current generation number is greater than 20, we stop the
evolutionary process and return its respective MLC algorithm. �e
learning and validation sets are also resampled every �ve genera-
tions in order to avoid over��ing. Additionally, we assigned time
and memory budgets for each MLC algorithm generated by the EA.
Based on the size of the datasets used in the experiments, these
budgets were set to 450 seconds (7.5 minutes) and 2GB of RAM,
respectively.

�e methods Binary Relevance (BR) and Classi�er Chain (CC)
were used as the baselines. We chose and set the parameters of
these baselines following the recommendations of Madjarov et
al. [14]). All baselines used at the single-label base level an SVM
classi�er with a radial basis kernel. �e kernel parameter γ and
the penalty C were optimized for each cross-validation run by us-
ing the training set only (i.e., choosing the best parameter value
on the validation set). �e values {2−15, 2−13, 2−11, ..., 21, 23} and
{2−5, 2−3, 2−1, ..., 213, 215} were used to set γ and C , respectively.
We performed an exhaustive search for the best parameter con-
�guration of each baseline method considering these candidate
parameter se�ings. It is also important to emphasize that identical
time and memory budgets were applied in the baselines in order to
make a fair comparison.

4.1 Comparison with the baseline methods
Table 4 shows the results of average and standard deviation of
Exact Match (EM), Hamming Loss (HL), Ranking Loss (RL) and
F1 Macro averaged by label (FM). In this table, we are comparing
the proposed method with the two aforementioned baselines. For
the comparisons, the symbol N denotes a statistically signi�cant
positive variation for the baseline in that column relative to the
proposed EA and H a statistically signi�cant negative variation
relative to the proposed method according to the Wilcoxon Signed
Rank test.

Considering the average ranking for the EM measure, Table 4
shows that CC achieved the best average rank, followed by the
proposed EA. Additionally, four out of six comparisons present
statistically signi�cant di�erences, with the proposed EA being



Table 4: Comparison of EM, HL, RL and FM obtained by the
proposed EA and the baseline methods in the test set.

Exact Match (EM) – to be maximized
Datasets EA BR CC
Flags 0.184 (0.100) 0.134 (0.072) H 0.159 (0.073)
Scene 0.716 (0.039) 0.668 (0.040) H 0.738 (0.039) N
Birds 0.526 (0.066) 0.540 (0.063) N 0.545 (0.073)
Average Ranking 2.000 2.667 1.333

Hamming Loss (HL) – to be minimized
Datasets EA BR CC
Flags 0.260 (0.030) 0.262 (0.032) 0.283 (0.037) H
Scene 0.079 (0.009) 0.074 (0.008) N 0.076 (0.011) N
Birds 0.043 (0.007) 0.042 (0.008) 0.042 (0.009)
Average Ranking 2.333 1.500 2.167

Ranking Loss (RL) – to be minimized
Datasets EA BR CC
Flags 0.223 (0.052) 0.291 (0.056) H 0.314 (0.062) H
Scene 0.098 (0.032) 0.122 (0.016) H 0.120 (0.018) H
Birds 0.067 (0.036) 0.151 (0.035) H 0.147 (0.032) H
Average Ranking 1.000 2.333 2.667

F1 Macro averaged by label (FM) – to be maximized
Datasets EA BR CC
Flags 0.617 (0.065) 0.613 (0.073) 0.606 (0.072)
Scene 0.785 (0.025) 0.788 (0.026) 0.794 (0.031) N
Birds 0.409 (0.050) 0.384 (0.083) H 0.398 (0.068)
Average Ranking 1.667 2.333 2.000

be�er than a baseline method in two comparisons and worse in the
other two comparisons. Furthermore, the good result for CC and
the bad one for BR were expected because this measure considers
the maximum degree of correlation among class labels, whilst BR
ignores correlations among class labels.

For the HL measure, BR showed the best average rank. As this
metric disregards the class label correlations, this result is consistent.
�e proposed EA obtained the second best result. In the dataset
Scene, BR and CC showed signi�cantly be�er performances against
the proposed EA. On the other hand, CC was statistically inferior
to the proposed EA in the dataset Flags.

�e best result for the proposed EA was achieved with the RL
measure. As we can observe, the proposed EA was the best method
in the ranking, followed by BR and CC. In addition, it presented a
signi�cantly be�er performance in all the six statistical comparisons
for this measure.

Finally, the proposed EA reached the �rst place in the average
ranking for the FM measure, followed by CC and BR. CC presented
a signi�cantly be�er result in the dataset Scene when compared to
the proposed EA. �e EA reported a statistically signi�cant positive
variation in the comparison only against BR for the dataset Birds.

4.2 Analyzing the selected MLC algorithms
We also analyze the MLC algorithms selected by the EA in or-
der to accomplish the MLC Auto-ML task. Table 5 presents the
percentage of selection at three di�erent levels: the single-label
classi�cation (SLC) base level, multi-label classi�cation (base) level
and meta level. �is table refers to the algorithm acronyms in Ta-
bles 1 and 2. At the SLC base level, we can observe that RF is overall
the most frequently selected algorithm across the three datasets,
especially for the datasets Scene (58% of the times) and Birds (100%
of the times). For the dataset Flags, the algorithm PART had the
highest percentage (46%) of selection by the EA.

Table 5: Percentage of selection of MLC algorithms at the
single-label classi�cation (SLC) base level, multi-label clas-
si�cation (ML base) level and meta level.

Dataset SLC base level % MLC (base) level % Meta level %
Flags PART 46 LP or RakEL 28 None 60

RF 24 BR or CC(q) 26 BaggingML 20
C4.5 18 FW 22 EnsembleML 12
Others 12 Others 24 Others 8

Scene RF 58 LP or RakEL 58 None 80
TAN 26 PS(t) or RT 30 MBR or RSML 12
SVM 12 BR or CC(q) 12 Others 8

Birds RF 100 BR 74 None 54
Others 0 LP 20 MBR 34
- - Others 6 Others 12

�e multi-label level is a base level when it is associated to a
meta-algorithm or it is simply the multi-label level when this does
not occur. At this level, the selected algorithms are more diverse
than at the SLC base level. For this reason, we grouped some
algorithms together in the table. For the datasets Flags and Scene,
the algorithms LP or RAkEL were selected in 28% of the cases for
the dataset Flags and in 58% for the dataset Scene. BR was selected
in 74% of the cases in the dataset Birds.

Finally, the majority of the selected MLC algorithms do not have
the meta level. For example, in the dataset Scene the EA did not
choose a meta-algorithm in 80% of the cases. �is is mainly due
to the complexity of such algorithms as they have to train and
run many classi�ers considering the same time budget. �e meta-
algorithms BaggingML (Dup or not) or EnsembleML were selected
in 32% of the cases for the Flags dataset. And for the dataset Birds,
MBR was the most chosen algorithm (34% of the times).

5 CONCLUSIONS AND FUTUREWORKS
�is work introduced the �rst version of an evolutionary algo-
rithm (EA) for automatically selecting and con�guring multi-label
classi�cation (MLC) algorithms. Each EA individual represents a
full MCL algorithm with a particular parameter con�guration. �e
EA received as input an MLC dataset and a list of MLC algorithms’
components, and returns an MLC algorithm and its parameter con-
�guration customized to (i.e., maximizing the predictive accuracy
on) that particular dataset.

�e EA was tested in three MLC datasets from the Mulan repos-
itory, and compared to two well-known baseline MLC methods,
namely Binary Relevance (BR) and Classi�er Chain (CC). �e predic-
tive accuracy comparisons were based on four di�erent MLC mea-
sures (Exact Match, Hamming Loss, Ranking Loss and F1 Macro).
Overall, considering that the proposed EA’s results were compared
against the results of two (2) baseline methods across three (3)
datasets and four (4) predictive accuracy measures, 24 (2 x 3 x 4)
statistical tests of signi�cance were performed. �e results of these
tests were that the EA signi�cantly outperformed another method
in 10 cases, the EA was signi�cantly outperformed by another
method in �ve (5) cases, and in the remaining nine (9) cases there
was no signi�cant di�erence. In terms of the results for each predic-
tive accuracy measure separately, the EA obtained the best result
according to two out of the four measures, and in particular it
obtained statistically be�er results than the other two methods



on all three datasets according to the Ranking Loss measure. �e
EA was the worst method only according to the Hamming Loss
measure, although the statistical signi�cance results are less strong
in this case: the EA’s performance was statistically worse than the
other two methods on only one of the three datasets, whilst the EA
statistically outperformed the Classi�er Chain algorithm on one of
the datasets. However, there is room for improvement as we can
improve the de�nition of the MLC search space.

�e next step for this work is to test the algorithm in more
datasets available in the Mulan repository. �is evaluation will
help us to understand the performance of the proposed method in
a larger number of domains. As another future work, the number
of MLC algorithms and components will be extended, and we will
measure the predictive performance of the EA using di�erent search
spaces. In addition, we aim to generate complete MLC pipelines.
�erefore, our method will choose not just the MLC algorithm,
but also the preprocessing methods (e.g., the feature selection al-
gorithm [22] and its associated parameters). Finally, we plan to
compare the proposed EA to an automated parameter optimization
tool, such as irace [13].
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