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Abstract—Standard classification algorithms ignore the time-
related information contained in longitudinal data, as they do not
consider the time indexes of the features’ different measurements.
Accounting for temporal patterns may improve the algorithms’
performance, when applied to longitudinal data. Representing
temporal patterns in the data itself has the advantage that those
patterns are generic enough to be used with existing powerful
classification algorithms, without requiring the design of new
and more complex algorithms to exploit them. In this article,
we propose 6 different types of constructed temporal features (3
of them being novel contributions), calculated from the values
of the different feature measurements taken over time, and
investigate whether adding those constructed temporal features
to the original longitudinal dataset improves the classification
model’s predictive accuracy. Our experiments involved 20 real-
world longitudinal datasets created from a human-ageing study,
and showed that the proposed approach of adding the constructed
temporal features to the original feature set produced better
classifiers overall.

I. INTRODUCTION

Longitudinal datasets contain multiple measures of a set of
features taken over different time points, following the same
group of individuals (instances). Because standard classifica-
tion algorithms do not cope directly with the temporality of
longitudinal data, they disregard time-related information that
may be relevant to the problem. One way to address this issue
is to explicitly add a representation of this information as
additional features in the dataset.

Longitudinal studies of human ageing commonly produce
large longitudinal datasets, with thousands of features and
instances, measured over several time points [1]. In these
studies, a cohort of participants has their data collected over
fixed (typically years long) time intervals, about many aspects
of their lives, to further our understanding of the impact of
ageing on individuals and the society.

In this article, we propose Constructed Temporal Features
(CTFs) for the supervised machine learning problem of lon-
gitudinal classification. We evaluate the performance of the
proposed CTFs on real-world datasets created from the English
Longitudinal Study of Ageing (ELSA) [2]. For our experi-
ments, we trained classifiers for 20 datasets created to predict
the diagnosis of 10 age-related diseases at the most recent
wave (time point) of the ELSA study, using data collected
over a period of up to 12 years.

As related work, Niemann et al. [3] generated evolution fea-
tures by comparing instance clustering results at different time
points in a longitudinal dataset. In addition, Buizza et al. [4]

created longitudinal pattern features by comparing distances
and means related to two subsequent images (PET/CT scans).
Both works are quite different from our study since they focus
on specific types of CTFs involving clustering results and
images, which are out of the scope of this work.

In a more similar context to ours, Pomsuwan and Freitas
[5] have also used CTFs for longitudinal data, using datasets
created from the ELSA database. Two features used in their
study, Monotonicity and Diff, are also used in our study, and
are described in detail in Section II. However, their study
focused on proposing a new longitudinal feature selection
algorithm, rather than on the CTFs; and they did not present
any discussion regarding the impact of the CTFs on the
predictive accuracy of their classifiers.

Our work differs from these related studies as it is the
first that focuses specifically on the creation of CTFs for
longitudinal data (including the proposal of new types of
CTFs) and the evaluation of their impact on the predictive
accuracy of a classification algorithm (Random Forests).

Constructing temporal features in a preprocessing step is
only one of the possible approaches for considering temporal
patterns in classification problems. Other strategies include
Structural Pattern Detection [6], Recurrent Neural Networks
(often Long-Short Term Memory) [7], and Deep Learning [8].
Although we are using only standard classifiers in our experi-
ments, our approach may be combined with more sophisticated
algorithms tailored to longitudinal analysis.

By itself, CTF creation has the advantages of being simple
to implement and adapt, and generating interpretable features
that clearly represent temporal patterns. This is in contrast e.g.
to deep neural networks, where the constructed features are not
directly interpretable by users.

We performed experiments adding 6 types of CTF to 20
real-world longitudinal datasets, and compare them using three
performance metrics. Our experiments compared three dataset
compositions: a baseline using only the original features, a fea-
ture set composed only of CTFs, and our proposed approach of
combining the original features and CTFs in a single dataset.
Our results showed that the Random Forest classifiers tended
to perform better with our proposed approach.

II. THE PROPOSED CONSTRUCTED TEMPORAL FEATURES

We define six types of Constructed Temporal Features
(CTFs), which can be added to longitudinal datasets to in-
crease predictive accuracy. We describe each CTF’s calculation



for the numeric and (if applicable) ordered nominal features
in our datasets.

We use the term “conceptual feature” to refer to the
abstract definition of a feature, without specifying the time
point (wave) where the feature was measured. For instance,
cholesterol is a conceptual feature; whilst, in concrete terms,
the dataset will contain different cholesterol features which
are distinguished by the time points (waves) where they were
measured. The proposed CTFs are calculated using values of
different measurements of the same conceptual feature.

Regarding the novelty of the proposed CTFs, Monotonicity
and Diff have been applied to similar longitudinal datasets in
[5], as mentioned earlier. We could not find an example of the
Ratio feature being applied to longitudinal datasets, but it is a
small variation from the Diff feature. The Percentile and the
two CTFs based on the age mean/mode, DiffAgeMean and
AvgDiffAgeMean, are novel contributions.

A. Monotonicity
A monotonic increase or decrease of a feature’s values

over its consecutive measurements in a longitudinal dataset
may be a temporal pattern useful for predicting the value of
the class variable. To represent these patterns, we created a
Monotonicity CTF with three possible values [5]: +1 indi-
cating a monotonic increase in the feature’s values across all
its measurements, −1 indicating a monotonic decrease and 0
indicating no monotonicity pattern.

The calculation of a Monotonicity feature value is shown
in Equation 1, where Fi,t denotes the value of the i-th feature
at time point (wave) t. Note that it first checks if all feature
values are equal; if so, it assigns a 0 value. Hence, the rules
for the -1 and 1 values apply only if there has been at least
one change to the feature’s values over time.

Monotonicity(Fi) = 0 : Fi,0 = Fi,1 = · · · = Fi,T

OR

−1 : Fi,0 ≤ Fi,1 ≤ · · · ≤ Fi,T

1 : Fi,0 ≥ Fi,1 ≥ · · · ≥ Fi,T

0 : otherwise

(1)

Note that we do not use a strict monotonicity definition
with < and > operators. Rather, we use a more flexible
monotonicity definition with the ≤ and ≥ operators. Hence,
if the feature’s value increased or decreased at least once, as
long as the feature’s values do not change in the opposite
direction in other waves, we consider this a monotonic change.
The motivation for this more flexible definition is that it can
be applied to both numeric and ordered nominal features.
Our datasets contain several ordered nominal features taking
between 2 and 8 possible values, and the above strict definition
of monotonicity would not be flexible enough to cope with
such ordered nominal features. For example, if a dataset has
4 waves but the feature can take only two ordered values,
say ‘’low” and ‘’high”, it is impossible to detect a monotonic
change according to the strict definition, but a sequence of
feature values such as ‘’low”, ‘’low”, ‘’high”, ‘’high” would
be recognised as a monotonic increase, a potentially useful
pattern for classification.

B. Difference Between Last Two Measurements

Feature measurements taken closer in time to the class wave
(the last wave) arguably have more impact on the model’s
output, as they are likely more closely related to the class
variable than measurements of the same feature taken further
in the past (earlier waves). In this context, we consider that
the most recent changes to a feature’s value may represent
an important temporal trend. Thus, we created the Diff CTF
to measure the numerical difference between the conceptual
feature’s last and second to last measurements.

The calculation of the Diff CTF is shown in Equation 2,
where T is the index of the class variable’s wave (the last
wave). For ordered nominal features, Diff represents the degree
of difference between the nominal values. This is only possible
because all nominal features in our datasets are ordered, so
we can assign numerical values to them and calculate the
difference between these values as a degree of difference.
Note that this degree of difference measurement is precise
only for cases where the response options in the nominal
features are equidistant, and we do not make that assumption,
as we did not design the data. However, after inspecting
all nominal features in our datasets, we decided that their
values can be considered similarly distant enough that the Diff
calculation would be acceptable. The same decision was made
for Percentile, DiffAgeMean and AvgDiffAgeMean, where we
also calculate degrees of difference for nominal features.

Diff(Fi) = Fi,T − Fi,T−1 (2)

C. Ratio Between Last Two Measurements

The Ratio CTF functions similarly to the Diff CTF. How-
ever, instead of the difference, it calculates the result of divid-
ing the value of the conceptual feature’s last measurement by
its second to last measurement. This CTF cannot be calculated
for nominal features, as that would require an assumption
of equidistance between the possible values, which is not
guaranteed in our datasets. Hence, in this work the Ratio CTF
is used only for numeric features.

Note that the Ratio CTF can capture patterns quite different
from patterns captured by the Diff CTF. For example, Diff has
the same value (0.2) for the feature value pairs (0.2, 0.4) and
(0.6, 0.8), whilst Ratio has value 2 for the former pair and
1.33 for the latter.

The calculation of the Ratio CTF is shown in Equation 3. To
avoid a division by zero error, before performing the division
we add 1 to both feature values.

Ratio(Fi) =
Fi,T + 1

Fi,T−1 + 1
(3)

D. Last Measurement’s Difference from Age-based
Mean/Mode

The subject’s age is the most relevant feature in our datasets.
In preliminary experiments with missing value replacement in
these datasets, we have found that the mean (or mode) value
of subjects of the same age as the current instance is a good



estimation for an expected value of a feature [9]. Therefore, we
propose a CTF to calculate the difference between a feature’s
value in the last wave and its ‘’expected” value, which is an
age-based mean/mode.

The calculation of the DiffAgeMean CTF is shown in
Equation 4. To calculate the expected value for a feature Fi’s
last measurement (Fi,T ) for each subject, we get the value of
that subject’s age at wave T (Agei,T ) and calculate the mean
over all measurements of Fi, over all waves and subjects,
where a subject’s age equals Agei,T . For nominal features,
the expected value is the mode among individuals of the same
age, and we measure the degree of difference from that mode.

DiffAgeMean(Fi) = Fi,T − Exp(Fi, Agei,T ) (4)

E. Average Difference from Age-based Mean/Mode

As an expansion of the DiffAgeMean feature, we calculate
the DiffAgeMean for all different measurements of a feature,
then average these results (dividing the sum of DiffAgeMean’s
by the number of measurements), to get an average difference
from the expected values. Note that at each wave of the
study, the subject’s age changes, so we need to recalculate the
expected value for each measurement of the current feature.
The AvgDiffAgeMean CTF is calculated as shown in Equation
5. Again, for nominal features, we use the mode as the
expected values, instead of the mean.

AvgDiffAgeMean(Fi) =
∑T

k=1 Fi,k−Exp(Fi,k,Agei,k)

T
(5)

F. Age-based Percentile

This proposed CTF is also based on the measurement
taken from subjects with the same age as the current subject
(Agei,T ). However, instead of choosing one expected value,
we rank all values of the current conceptual feature from all
subjects with age = Agei,T , and compute in what Percentile
the current subject’s last measurement for the conceptual
feature is. We consider the last measurement of the feature, as
it is the most relevant.

This CTF was inspired by the percentile feature used in
[10], but that work did not use any other variable to compute
percentiles and did not use longitudinal data. By contrast, we
compute age-based percentiles and adapt DiffAgeMean’s cal-
culation to cope with a feature’s multiple measurements across
time points in longitudinal datasets. Thus, the Age-based
Percentile CTF indicates what percentage of the other subjects
with the same age as the current subject had measurements
with lower values than the current subject’s measurement.

For example, the Percentile value of 30% means that only
about 30% of the subjects of the same age as the current
subject have feature values lower than the current subject’s
value. The temporal aspect of the Percentile CTF is the
calculation of the Ranks, which happens over all different
measurements of the current feature.

The calculation of the Percentile CTF is shown in Equation
6. Note that the term Agei,T in this equation is indexed by
T because we compute the rank of a subject’s feature value
at wave T . However, when computing the rank, we consider
any measurement from subjects of that age, regardless of the
wave. In Equation 6, NV alues(Fi,T , Agei,T ) is the number
of values used to compute the ranking. This CTF is calculated
for numeric and ordered nominal features in the same way.

Percentile(Fi) =
Rank(Fi,T , Agei,T )

NV alues(Fi,T , Agei,T )
(6)

III. METHODOLOGY

A. The Elsa-nurse and Elsa-core Datasets

The English Longitudinal Study of Ageing (ELSA) is one
of the most prominent populational studies of ageing [2], [11].
The ELSA has thousands of respondents from inhabitants
of United Kingdom households, which take part in a core
interview every two years, answering questions about various
aspects of their lives. In addition, questionnaires are used to
collect biomedical data every 2 waves (i.e., roughly every 4
years), when a professional nurse visits the respondents in their
home and performs a face-to-face interview and a series of
tests. The results of these nurse visits are recorded in separate
files.

For our study, we used the datasets from the ELSA-core
questionnaires for waves 1-8 (2002-2016) and ELSA-nurse
questionnaires for waves 2, 4, 6 and 8 (2004-2016). We created
one ELSA-core and one ELSA-nurse dataset for each of the 10
age-related diseases we are interested in predicting, totalling
20 longitudinal datasets.

The class variable in each dataset refers to the presence
(negative class) or absence (positive class) of a reported
diagnose for one of the 10 age-related diseases, for each
instance (ELSA participant), in ELSA’s 8th (most recently
published) wave. For all 10 diseases, the positive class is
the majority, with an increased class imbalance for rarer
diseases, such as Dementia and Parkinson’s Disease. The class
labels were created from specific questions in the ELSA-core
questionnaire about the diagnosis of each target age-related
disease. For more information on the creation of the class
variables, please see [5]. It is important to highlight that the
ELSA and TILDA participants themselves are reporting the
diagnosis of the target diseases in the interviews, and there is
no clinical data available corroborating their answers. Thus,
even though we take the data available as ground-truth, it
is likely that some patients were undiagnosed or did not
report their diagnosis (false negatives), and that some patients
wrongly reported their positive diagnosis (false positives).

The proposed Constructed Temporal Features (CTFs) repre-
sent temporal information that is generated by measuring the
same conceptual feature over several consecutive time points.
Naturally, only features that were measured more than once
over the course of the study are valid candidates for CTF
creation, which excludes demographics such as gender.



For the ELSA-core datasets, we used predictive features
from waves 1-7, excluding wave 8 so that the class variable
would be in the future with respect to the features. For the
ELSA-nurse datasets, as we have only 4 waves, we do include
wave 8’s features although the classes are from that same
wave. The 10 datasets have different class variables (repre-
senting different age-related diseases), but all 10 ELSA-nurse
datasets have the same set of features, as do all 10 ELSA-
core datasets. Details of the composition of these datasets are
shown in Table I.

TABLE I
THE ELSA-NURSE AND ELSA-CORE DATASETS.

Data Source Classes
(diseases) Instances Feature

Waves
Predictive
Features

Numeric
CTFs

Nominal
CTFs

ELSA-nurse 10 7097 4 140 28 13
ELSA-core 10 8405 7 171 5 22

B. Preprocessing and experimental setup
For our experiments with the proposed CTFs, we created

classification models using the Random Forest (RF) algorithm
[12]. This work is the first to test CTFs for longitudinal
data using the RF algorithm, which is among the state-of-
the-art classification algorithms [13]. RFs handle well datasets
with a high ratio of features to instances, which are prone to
overfitting [14]. This is desirable as our proposal can add up
to 6 CTFs for each conceptual feature in the dataset.

Because of the class imbalance problem mentioned earlier,
training sets were balanced using the Balanced Random Forest
(BRF) method [15]. BRF applies a majority class undersam-
pling for each bootstrap sample taken at each tree of the forest,
so the subset of instances used to generate each tree has a
balanced ratio (1:1) of instances of the two classes. The 1:1
ratio is a default approach adopted by several studies [16],
[17], including a study that used datasets similar to the Elsa-
nurse datasets used in our experiments [5].

The RFs were trained and tested using the Weka toolkit1,
with the default parameters ntrees = 100 (number of trees)
and mtry = blog2(d)c+1 = 8 (number of features randomly
sampled to be used as candidate features at each tree node),
where the total number of features is d, and bxc is the “floor”
of x, i.e., the biggest integer which is smaller than or equal
to x.

The RF classifiers were evaluated using three metrics:
Sensitivity (True Positive Rate), Specificity (True Negative
Rate) and GMean (geometric mean between Sensitivity and
Specificity). These metrics were chosen partially based on [18,
Chapter 4], who claim that for imbalanced biomedical data,
models should be evaluated using metrics that consider their
ability to predict each class separately (i.e., Sensitivity and
Specificity) and at least one “global” metric of performance
over both classes. We chose the GMean as a global measure,
because it assigns equal importance to the prediction of
both minority-class and majority-class instances, unlike more
common global performance measures such as Accuracy.

1Available at: https://www.cs.waikato.ac.nz/ml/weka/

All datasets had their missing values replaced in a data
preprocessing step. The experiments used the well-known 10-
fold cross-validation procedure, and we compared the results
of three feature sets for each metric using two statistical
significance tests, as follows.

First, we applied the Friedman’s test, a rank-based non-
parametric version of ANOVA with repeated measures [19]. If
this test indicated the results are significantly different, we then
applied the Nemenyi post-hoc test, a pairwise non-parametric
test to determine whether or not different pairs of models have
equivalent performance. Both tests were applied with the usual
significance level α = 0.05.

IV. RESULTS AND DISCUSSION

A. Controlled Experiments with Baseline Datasets

For these experiments, our objective was to evaluate the
potential increase in predictive accuracy for RF classifiers
learned from baseline datasets containing the proposed CTFs
as added features. First, we identify all conceptual features
that can be used in the creation of the CTFs, called the set of
‘’eligible” features. This set consists of all conceptual features
that had at least two measurements (across waves), as we only
calculated the CTFs for those. To have a fair evaluation of the
proposed CTFs in a controlled experiment, we created datasets
from the Elsa-nurse and Elsa-core databases with the following
feature sets:

• Baseline: All measurements of the eligible conceptual
features in the original dataset; no CTF.

• CTFs-only: The six proposed CTFs (AvgDiffAgeMean,
DiffAgeMean, Diff, Monotonicity, Age-based Percentile,
Ratio), created for each eligible conceptual feature; no
original feature.

• Baseline+CTFs: Both the above feature sets combined,
i.e. both original and CTF features.

All result Tables shown in this section and in section IV-B
have the same structure: each column corresponds to the
feature set that composes the dataset (Baseline, CTFs only,
and both the Baseline and the CTFs combined), and each
row shows the results for one class and data source (EN
for Elsa-nurse datasets and EC for Elsa-core datasets), with
the best result in boldface. In the last three rows, we show
the number of wins for each feature set (number of datasets
where the feature set got the best results) over the 10 Elsa-
nurse datasets, over the 10 Elsa-core datasets, and over all
20 datasets, respectively. When ties happened, one ’win’ was
divided among the tied feature sets.

Tables II and III show the Sensitivity and Specificity values
for all datasets. For both measures, the best results were clearly
obtained by the Baseline+CTFs feature set, which obtained
in total 11.33/20 wins for Sensitivity and 10/20 wins for
Specificity. The CTFs-only feature set was overall the second
best method, and it performed particularly well for Specificity,
where it obtained in total 7/20 wins, against only 3/20 wins
of the baseline feature set.



TABLE II
SENSITIVITY RESULTS. BASELINE DATASETS ARE COMPRISED ONLY OF

THE FEATURES USED TO CREATE THE CTFS.

Baseline CTFs-only BL+CTFs
EN Arthritis 0.669 0.655 0.670
EN HBP 0.653 0.647 0.650
EN Cataract 0.615 0.576 0.601
EN Diabetes 0.843 0.841 0.846
EN Osteoporosis 0.655 0.629 0.643
EN Stroke 0.667 0.679 0.678
EN Heart Attack 0.698 0.698 0.698
EN Angina 0.680 0.672 0.683
EN Dementia 0.737 0.729 0.752
EN Parkinson’s 0.604 0.630 0.634
EC Arthritis 0.741 0.752 0.750
EC HBP 0.625 0.640 0.634
EC Cataract 0.601 0.626 0.617
EC Diabetes 0.671 0.691 0.674
EC Osteoporosis 0.690 0.680 0.691
EC Stroke 0.689 0.685 0.692
EC Heart Attack 0.673 0.654 0.669
EC Angina 0.710 0.691 0.706
EC Dementia 0.757 0.771 0.773
EC Parkinson’s 0.685 0.714 0.715
Nwins EN datasets 3.33 0.33 6.33
Nwins EC datasets 1 4 5

Total Nwins 4.33 4.33 11.33

TABLE III
SPECIFICITY RESULTS. BASELINE DATASETS ARE COMPRISED ONLY OF

THE FEATURES USED TO CREATE THE CTFS.

Baseline CTFs-only BL+CTFs
EN Arthritis 0.594 0.604 0.593
EN HBP 0.747 0.730 0.751
EN Cataract 0.723 0.754 0.729
EN Diabetes 0.865 0.870 0.863
EN Osteoporosis 0.699 0.716 0.717
EN Stroke 0.710 0.693 0.701
EN Heart Attack 0.731 0.696 0.718
EN Angina 0.678 0.709 0.713
EN Dementia 0.716 0.709 0.703
EN Parkinson’s 0.636 0.591 0.652
EC Arthritis 0.717 0.721 0.726
EC HBP 0.662 0.671 0.669
EC Cataract 0.675 0.750 0.751
EC Diabetes 0.750 0.748 0.759
EC Osteoporosis 0.635 0.661 0.638
EC Stroke 0.694 0.758 0.747
EC Heart Attack 0.689 0.721 0.705
EC Angina 0.723 0.765 0.772
EC Dementia 0.727 0.832 0.776
EC Parkinson’s 0.720 0.720 0.747
Nwins EN datasets 3 3 4
Nwins EC datasets 0 4 6

Total Nwins 3 7 10

Table IV shows the GMean results. Again, for both these
measures, the best overall result was obtained by Base-
line+CTFs, which obtained in total 9.5/20 wins for GMean.
The second best results were obtained by CTFs-only, with
7.5/20 wins. In general, the CTFs-only feature set performs
better on the Elsa-core datasets than on the Elsa-nurse datasets,
as shown in the second and third to last rows in the Table.
In summary, the best result was obtained by the feature set
containing both eligible original features and the proposed
CTFs, for all three metrics.

Regarding the statistical tests, the Friedman test showed
a significant difference between the results in two cases, so
we performed the Nemenyi post-hoc test for those. For the

TABLE IV
GMEAN RESULTS. BASELINE DATASETS ARE COMPRISED ONLY OF THE

FEATURES USED TO CREATE THE CTFS.

Baseline CTFs-only BL+CTFs
EN Arthritis 0.630 0.629 0.630
EN HBP 0.699 0.688 0.699
EN Cataract 0.667 0.659 0.662
EN Diabetes 0.854 0.855 0.854
EN Osteoporosis 0.676 0.671 0.679
EN Stroke 0.688 0.686 0.689
EN Heart Attack 0.714 0.697 0.708
EN Angina 0.679 0.690 0.698
EN Dementia 0.726 0.719 0.727
EN Parkinson’s 0.620 0.610 0.643
EC Arthritis 0.729 0.737 0.738
EC HBP 0.643 0.656 0.651
EC Cataract 0.637 0.685 0.681
EC Diabetes 0.709 0.719 0.715
EC Osteoporosis 0.662 0.670 0.664
EC Stroke 0.692 0.721 0.719
EC Heart Attack 0.681 0.687 0.687
EC Angina 0.716 0.727 0.738
EC Dementia 0.742 0.801 0.774
EC Parkinson’s 0.702 0.717 0.731
Nwins EN datasets 3 1 6
Nwins EC datasets 0 6.5 3.5

Total Nwins 3 7.5 9.5

Sensitivity metric (Friedman p-value = 0.0363), the Nemenyi
test detected a significant difference between the BL+CTFs
and the CTFs-only feature sets (Nemenyi p-value = 0.0467).
For the GMean metric (Friedman p-value = 0.0137), there
was a significant difference between the BL+CTFs and BL
feature sets (Nemenyi p-value = 0.0157).

B. Full Dataset Results

In this second set of experiments, the new experiments in
this current section compare the following three feature sets:

• Baseline: all original features with all available measure-
ments (even features measured just once, which are not
eligible for generating CTFs), no CTF;

• CTFs+inel: the six proposed types of CTF, created for
each eligible conceptual feature, and the original features
ineligible for generating CTFs;

• Baseline+CTFs: Both the above feature sets combined,
i.e. all original and CTF features.

Tables V, VI and VII show the results for Sensitivity,
Specificity and GMean for all datasets.

The best overall results were again obtained by Base-
line+CTFs, although now its superiority is not so clear as
in the previous Section. The main reason why the winner
Baseline+CTFs has less impressive results in these new ex-
periments seems to be because now all feature sets (including
the Baseline) include features which are not used to construct
CTFs but have good predictive power – e.g., the age and gen-
der features are among the top-ranked features in the random
forest models’ feature importance measurements. Hence, the
addition of the CTFs had a smaller impact on the resulting
models for the BL+CTFs and CTFs+inel feature sets – by
comparison with the experiments in the previous Section.

In this sections’ experiments, the Friedman’s test did not
reject the null hypothesis for any of the metrics.



TABLE V
SENSITIVITY RESULTS. FULL ELSA-NURSE (EN) AND ELSA-CORE (EC)

DATASETS AS THE BASELINE.

Baseline CTFs+inel BL+CTFs
EN Arthritis 0.671 0.658 0.671
EN HBP 0.651 0.644 0.650
EN Cataract 0.620 0.593 0.605
EN Diabetes 0.841 0.836 0.845
EN Osteoporosis 0.649 0.633 0.643
EN Stroke 0.670 0.681 0.674
EN Heart Attack 0.700 0.694 0.700
EN Angina 0.684 0.673 0.681
EN Dementia 0.729 0.748 0.743
EN Parkinson’s 0.628 0.650 0.627
EC Arthritis 0.743 0.747 0.756
EC HBP 0.621 0.642 0.637
EC Cataract 0.612 0.623 0.613
EC Diabetes 0.674 0.686 0.682
EC Osteoporosis 0.692 0.687 0.702
EC Stroke 0.676 0.683 0.696
EC Heart Attack 0.674 0.669 0.680
EC Angina 0.710 0.699 0.706
EC Dementia 0.756 0.765 0.766
EC Parkinson’s 0.677 0.714 0.694
Nwins EN datasets 5 2 3
Nwins EC datasets 1 4 5

Total Nwins 6 6 8

TABLE VI
SPECIFICITY RESULTS. FULL ELSA-NURSE (EN) AND ELSA-CORE (EC)

DATASETS AS THE BASELINE.

Baseline CTFs+inel BL+CTFs
EN Arthritis 0.586 0.609 0.594
EN HBP 0.749 0.724 0.745
EN Cataract 0.723 0.751 0.736
EN Diabetes 0.866 0.863 0.868
EN Osteoporosis 0.696 0.723 0.716
EN Stroke 0.724 0.698 0.720
EN Heart Attack 0.738 0.711 0.713
EN Angina 0.702 0.702 0.686
EN Dementia 0.709 0.696 0.736
EN Parkinson’s 0.712 0.652 0.727
EC Arthritis 0.721 0.722 0.720
EC HBP 0.678 0.677 0.673
EC Cataract 0.777 0.760 0.764
EC Diabetes 0.751 0.743 0.758
EC Osteoporosis 0.670 0.696 0.666
EC Stroke 0.751 0.751 0.747
EC Heart Attack 0.717 0.714 0.717
EC Angina 0.765 0.765 0.761
EC Dementia 0.845 0.845 0.807
EC Parkinson’s 0.707 0.693 0.733
Nwins EN datasets 3.5 3.5 3
Nwins EC datasets 4 3.5 2.5

Total Nwins 7.5 7.0 5.5

C. Feature Importance Analysis

To further evaluate the impact of adding CTFs to the
baseline dataset, we used a feature importance metric to
analyse how often the proposed CTFs were selected as the
best features in the RF models. We used the feature importance
metric implemented in the Weka data mining tool, which is
based on the average class-impurity decrease over all nodes
where the feature was selected.

We selected the top 10 features with highest average impu-
rity decrease for the RF produced in each fold in the cross-
validation process, totalling 100 top-ranking features for each
dataset. The selection was done over our RF runs using the
BL+CTFs feature set defined in Section IV-B. Table VIII

TABLE VII
GMEAN RESULTS. FULL ELSA-NURSE (EN) AND ELSA-CORE (EC)

DATASETS AS THE BASELINE.

Baseline CTFs+inel BL+CTFs
EN Arthritis 0.627 0.633 0.632
EN HBP 0.698 0.683 0.696
EN Cataract 0.670 0.667 0.667
EN Diabetes 0.854 0.849 0.856
EN Osteoporosis 0.672 0.677 0.679
EN Stroke 0.697 0.690 0.697
EN Heart Attack 0.719 0.702 0.707
EN Angina 0.693 0.687 0.684
EN Dementia 0.719 0.722 0.740
EN Parkinson’s 0.669 0.651 0.675
EC Arthritis 0.732 0.734 0.738
EC HBP 0.649 0.659 0.655
EC Cataract 0.690 0.688 0.685
EC Diabetes 0.712 0.714 0.719
EC Osteoporosis 0.681 0.692 0.684
EC Stroke 0.712 0.716 0.721
EC Heart Attack 0.695 0.691 0.698
EC Angina 0.737 0.731 0.733
EC Dementia 0.799 0.804 0.787
EC Parkinson’s 0.691 0.703 0.713
Nwins EN datasets 4.5 1 4.5
Nwins EC datasets 2 3 5

Total Nwins 6.5 4 9.5

shows how many times original (baseline) and constructed
features were selected for each dataset. For each dataset source
(EN for ELSA-nurse and EC for ELSA-core) the datasets are
shown in increasing order of class imbalance.

TABLE VIII
FEATURE IMPORTANCE: NUMBER OF FEATURES OF EACH CATEGORY IN
THE TOP 100 FEATURES (CONSIDERING THE 10 TOP FEATURES IN EACH

OF THE 10 CROSS-VALIDATION FOLDS), FOR EACH DATASET.

Dataset
Original
Features
Selected

Constructed
Features
Selected

EN Arthritis 96 4
EN HBP 98 2
EN Cataract 93 7
EN Diabetes 82 18
EN Osteoporosis 90 10
EN Stroke 88 12
EN HeartAttack 72 28
EN Angina 74 26
EN Dementia 64 36
EN Parkinson’s 55 45
EC Arthritis 2 98
EC HBP 2 98
EC Cataract 5 95
EC Diabetes 16 84
EC Osteoporosis 14 86
EC Stroke 25 75
EC HeartAttack 22 78
EC Angina 29 71
EC Dementia 33 67
EC Parkinson’s 36 64
Total 996 1004

The Table shows an interesting trend of fewer CTFs being
selected for the ELSA-nurse datasets, with more CTFs being
selected as the class imbalance ratio increases, and the oppo-
site happens for the ELSA-core datasets. Overall, 18.8% and



and 81.6% of the best ranked features were CTFs, for the
ELSA-nurse and ELSA-core datasets, respectively.

We did not show the specific numbers for each CTF due
to space constraints, however it is important to note that
the type of CTF selected most often was Percentile (41.2%),
followed by Monotonicity (22.3%) and DiffAgeMean (16.2%).
Both Percentile and DiffAgeMean focus on the most recent
measurement of a feature, and compare it to the measurements
of other individuals of the same age of the respondent.
Monotonicity aims to identify upwards or downwards trends in
the values of a feature over all measurements. Note that these
temporal trends would be ignored by the classification algo-
rithm applied to the original dataset, so adding the proposed
CTFs to the dataset in a preprocessing phase is an effective
and computationally non-expensive approach.

V. CONCLUSION

We have proposed several new types of Constructed Tem-
poral Features (CTFs) and investigated whether adding CTFs
to longitudinal datasets increases predictive accuracy. In our
experiments, we used 20 real-world datasets created from the
ELSA. To assess the effect of adding the proposed CTFs to
longitudinal datasets, we ran two sets of experiments.

First, we ran a controlled experiment to measure the im-
pact of the CTFs in predictive accuracy. These experiments
compared three different feature sets: (a) a baseline set with
only the original features used for constructing CTFs, (b) the
proposed CTFs only (no original features), and (c) an extended
feature set with both feature sets (a) and (b). The results were
a very clear increase in the Sensitivity, Specificity, and GMean
metrics for the third approach.

In the second set of experiments, we included in all three
feature sets the original ELSA features that were ineligible for
CTF creation. These include highly predictive features such
as age and gender, which improved the learned RF models. In
these experiments, the trend towards better predictive accuracy
in the BL+CTFs feature set persisted, although not as strong.

The Percentile, Monotonicity and DiffAgeMean CTFs were
the most commonly selected types of CTF, totalling about 40%
of the best-ranked features overall. Percentile and DiffAge-
Mean are new contributions of this work, whilst Monotonicity
was proposed in [5] for numerical features only, whilst in this
work they were also extended to ordered nominal features.

Future work could involve adding the proposed CTFs to
different longitudinal datasets, as well as proposing other
types of CTFs and variations of existing CTFs. In addition,
we would like to ask healthcare professionals to analyse our
proposed CTFs and give feedback about their clinical validity
and interest, possibly proposing new features based on what
type of temporal pattern would be considered relevant for
clinical or healthcare research purposes.
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[16] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera, “An insight
into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics,” Information Sciences, vol.
250, pp. 113–141, 2013.

[17] G. M. Weiss and F. Provost, “Learning when training data are costly:
The effect of class distribution on tree induction,” Journal of Artificial
Intelligence Research, vol. 19, pp. 315–354, 2003.

[18] J. D. Malley, K. G. Malley, and S. Pajevic, Statistical learning for
biomedical data. Cambridge University Press, 2011.

[19] M. Friedman, “A comparison of alternative tests of significance for the
problem of m rankings,” The Annals of Mathematical Statistics, vol. 11,
no. 1, pp. 86–92, 1940.


