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ABSTRACT 

Positive-Unlabeled (PU) learning is a growing field of machine 

learning that now consists of numerous algorithms; the number  is 

now so large that considering an extensive manual search to select 

the best algorithm for a given task is impractical. As such, the area 

of PU learning could benefit from an Automated Machine Learning 

(Auto-ML) system, which selects the best algorithm for a given 

input dataset, among a pre-defined set of candidate algorithms. This 

work proposes such with GA-Auto-PU, a Genetic Algorithm-based 

Auto-ML system that can generate PU learning algorithms. 

Experiments with 20 real-world datasets show that GA-Auto-PU 

significantly outperformed a state-of-the-art PU learning method.  
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1 Introduction 

Positive-Unlabeled (PU) learning aims to learn classifiers from 

positive and unlabeled data [1], differing from binary classification 

due to the absence of a negative set. The unlabeled set consists of 

instances which can be positive or negative, but whose label is 

unknown. Thus, learning a classifier that can accurately predict the 

class is challenging.  PU data occurs in many application domains, 

such as bioinformatics [2], text classification [3], pharmacology 

[4], etc. [1], due to the impracticality of obtaining fully labeled data.  

Many PU learning algorithms have been proposed in the 

literature [1]. However, finding the optimal algorithm for a specific 

classification dataset is a challenge. Thus, the PU learning area 

could benefit from an Automated Machine Learning (Auto-ML) 

system, which selects the best algorithm for a dataset, among a set 

of candidate algorithms. Currently, no Auto-ML system for PU 

learning exists. We address this gap with GA-Auto-PU, a Genetic 

Algorithm-based Auto-ML system. 

2 Background on PU learning and Auto-ML 

Positive-Unlabeled (PU) learning is a field of machine learning that 

learns models from datasets of positive and unlabeled instances [1]. 

A standard classifier requires data with two class labels, so, when 

built with a PU dataset, will treat the unlabeled set as a separate 

class and predict the probability of an instance being labeled instead 

of the probability of it being positive (P(𝑦 = 1)) [2]. In contrast, PU 

learning models are trained to predict P(𝑦 = 1) using PU data. 

The 3 main PU learning approaches are: the two-step approach, 

biased learning, and class prior methods [1]. GA-Auto-PU focuses 

on the popular two-step approach. Step 1 finds reliable negative 

(RN) instances in the unlabeled set, i.e., instances that substantially 

differ from the labeled positives and are likely not unlabeled 

positive instances. Step 2 builds a classifier to distinguish labeled 

positive instances from the RN set [1]. Whilst the literature 

generally refers to Step 1 and Step 2 when discussing two-step 

methods, we reference the steps as phases and recognize that “Step 

1” often consists of two distinct phases. We refer to Phase I-A, used 

to extract an initial RN set; Phase I-B, an optional step using the 

initial RN set to extract more RN instances from the unlabeled set; 

and Phase II, “Step 2” in the usual description.  

Automated Machine Learning (Auto-ML) is an emerging ML 

field that looks to limit the human involvement in ML applications, 

allowing users without extensive ML knowledge to operate 

complex ML pipelines [5]. No algorithm achieves good 

performance on all learning tasks, and algorithm performance is 

largely dependent on input data [6]. Auto-ML can lessen these 

issues by searching for the best algorithm specific to the target ML 

task. Many Auto-ML systems have been developed [5], e.g., the 

Tree-based Pipeline Optimization Tool (TPOT) [7] and the 

Resilient Classification Pipeline Evolution System (RECIPE) [8].  

3 The GA-Auto-PU System 

GA-Auto-PU is a generational Genetic Algorithm (GA) that 

evolves a PU learning algorithm. The GA uses standard uniform 

crossover and mutation as search operators, but the individual 

representation, fitness evaluation, tournament selection and elitism 

are tailored to PU learning, so these are described next. 

3.1 Individual Representation 

An individual is a two-step PU learning method. Each method has 

3 components: phase I-A, phase I-B, and phase II. Phase I-A has 3 

parameters: iteration_count_1A: the number of sets to split the 
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unlabeled set into when learning a classifier to distinguish the 

positive and the unlabeled set; threshold_1A: the predicted positive 

class probability under which an instance is considered a reliable 

negative (RN) instance; and classifier_1A, used to predict the RN 

instances. Phase I-B has 3 parameters: threshold_1B, classifier_1B, 

and flag_1B. The threshold and the classifier are akin to those in 

phase I-A. The flag_1B parameter indicates whether to skip phase 

I-B. Phase II has one parameter: classifier_2, trained to distinguish 

the positive and the RN sets. Fig. 1 shows the individual encoding. 

[[phase I − A], [phase I − B], classifier_2] 

phase I − A: [iteration_count_1A, threshold_1A, classifier_1A] 

 phase I − B: [threshold_1B, classifier_1B, flag_1B] 

Fig. 1. Individual representation (linear encoding). [phase I-A] 

and [phase I-B] are nested components of the individual.  

3 genes (Classifier_1A, Classifier_1B, and Classifier_2) can 

take the same set of values, representing 18 different classification 

algorithms (called “Candidate_classifiers”): Gaussian naïve Bayes, 

Random forest, Decision tree, Multilayer perceptron, Support 

vector machine, Stochastic gradient descent classifier,  Logistic 

regression, K-nearest neighbor, Deep forest, AdaBoost, Gradient 

boosting classifier, Linear discriminant analysis, Extra tree 

classifier, Extra trees classifier (ensemble of Extra trees), Bagging 

classifier, Bernoulli naïve Bayes, Gaussian process classifier, and 

Histogram-based gradient boosting classification tree.  

The candidate values of each gene in the individual 

representation (defining the GA’s search space) are as follows:  

Iteration_count_1A: { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 

Threshold_1A: {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 } 

Classifier_1A: { Candidate_classifiers } 

Threshold_1B: {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 } 

Classifier_1B: { Candidate_classifiers} 

Flag_1B: { True, False }  

Classifier_2: { Candidate_classifiers } 

The size of the GA’s search space is thus 11,664,000 solutions 

(calculated as 10 × 10 × 18 × 10 × 18 × 2 × 18).  

3.2    Fitness Evaluation 

GA-Auto-PU uses a multi-objective fitness function, with two 

objectives to be optimized: F-measure and recall, defined as: 

F-measure =
2 × Recall × Precision

Recall + Precision
          (1)  

Recall =
TP

TP + FN
                                             (2) 

Precision =
TP

TP + FP
                                       (3) 

where TP is the number of true positives; FP is the number of false 

positives; and FN is the number of false negatives. 

F-measure is arguably the most used metric in the PU learning 

literature [1] and is the primary metric to be optimized in this work 

as it considers the recall/precision trade-off. Yet, it considers recall 

and precision equally, which is sub-par for our datasets, involving 

in general disease prediction. We focus on correctly predicting 

unlabeled positives, so recall of the positive class has priority over 

precision. Reducing false negatives rather than false positives is the 

priority as false negatives represent undiagnosed patients. 

Yet, it is crucial to maximize precision and recall, since too low 

precision is undesirable. We could alter the F-measure, weighting 

recall higher than precision, but this would require setting ad-hoc 

weights for recall and precision. Instead, we use a tournament 

selection process based on F-measure and recall, described below. 

Prioritizing recall poses the question: why not use recall as the 

primary and precision as the secondary metric? Experiments with 

this approach led to the GA favoring individuals that classified all 

instances as positive, with very low precision. So, we implemented 

F-measure as the primary metric to ensure that precision was still 

considered, whilst maximizing recall as the secondary metric.  

Recall that each individual encodes 3 classification algorithms, 

which are used in phases I-A, I-B and II of the PU learning system. 

Fitness evaluation involves applying these algorithms (possibly 

excluding the algorithm for the optional Phase I-B) to the training 

set. To describe this process, we will use the following notation: 

RN: The set of reliable negative instances.  

P: The set of labeled positive instances. 

U: The set of unlabeled instances. 

P+RN: The combined set of P and RN. 

P(y=1): The probability of an instance belonging to the positive 

class, as calculated by the classifier.  

Pseudocode 1 Assess Fitness (Individual, Training set)   

1. Split Training set into 5 Learning and Validation sets; 

2. For each Learning set and corresponding Validation set: 

a. P = all labeled positive instances in Learning set; 

b. U = all unlabeled instances in Learning set; 

c. RN, U = Phase I-A(P, U);  // call Pseudocode 2 

d. If Flag_1B then RN, U = Phase I-B(P+RN, U);  // call 

Pseudocode 3 

e. Train Classifier_2 to distinguish P and RN;  

f. Classify Validation set;  

3. Individual’s Fitness Values = Average F-measure, Recall; 

Pseudocode 2 Phase I-A(P, U) 

1. RN = { }; // RN is initialized with empty set 

2. Sets = split U into Iteration_count_1A subsets; 

3. For every Set in Sets: 

a. Train Classifier_1A on P and Set; 

b. Classify all unlabeled instances in Set; 

c. For each unlabeled Instance in Set: 

i. If P(y=1) < Threshold_1A  

         then RN = RN ∪ Instance, U = U – Instance; 

4. Return RN, U; 

Pseudocode 3 Phase I-B(P+RN, U) 

1. Train Classifier_1B on P+RN; 

2. Use the trained classifier to Classify U; 

3. For each Instance in U: 

a. If P(y=1) < Threshold_1B  

    then RN = RN ∪ Instance,  U = U – Instance  

4. Return RN, U; 
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Pseudocode 1 shows how an individual’s fitness is computed; 

Pseudocodes 2 and 3 show Phase I-A and Phase I-B, respectively. 

Pseudocode 1 applies internal cross-validation on the training set; 

thus, in step 3, the individual is assigned  the average values of F-

measure and recall over the 5 validation sets of the cross-validation. 

A solution with no identified RN instances will have a fitness of 0. 

3.3    Tournament selection and elitism  

The proposed tournament selection process utilizes a lexicographic 

multi-objective optimization approach, considering F-measure as a 

higher-priority objective and recall as a lower-priority objective; 

i.e. these objectives are optimized in their order of priority [9].  

Between two individuals in a tournament, if one F-measure is 

substantially higher, it is deemed the winner. However, if the 

difference is insubstantial, we consider their recall, deeming one 

the winner if its recall is substantially higher. Else, if the differences 

in both measures are irrelevant, F-measure determines the winner. 

Lexicographic optimization involves a ‘tolerance threshold’ by 

which the difference between two values is deemed practically 

irrelevant [9]. To avoid arbitrarily setting this, we use Cohen’s d 

measure of ‘effect size’ [10] to decide if the difference is relevant, 

as shown in Pseudocode 4 and Equation (4), where “Metric” is the 

F-measure or recall of two individuals (denoted by indices 1 and 2) 

in a tournament and 𝑆𝐷 is the standard deviation: 

Cohen′s d (Metric) = |
Metric1 − Metric2

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑
|  (4) 

𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 =  √
𝑆𝐷1

2 + 𝑆𝐷2
2

2
                      (5) 

Using Cohen’s d allows us to use a widely accepted threshold 

of 0.2 to indicate relevance. Precisely, a Cohen’s d < 0.2 is 

considered a small effect size [10], which is considered an 

irrelevant difference of F-measure or recall in our case; whilst a 

Cohen’s d ≥ 0.2 is considered a relevant difference of F-measure or 

recall, enough to select a tournament winner based on that measure.  

Pseudocode 4 Tournament_Selection(Indiv1, Indiv2) 

1. If Cohen’s_d(F-measure)  ≥ 0.2 

2.     Then Winner = Indiv with highest F-measure; 

3.        Else  If Cohen’s_d(Recall) ≥ 0.2 

a. Then Winner = Indiv with highest Recall 

b. Else Winner = Indiv with highest F-measure 

The elitism procedure is also based on lexicographic optimization, 

but selecting the best individual out of the entire current population, 

instead of between only two individuals in a tournament.  

4 Datasets and Experimental Methodology 

Table 1 shows the 20 datasets used to assess GA-Auto-PU, with 13 

UCI benchmarks [11] and 7 biomedical datasets. The training set 

of each dataset consists of an unlabeled set of all negative instances 

and 20% (randomly sampled) of the positive instances (their label 

hidden), and a positive set consisting of the remaining 80% positive 

instances. The positive and negative class labels in the test sets 

remain unchanged. The last column of Table 1 shows the % of 

positive instances in the dataset before positive instances are hidden 

in the unlabeled training set. 

Table 1. Dataset characteristics.  

Dataset No. instances No. features Positive class % 

Alzheimer’s [12] 354 9 10.73% 

Autism [11] 288 15 48.26% 

Breast cancer Coi. [11] 116 9 55.17% 

Breast cancer Wis. [11] 569 30 37.26% 

Breast cancer mut. [13]   1416 53 32.42% 

Cervical cancer [11] 668 30 2.54% 

Cirrhosis [14] 277 17 25.72% 

Dermatology [11] 359 34 13.41% 

Pima I. Diabetes [11] 769 8 34.90% 

Early Diabetes [15] 521 17 61.54% 

Heart Disease [11] 304 13 54.46% 

Heart Failure [16] 300 12 32.11% 

Hepatitis C [11] 590 13 9.51% 

Kidney Disease [11] 159 24 27.22% 

Liver Disease [11] 580 11 71.50% 

Maternal Risk [11] 1014 6 26.82% 

Parkinson’s [11] 196 22 75.38% 

Parkinson’s Biom. [17] 131 29 23.08% 

Spine [11] 311 6 48.39% 

Stroke [18] 3427 15 5.25% 

The experiments use a stratified 5-fold cross-validation 

procedure. For each training set, GA-Auto-PU evolves the best PU 

method configuration before building a classifier from the training 

set with that configuration. The classifier is then used to predict the 

class of all instances in the test set. This process is repeated for all 

pairs of training and test sets in the 5-fold cross-validation, and the 

reported results are the average over the 5 test set results.  

GA-Auto-PU parameters were set as follows: generation count: 

50, population size: 101, uniform crossover probability: 0.9, gene 

crossover probability: 0.5, gene mutation probability: 0.1, 

tournament size: 2. GA-Auto-PU is compared to a state-of-the-art 

deep forest PU learning method [19], DF for short. DF learns from 

the same training sets given to GA-Auto-PU and is evaluated using 

the same cross-validation folds. The hyperparameter settings of the 

DF method were kept as described in [19]. For each performance 

measure, we compare the performance of GA-Auto-PU against DF, 

using the non-parametric Wilcoxon Signed-Rank test [20].  

5 Computational Results and Discussion 

Here we report results across the 20 datasets. GA-Auto-PU is 

referred to as “GA”. Table 2 shows F-measure values. GA won 18; 

DF won 2 – a statistically significance difference, p=0.0001.  

Table 3 shows recall and precision. Despite DF’s poor F-

measure, its recall was the highest in all datasets with statistical 

significance, p=0.00001, but at a high cost to precision as GA 

outperformed DF 19 times with statistical significance, p=0.0001. 

The difference was very large: greater than 30% on 12 datasets, and 

greater than 50% on 8. DF’s poor performance is likely due to its 
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hyperparameters, choosing 20% of the unlabeled instances as the 

negative set and choosing 1% of instances as the reliable negatives 

(RN) in Phase I-A. This may work for large, imbalanced datasets 

but is not always applicable as it may identify few RN instances, 

resulting in a classifier which over-predicts the positive class. This 

shows the value of hyperparameter tuning, as done by our system.  

Table 2. F-measure values obtained by the methods. 

Dataset GA F-measure DF F-measure 

Alzheimer’s 0.587 0.188 

Autism 0.974 0.648 

Breast cancer Coi. 0.709 0.697 

Breast cancer Wis. 0.963 0.543 

Breast cancer mut. 0.889 0.489 

Cervical cancer 0.867 0.061 

Cirrhosis 0.534 0.405 

Dermatology 0.860 0.228 

Pima I. Diabetes 0.581 0.436 

Early Diabetes 0.960 0.762 

Heart Disease 0.742 0.607 

Heart Failure 0.770 0.487 

Hepatitis C 0.936 0.176 

Kidney disease 0.964 0.428 

Liver disease 0.828 0.833 

Maternal health 0.856 0.403 

Parkinson’s 0.937 0.856 

Parkinson's Biom 0.209 0.354 

Spine 0.951 0.652 

Stroke 0.225 0.086 

Total wins 18 2 

Table 3. Recall and precision values obtained by the methods. 

Dataset GA recall DF recall GA precision DF precision 

Alzheimer’s 0.579 0.947 0.595 0.104 

Autism 0.957 0.9923 0.993 0.481 

Breast cancer C 0.781 0.969 0.649 0.544 

Breast cancer W 0.943 1.000 0.980 0.373 

Breast cancer M 0.961 0.998 0.827 0.324 

Cervical cancer 0.765 0.882 1.000 0.032 

Cirrhosis 0.662 0.986 0.448 0.255 

Dermatology 0.833 0.958 0.889 0.130 

Pima I Diabetes 0.783 1.000 0.461 0.279 

Early Diabetes 0.950 0.994 0.974 0.618 

Heart Disease 0.904 1.000 0.629 0.436 

Heart Failure 0.750 1.000 0.791 0.322 

Hepatitis C 0.911 0.982 0.962 0.097 

Kidney disease 0.930 1.000 1.000 0.272 

Liver disease 0.973 1.000 0.721 0.715 

Maternal health 0.860 0.941 0.851 0.257 

Parkinson’s 0.952 0.993 0.921 0.753 

Parkinson's Biom 0.233 0.933 0.189 0.219 

Spine 0.973 1.000 0.930 0.484 

Stroke 0.322 0.811 0.173 0.045 

Total wins 0 20 19 1 

6 Conclusions 

This paper introduced GA-Auto-PU, the first Auto-ML system for 

PU learning, which automatically builds a two-step PU learning 

method for a given dataset. In experiments with 20 datasets, GA-

Auto-PU obtained significantly higher F-measure and precision 

values than DF, whilst DF obtained significantly higher recall 

values than GA-Auto-PU. Yet, overall, DF had very poor precision 

and F-measure (the latter is the primary metric in PU-learning). 

Currently, GA-Auto-PU is limited to only two-step PU learning 

methods. Future versions of the system will incorporate other PU 

learning approaches, such as biased learning.  

GA-Auto-PU code is available at github.com/jds39/GA-Auto-PU. 
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