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Abstract

Attribute selection is a data preprocessing step which aims at
identifying relevant attributes for the target machine learning task –
namely classification in this paper. In this paper, we propose a new at-
tribute selection strategy – based on a lazy learning approach – which
postpones the identification of relevant attributes until an instance is
submitted for classification. Our strategy relies on the hypothesis that
taking into account the attribute values of an instance to be classi-
fied may contribute to identifying the best attributes for the correct
classification of that particular instance. Experimental results using
the k-NN and Naive Bayes classifiers, over 40 different data sets from
the UCI Machine Learning Repository and five large data sets from
the NIPS 2003 feature selection challenge, show the effectiveness of
delaying attribute selection to classification time. The proposed lazy
technique in most cases improves the accuracy of classification, when
compared with the analogous attribute selection approach performed
as a data preprocessing step. We also propose a metric to estimate
when a specific data set can benefit from the lazy attribute selection
approach.
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1 Introduction

Given a training set where each instance is described by a vector of attributes
and by a class label, the classification task can be stated as the process
of correctly predicting the class label of a new instance or a set of new
instances described by their attribute values. One of the main research issues
in classification is to design accurate and efficient classification algorithms
and models that work for data sets that are large both in terms of the number
of instances as well as the number of attributes.

Classification techniques are traditionally categorized as eager or lazy.
Eager strategies work on a training set to build an explicit classification model
that maps unlabeled instances to class labels. At classification time, they
simply use the model to make class predictions. Well-known eager techniques
include decision trees (Quinlan, 1986, 1993), neural networks (Ripley, 1996),
associative classifiers (Liu et al, 1998) and SVMs (Support Vector Machines)
(Burges, 1998).

Lazy strategies, on the other hand, do not construct explicit models and
delay most processing of the training set until classification time, when the
instance to be classified is known. The most well-known lazy technique is
k-NN (k-Nearest Neighbors) (Cover and Hart, 1967; Dasarathy, 1991), in
which the class label of an instance is estimated based on the class labels
of neighboring instances. The Naive Bayes algorithm (Duda et al, 2001)
can be used as an eager or lazy technique. If all conditional and a priori
probabilities are previously calculated, before any instance is submitted for
classification, it can be seen as an eager strategy. However, if we decide
to compute the necessary probabilities for a particular instance only during
classification time, it can be considered a lazy technique. There are also lazy
versions of traditional eager techniques such as lazy decision trees (Friedman
et al, 1996), lazy rule induction (Gora and Wojna, 2002) and lazy associative
classification (Veloso et al, 2006). In these approaches, when an instance is
presented for classification only the part of the model needed to classify the
particular instance is constructed.

The performance of a classification method is closely related to the in-
herent quality of the training data. Redundant and irrelevant attributes
may not only decrease the classifier’s accuracy but also make the process of
building the model or the execution of the classification algorithm slower.
In order to avoid these drawbacks, attribute selection techniques are usually
applied for removing from the training set attributes that do not contribute
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to, or even decrease, the classification performance (Guyon et al, 2006; Liu
and Motoda, 2008a). These techniques are traditionally executed as a data
preprocessing step, making the attribute selection definitive from that point
on. The classification process itself is executed over the reduced training set.

In this paper, we propose a new general attribute selection strategy, whose
main characteristic is to postpone the selection of relevant attributes – in a
lazy fashion – to the moment when an instance is submitted for classification,
instead of eagerly selecting the most important attributes. Our hypothesis is
that knowing the attribute values of an instance will allow the identification
and selection of the best attributes for the correct classification of that specific
instance. Therefore, for different instances to be classified, it will be possible
to select distinct subsets of attributes, each one customized for that particular
instance. We expect that based on the proposed lazy selection technique the
adopted classifier will be able to achieve better predictive accuracy than it is
possible with an eager attribute selection strategy.

This paper is organized as follows. In Section 2, we describe the attribute
selection task in more detail and review related work. In Section 3, we mo-
tivate and propose our general lazy attribute selection strategy. We also
present a specific instantiation of this strategy that uses an entropy-based
criterion to rank attributes. Experimental results using the proposed lazy
strategy in conjunction with the k-NN and Naive Bayes classifiers are pre-
sented in Section 4. Finally, in Section 5, we make our concluding remarks
and point to directions for future work.

2 Attribute Selection

According to (Guyon and Elisseeff, 2006), attribute selection techniques are
primarily employed to identify relevant and informative attributes. In gen-
eral, besides this main goal, there are other important motivations: the im-
provement of a classifier’s predictive accuracy, the reduction and simplifica-
tion of the data set, the acceleration of the classification task, the simplifica-
tion of the generated classification model, and others. The main motivation
of the attribute selection strategy proposed here is improvement in classifi-
cation accuracy.

Attribute selection techniques can generally be categorized into three cat-
egories: embedded, wrapper or filter (Liu and Motoda, 2008b). Embedded
strategies are directly incorporated into the algorithm responsible for the in-

3



duction of a classification model. Decision tree induction algorithms can be
viewed as having an embedded technique, since they internally select a sub-
set of attributes that will label the nodes of the generated tree. Wrapper and
filter strategies are performed in a preprocessing phase and they search for
the most suitable attribute set to be used by the classification algorithm or
by the classification model inducer. In wrapper selection, the adopted classi-
fication algorithm itself is used to evaluate the quality of candidate attribute
subsets, while in filter selection, attribute quality is evaluated independently
from the classification algorithm using a measure which takes into account
the attribute and class label distributions. In general, wrapper techniques
achieve higher predictive accuracy than filter strategies since they evaluate
candidate attributes subsets using the same algorithm that will be used in
the classification (testing) phase. However, since wrapper strategies require
several executions of the classification algorithm, their computational costs
tend to be much higher than the cost of filter strategies. There are also
hybrid strategies which try to combine both approaches (Liu and Yu, 2005).

In this paper we chose to concentrate on developing a lazy attribute selec-
tion that follows the filter strategy. The motivation for this choice is twofold.
First, among the three types of attribute selection strategies, the filter strat-
egy is the easiest to analyze and evaluate in an isolated manner, since it is
independent from the classification algorithm. Secondly, it is much faster
than the wrapper approach.

Filter strategies are commonly divided into two categories. Techniques
of the first category, as exemplified by Information Gain Attribute Ranking
(Yang and Pedersen, 1997) and Relief (Kira and Rendell, 1992; Kononenko,
1994), evaluate each attribute individually and select the best ones. At-
tributes that provide a good class separation will be ranked higher and there-
fore be chosen. The second category is characterized by techniques which
evaluate subsets of attributes, searching, heuristically, for the best subset.
Two well-known strategies of this group are Correlation-based Feature Selec-
tion (Hall, 2000) and Consistency-based Feature Selection (Liu and Setiono,
1996).

As detailed in the next section, the lazy attribute selection strategy that
we propose in this paper is based on individual evaluation of attributes, using
entropy (Quinlan, 1986) to measure the relevance of each attribute.
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3 Lazy Attribute Selection

In conventional attribute selection strategies, attributes are selected in a
preprocessing phase. The attributes which are not selected are discarded
from the data set and no longer participate in the classification process.

Here, we propose a lazy attribute selection strategy based on the hypoth-
esis that postponing the selection of attributes to the moment at which an
instance is submitted for classification can contribute to identifying the best
attributes for the correct classification of that particular instance. For each
different instance to be classified, it is possible to select a distinct and more
appropriate subset of attributes to classify it.

Below we give a toy example to illustrate the fact that the classification
of certain instances could take advantage of attributes discarded by con-
ventional attribute selection strategies. In addition, some of the attributes
selected by conventional strategies may be irrelevant for the classification
of other instances. In other words, the example illustrates that attributes
may be useful or not depending on the attribute values of the instance to
be classified. In Table 1, the same data set, composed of three attributes –
X, Y , and the class C – is represented twice. The left occurrence is ordered
by the values of X and the right one is ordered by the values of Y . It can
be observed in the left occurrence that the values of X are strongly corre-
lated with the class values making it a useful attribute. Only value 4 is not
indicative of a unique class value.

Furthermore, as shown in the right occurrence, attribute Y would prob-
ably be discarded since in general its values do not correlate well with the
class values.

However, there is a strong correlation between the value 4 of attribute Y
and the class value B, which would be lost if this attribute were discarded.
The classification of an element with value 4 in the Y attribute would clearly
take advantage of the presence of this attribute.

A conventional attribute selection strategy – which, from now on, we refer
to as an “eager” selection strategy – is likely to select attribute X in detri-
ment of Y , regardless of the instances that are submitted for classification.
According to (Liu and Motoda, 2008b), a key advantage of lazy approaches
in general is that they can respond to unexpected queries in ways not avail-
able to eager learners, since they do not lose crucial information that can be
used for generating accurate predictions.

Hence, the main motivation behind the proposed lazy attribute selection
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Table 1: Data Set Example

Data Set Sorted by X Data Set Sorted by Y

– X – – Y – – C – – X – – Y – – C –

1 2 B 2 1 A
1 3 B 3 1 B
1 4 B 4 1 A
2 1 A 1 2 B
2 2 A 2 2 A
2 3 A 3 2 B
3 1 B 1 3 B
3 2 B 2 3 A
3 4 B 4 3 B
4 1 A 1 4 B
4 3 B 3 4 B
4 4 B 4 4 B

is the ability to assess the attribute values of the instance to be classified,
and use this information to select attributes that discriminate the classes
well for those particular values. As a result, for each instance we can select
attributes that are useful for classifying that particular instance.

In this paper, we chose to use the entropy concept (Yang and Pedersen,
1997) to evaluate the quality of each attribute value for the classification of
an instance. Specifically, entropy will be used to measure how well the values
of the attributes of an instance determine its class. The entropy concept is
commonly used as measure of attribute relevance in eager and filter strategies
that evaluate attributes individually (Yang and Pedersen, 1997), and this
method has the advantage of being fast.

Let D(A1, A2, ..., An, C), n ≥ 1, be a data set with n+1 attributes, where
C is the class attribute. Let {c1, c2, ..., cm}, m ≥ 2, be the domain of the
class attribute C. The entropy of the class distribution in D, represented by
Ent(D), is defined by

Ent(D) = −
m∑

i=1

[pi ∗ log2(pi)], (1)

where pi is the probability that an arbitrary instance in D belongs to class
ci.

Let {aj1, aj2, ..., ajkj
}, kj ≥ 1, be the domain of the attribute Aj, 1 ≤ j ≤

n. Let Dji, 1 ≤ j ≤ n and 1 ≤ i ≤ kj, be the partition of D composed of all
instances whose value of Aj is equal to aji. The entropy of the class distri-
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bution in D, restricted to the values of attribute Aj, 1 ≤ j ≤ n, represented
by Ent(D, Aj), is defined by

Ent(D, Aj) =
kj∑

i=1

[(
|Dji|
|D|

) ∗ Ent(Dji)]. (2)

Thus we define the entropy of the class distribution in D, restricted to
the value aji, 1 ≤ i ≤ kj, of attribute Aj, 1 ≤ j ≤ n, represented by
Ent(D, Aj, aji), as follows:

Ent(D, Aj, aji) = Ent(Dji). (3)

The concept defined in Formula 2 is used by the eager strategy known as
Information Gain Attribute Ranking (Yang and Pedersen, 1997) to measure
the ability of an attribute to discriminate between class values. Formula
3 will be used in our proposed lazy selection strategy to measure the class
discrimination ability of a specific value aji of a particular attribute Aj. The
closer the entropy Ent(D, Aj, aji) is to zero, the greater the chance that the
value aji of attribute Aj is a good class discriminator.

The input parameters of the lazy strategy are: a data set D(A1, A2, ..., An, C),
an instance I[v1, v2, ..., vn] to be classified with its attribute values; and a
number r, 1 ≤ r < n, which represents the number of attributes to be
selected.

In order to select the r best attributes to classify I, we propose to evaluate
the n attributes based on a lazy measure (LazyEnt), defined in Formula 4,
which states that, for each attribute Aj, if the discrimination ability of the
specific value vj of Aj (Ent(D, Aj, vj)) is better than (less than) the overall
discrimination ability of attribute Aj (Ent(D, Aj)) then the former will be
considered for ranking Aj. The choice of considering the minimum value from
both the entropy of the specific value and the overall entropy of the attribute
was motivated by the fact that some instances may not have any relevant
attributes considering their particular values. In this case, attributes with
the best overall discrimination ability will be selected.

Then, the measure proposed to assess the quality of each attribute Aj is
defined by

LazyEnt(D,Aj , vj) = min(Ent(D,Aj , vj), Ent(D,Aj)), (4)

where min() returns the smallest of its arguments.
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After calculating the value LazyEnt(D, Aj, vj) for each attribute Aj, the
lazy strategy will select the r attributes which present the r lowest LazyEnt
values.

4 Experimental Results

We implemented the lazy strategy described above within the Weka tool
(Witten and Frank, 2005) – version 3.4.11 – and tested it in combination with
different classifiers. The lazy selection occurs when the classifier receives a
new instance to be classified. Since for each new instance a distinct subset
of attributes must be considered by the classifier, the attributes not selected
by the lazy strategy for a given instance are not removed from the data set,
but only disregarded by the classification procedure.

As a baseline for comparison we used the eager attribute selection strategy
most similar to our lazy strategy, which is the Information Gain Attribute
Ranking technique (Yang and Pedersen, 1997). This technique is available
within the Weka tool with the name “InfoGainAttributeEval”. Both of them
use the entropy concept for ranking attributes, are supervised strategies and
need to know in advance the number of attributes that should be selected.

The strategies were initially tested on a large number of data sets from
the UCI Machine Learning Repository (Asuncion and Newman, 2007). A
total of 40 data sets which have a wide variation in size, complexity and
application area were chosen. Table 2 presents some information about these
data sets: name, number of attributes, number of classes and number of
instances.

The entropy measure used to evaluate the quality of each attribute in our
proposed technique requires discrete attribute values. Therefore we adopted
the recursive entropy minimization heuristic proposed in (Fayyad and Irani,
1993) to discretize continuous attributes and coupled this with a minimum
description length criterion (Rissanen, 1986) to control the number of inter-
vals produced over the continuous space.

We have incorporated our lazy attribute selection strategy into two dis-
tinct classification techniques. In Subsection 4.1, we present the results ob-
tained with the lazy k-Nearest Neighbor classifier and, in Subsection 4.2, we
present the results obtained with the Naive Bayes. In Subsection 4.3, we
explored a method for estimating if the lazy attribute selection strategy is
most likely to have a better performance than the eager approach. And in
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Table 2: Data sets from the UCI Repository

Data set Attributes Classes Instances

anneal 38 5 898
audiology 69 24 226
autos 25 6 205
breast-cancer 9 2 286
breast-w 9 2 699
chess-Kr-vs-Kp 36 2 3196
credit-a 15 2 690
diabetes 8 2 768
flags 29 8 194
glass 9 6 214
heart-cleveland 13 2 303
heart-hungarian 13 2 294
hepatitis 19 2 155
horse-colic 27 2 368
hypothyroid 29 4 3772
ionosphere 34 2 351
labor 16 2 57
letter-recognition 16 26 20000
lymph 18 4 148
mol-bio-promoters 57 2 106
mol-bio-splice 60 3 3190
mushroom 22 2 8124
optdigits 64 10 5620
pendigits 16 10 10992
postoperative 8 3 90
primary-tumor 17 21 339
solar-flare1 12 6 323
solar-flare2 12 6 1066
sonar 60 2 208
soybean-large 35 19 683
spambase 57 2 4601
statlog-heart 13 2 270
statlog-segment 19 7 2310
statlog-vehicle 18 4 846
thyroid-sick 29 2 3772
vote 16 2 435
vowel 13 11 990
waveform-5000 40 3 5000
wine 13 3 178
zoo 17 7 101

Subsection 4.4, we evaluated the lazy strategy larger data sets from the NIPS
2003 challenge of feature selection (Guyon et al, 2004).
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4.1 Experimental Results with k-NN

The k-NN algorithm assigns to a new instance to be classified the majority
class among its k closest instances, from a given training data set (Cover and
Hart, 1967; Dasarathy, 1991). The distance between each training instance
and the new instance is calculated by a function defined on the values of
their attributes. Hence, the use of lazy attribute selection implies that the
calculation of the distances will be done using different subsets of attributes
for different instances to be classified.

We compared the results of the original k-NN implementation available
within the Weka tool, called IbK, with that obtained with our adapted version
of this implementation which executes the lazy attribute selection before
classifying each test instance. Both of them were executed with different
values of the parameter k: 1, 3 and 5. In all experiments reported in this
work, parameters not mentioned are set to their default values in the Weka
tool.

Initially, we report the results obtained by both eager and lazy selec-
tion strategies when executed with three specific data sets: Wine, Heart-
Hungarian and Vowel. The main goal of this first analysis is to show some
results in detail so that our experimental methodology can be better un-
derstood. Also, it gives some evidence that the lazy strategy can indeed
outperform the eager strategy for some data sets.

Tables 3, 4 and 5 show the predictive accuracies obtained by the k-NN
algorithm, using both eager and lazy selection, with parameter k equal to 1
(columns 2 and 3), k equal to 3 (columns 4 and 5), and k equal to 5 (columns
6 and 7), for the Wine, Heart-Hungarian and Vowel data sets. Each row of
these tables represents the execution of the selection strategies with a fixed
number of attributes to be selected. The first column indicates the number
of attributes to be selected as a percentage of the total number of attributes
in the data set – the absolute number appears in parentheses. The last line
(100%) represents the execution using the whole attribute set, that is, when
no attribute selection is performed. Each value of predictive accuracy is
obtained by a 10-fold cross-validation procedure (Han and Kamber, 2006).
When comparing the two attribute selection strategies, bold-faced values
indicate the best behavior.

Table 3 shows the results for the Wine data set. We can observe that the
lazy strategy presented much better results than the eager strategy, regardless
of the number of attributes we choose to select. The results with the lazy
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strategy are also better than the ones obtained without attribute selection.
The lazy strategy was able to reach 100% of accuracy when just 3 out of 13
attributes were selected, when k was equal to 3 and 5. These first results are
evidence that the lazy strategy can be better than the eager approach and
better than the execution of the classifier without attribute selection.

Table 3: Accuracies for the Wine data set

Attributes 1-NN 3-NN 5-NN
Selected Eager Lazy Eager Lazy Eager Lazy

10% (1) 82.6 95.5 82.6 95.5 82.6 95.5
20% (3) 95.5 97.8 94.4 100.0 94.4 100.0
30% (4) 95.5 98.3 93.3 98.9 93.3 98.9
40% (5) 97.2 98.9 93.3 98.9 93.3 98.9
50% (7) 97.8 98.3 96.6 98.3 96.6 98.3
60% (8) 98.9 98.9 96.6 98.3 96.6 98.3
70% (9) 97.2 97.8 94.9 97.8 94.9 97.8
80% (10) 97.2 98.3 94.4 97.2 94.4 97.2
90% (12) 96.6 97.8 96.1 96.6 96.1 96.6

100% (13) 98.3 96.1 96.1

Table 4 presents the results obtained with the data set Heart-Hungarian.
In this experiment, the eager strategy, mainly with number of attributes
limited to 50%, had a better behavior than the lazy strategy. Both strategies
presented the same accuracies when the number of selected attributes is
greater than 60%. Also, with both strategies we are able to obtain better
results than with no attribute selection.

Table 4: Accuracies for the Heart-Hungarian data set

Attributes 1-NN 3-NN 5-NN
Selected Eager Lazy Eager Lazy Eager Lazy

10% (1) 80.3 78.6 80.3 79.3 80.3 79.3
20% (3) 82.0 81.3 84.0 83.0 84.0 83.0
30% (4) 82.7 81.3 83.0 82.7 83.0 82.7
40% (5) 80.6 79.6 81.6 81.0 81.6 81.0
50% (7) 80.6 80.6 83.0 82.7 83.0 82.7
60% (8) 81.0 81.6 82.7 83.3 82.7 83.3
70% (9) 80.3 80.3 83.0 83.0 83.0 83.0
80% (10) 80.3 80.3 82.3 82.3 82.3 82.3
90% (12) 80.3 80.3 82.3 82.3 82.3 82.3

100% (13) 80.3 82.3 82.3
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A third kind of result, shown in Table 5 for the Vowel data set, repre-
sents the cases where the selection of attributes does not contribute to the
classification process. The results for this data set show that neither the lazy
nor the eager strategies were able to outperform the results obtained with-
out any attribute selection. This indicates that all attributes in this data set
contribute to the overall classifier performance. It is worth observing that,
in this experiment, the lower the number of selected attributes the worse is
the accuracy, for both strategies.

Table 5: Accuracies for the Vowel data set

Attributes 1-NN 3-NN 5-NN
Selected Eager Lazy Eager Lazy Eager Lazy

10% (1) 26.5 30.5 26.5 30.5 26.5 30.5
20% (3) 51.6 53.1 50.1 50.9 50.1 50.9
30% (4) 59.7 59.3 52.2 52.9 52.2 52.9
40% (5) 69.9 68.9 59.3 58.0 59.3 58.0
50% (7) 76.5 77.6 64.2 64.6 64.2 64.6
60% (8) 80.1 80.7 69.6 68.1 69.6 68.1
70% (9) 82.7 82.7 71.2 71.2 71.2 71.2
80% (10) 86.3 86.3 74.0 74.0 74.0 74.0
90% (12) 89.8 89.8 78.3 78.1 78.3 78.1

100% (13) 89.8 78.6 78.6

In Table 6, we summarize the results obtained by both eager and lazy
strategies when executed for the 40 UCI data sets, using 1-NN, 3-NN and
5-NN classifiers. For each data set and classifier, we compare the accuracy of
the strategies when we vary the percentage of attributes selected from 10%
to 90% with a regular increment of 10%. The “Lazy” and “Eager” columns
indicate the number of times each strategy obtained the higher predictive
accuracy considering these nine different executions. Superior behavior is
reported by bold-faced values. The “Ties” column represents the number of
ties, that is, when both strategies obtained exactly the same accuracy. The
last row reveals the total sum of best results obtained with each strategy.

As can be observed in the last row of Table 6, regardless of the k value, for
most of the data sets the lazy strategy achieved a greater number of better
results than the eager strategy. When k is equal to 1, the lazy strategy
obtained 220 times the best results against 87 times for the eager strategy,
with 53 ties. For k equal to 3 and 5, the behavior is very similar.

For the data sets Letter, Mol-Bio-Splice, Pendigits and Wine, the lazy
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strategy obtained the best results in all nine tests, regardless of the k param-
eter. For the data sets Chess-kr-vs-kp, Ionosphere, Labor, Primary-Tumor,
Spambase, for at least one value of k, the lazy strategy achieved the best
result in all nine tests. For no combination of data set and parameter k, the
eager strategy was able to beat the lazy strategy in all nine tests.

For k equal to 1, in 28 out of the 40 data sets, the lazy strategy obtained
a number of best results greater than the number of eager best results and
greater than the number of ties. The eager strategy proceeded this way only
7 times. For k equal to 3 and 5, theses numbers of times were again 28 for the
lazy and 7 for the eager strategy, which indicates a regularity in the results
and that the good behavior of the lazy strategy does not greatly depend on
the value of parameter k.

Up to this point, we have compared the strategies considering that they
would select the same number of attributes. In the next analysis, we evaluate
the results in a hypothetical scenario where we would know the best number
of attributes to be selected for each strategy. In Table 7, for each data
set, we report the best accuracies obtained with each attribute selection
strategy considering the nine different selection percentage values. For 1-NN,
3-NN and 5-NN, we present, in the “Eager” and “Lazy” columns, the best
accuracy obtained by each strategy. The number in parentheses represents
the percentage of attributes selected with which this accuracy was obtained.
The “No Sel” columns represent the accuracy obtained when no attribute
selection was executed. For each data set and each k-NN group, the bold-
faced values indicate the best result obtained. In the bottom row of this
table, we indicate the number of times each selection strategy achieved the
best overall result, out of the 40 UCI data sets.
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Table 6: Number of executions where each strategy achieved the best result
using the k-NN classifier

Data set 1-NN 3-NN 5-NN
Eager Lazy Ties Eager Lazy Ties Eager Lazy Ties

anneal 1 5 3 1 5 3 1 5 3
audiology 0 5 4 4 4 1 4 4 1
autos 6 1 2 6 2 1 6 2 1
breast-cancer 4 5 0 3 6 0 3 6 0
breast-w 1 7 1 4 4 1 4 4 1
chess-kr-vs-kp 0 9 0 2 7 0 2 7 0
credit-a 4 5 0 3 6 0 3 6 0
diabetes 3 3 3 4 2 3 4 2 3
flags 7 2 0 6 3 0 6 2 1
glass 0 7 2 0 7 2 0 7 2
heartcleveland 2 4 3 3 3 3 3 3 3
hearthungarian 4 2 3 5 2 2 5 1 3
hepatitis 1 8 0 2 7 0 2 7 0
horse-colic 4 5 0 4 5 0 4 5 0
hypo-thyroid 1 8 0 1 8 0 1 8 0
ionosphere 0 9 0 4 5 0 4 5 0
labor 0 9 0 1 7 1 2 6 1
letter 0 9 0 0 9 0 0 9 0
lymph 3 6 0 2 7 0 2 7 0
mol-bio-promot 4 5 0 4 5 0 4 5 0
mol-bio-splice 0 9 0 0 9 0 0 9 0
mushroom 0 3 6 0 3 6 0 3 6
optdigits 1 6 2 3 5 1 3 5 1
pendigits 0 9 0 0 9 0 0 9 0
postoperative 2 4 3 0 6 3 0 5 4
primary-tumor 3 6 0 0 9 0 0 9 0
solar-flare1 7 2 0 3 6 0 3 5 1
solar-flare2 4 3 2 1 7 1 1 6 2
sonar 7 2 0 2 7 0 2 7 0
soybean-large 1 7 1 0 8 1 0 8 1
spambase 0 9 0 3 6 0 3 6 0
statlog-heart 3 3 3 4 2 3 4 2 3
statlog-segment 1 8 0 1 8 0 1 8 0
statlog-vehicle 2 7 0 2 7 0 2 7 0
thyroid-sick 5 2 2 5 3 1 5 3 1
vote 2 6 1 1 7 1 1 7 1
vowel 2 4 3 3 4 2 3 4 2
waveform-5000 1 3 5 1 3 5 1 3 5
wine 0 9 0 0 9 0 0 9 0
zoo 1 4 4 5 3 1 5 3 1

Totals 87 220 53 93 225 42 94 219 47
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We observe that, in this scenario, regardless of the parameter k, the lazy
strategy tends to achieve greater accuracies than the eager strategy. For k
equal to 1, the lazy strategy achieved the best accuracy 28 times whereas
the eager strategy achieved the best accuracy 21 times. For k equal to 3,
the results were 29 for the lazy strategy and 15 for the eager strategy. And
for k equal to 5, similar results were obtained: 26 for the lazy strategy and
17 for the eager strategy. We note that for just a few of the data sets, the
attribute selection is not useful, that is, for about 10 data sets the executions
without attribute selection – reported in the “No Sel” column – obtained
the best result. Another remarkable result is that for some data sets, like
Wine, Audiology, Hypo-Thyroid and Ionosphere, the maximum accuracy was
obtained with a relatively small number of selected attributes.

In the results presented so far, we have compared accuracies without
taking into account statistical significance. Next, we employ the paired two-
tailed Student’s t-test technique with the goal of identifying which compared
predictive accuracies are actually significantly different.

In the comparisons we conducted before, each predictive accuracy value
was calculated as the average of a 10-fold cross-validation procedure. Now,
we look at the 10 individual results from each fold to apply the paired t-test
analysis. Table 8 presents the result of this statistical analysis. Each row
represents the results obtained by a different application of k-NN, with k
equal to 1, 3 and 5. The second and third columns represent the numbers
reported in the last row of Table 6, which is the number of times each strategy
(eager and lazy) obtained the better accuracy value. In parentheses, we find
the number of times each strategy obtained the better accuracy, considering
a statistical significance with a p-value less than 0.05, which means that
the probability of the difference of performance being due to random chance
alone is less than 0.05. The last column shows the number of cases in which
the two accuracy values were equal. We can observe that the results with the
lazy strategy were again superior to the ones with the eager strategy. For the
1-NN executions, the lazy strategy obtained the best results with statistical
significance 87 times against just 7 times for the eager strategy. For 3-NN
and 5-NN the results are similar and show a better performance of the lazy
strategy.

We also note that after taking into account the statistical significance test,
the lazy strategy achieved an accuracy better or equal to the eager strategy
in 82.5% of the data sets, regardless of the number of attributes selected.
This indicates that selecting the attributes in a lazy way is generally a better
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Table 8: Number of wins of each attribute selection method and number of
statistically significant wins according to a t-test with significance level of
0.05

Classifier Eager Lazy Tie

1-NN 87 (7) 220 (87) 53
3-NN 93 (10) 225 (84) 42
5-NN 94 (8) 219 (78) 47

choice than performing the eager selection in a preprocessing phase.

4.2 Experimental Results with Naive Bayes

Similarly to the experiments with k-NN, the lazy selection strategy was as-
sessed in combination with the Naive Bayes classifier, which is a classification
technique based on the Bayes theorem. The classifier applies this theorem
assuming that the attributes contribute in an independent manner to the
likelihood of the value of the class – and although this premise is not always
accurate, it usually yields reasonable results in practice.

We have incorporated the lazy attribute selection into the eager imple-
mentation of the Naive Bayes classifier available within the Weka tool, called
NaiveBayes. The lazy attribute selection was executed within the algorithm
just before the actual classification takes place. The Naive Bayes predic-
tor considered only the r attributes selected in a lazy manner to compute
its probabilities, for each test instance. In the same manner as in the k-
NN experiments, this implies that for different instances distinct subsets of
attributes were used. The experiments were executed with the default pa-
rameter settings in the Weka tool, using the original Naive Bayes classifier.
No other relevant features were altered to implement the lazy selection.

Table 9 shows the number of times each strategy, either lazy or eager,
achieved a higher accuracy than the other, for the nine executions in which
we varied the percentage of attributes between 10% and 90%, in increments of
10%. As seen in the last row labeled “Totals”, the results show a prevalence
of the lazy strategy over the eager strategy, even though this prevalence is
less pronounced that the one we observed with k-NN.
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Table 9: Experiments with the Naive Bayes classifier

Data set Eager Lazy Ties
anneal 3 4 2
audiology 0 8 1
autos 7 2 0
breast-cancer 7 2 0
breast-w 2 6 1
chess-kr-vs-kp 5 4 0
credit-a 4 5 0
diabetes 4 2 3
flags 6 1 2
glass 2 5 2
heart-cleveland 3 4 2
heart-hungarian 3 1 5
hepatitis 1 7 1
horse-colic 5 4 0
hypo-thyroid 8 1 0
ionosphere 2 7 0
labor 2 4 3
letter 0 9 0
lymph 2 6 1
mol-bio-promoters 6 3 0
mol-bio-splice 9 0 0
mushroom 3 5 1
optdigits 0 8 1
pendigits 0 9 0
postoperative 1 5 3
primary-tumor 1 8 0
solar-flare1 5 4 0
solar-flare2 5 3 1
sonar 2 7 0
soybean-large 1 7 1
spambase 0 9 0
statlog-heart 3 3 3
statlog-segment 1 7 1
statlog-vehicle 1 8 0
thyroid-sick 1 5 3
vote 5 3 1
vowel 4 3 2
waveform-5000 1 3 5
wine 0 8 1
zoo 3 5 1

Totals 118 195 47
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In Table 10 the best accuracies for each selection strategy are presented
for the Naive Bayes classifier, similarly to what was shown in Table 7 for
the k-NN classifier. The lazy strategy achieved the best accuracy in 27 cases
and the eager strategy in 24 cases. These results show that a considerable
number of data sets can benefit from the lazy selection.

Finally, a Student’s t-test was performed for the Naive Bayes results, with
the same parameters used before for the k-NN results, i.e., p = 0.05 with a
paired two-tailed setup. The results are the following: the eager strategy
prevailed 118 times over the lazy strategy, but only 25 times with statistical
significance. The lazy strategy outperformed the eager strategy 195 times,
and from these 80 times with statistical significance. In 47 tests a definitive
tie occurred.

It is worth reporting that the computational cost introduced by the lazy
strategy into the k-NN and Naive Bayes classification procedure is not con-
siderable. The average execution time of the lazy selection procedure for
each instance varied from 0.08 milliseconds (for the Autos data set) to 0.31
milliseconds (for the Lymph data set). This is negligible considering that for
these two data sets the average execution time of the 3-NN classification of an
instance was 1.7 and 10.4 milliseconds. These experiments were performed
on a 2.0 GHz Intel Core 2 Duo CPU 4400 with 2 Gbytes of RAM.

4.3 Predicting the lazy strategy effectiveness

In spite of the promising results showed before, we can see that it is not
always the case that selecting attributes in a lazy fashion is preferable to
executing an eager selection. Therefore, it could be interesting to have a
method for estimating when the lazy strategy is most likely to be useful.

Intuitively, the lazy strategy is more valuable when there is a great vari-
ation in the entropy derived from each different value of an attribute. When
this is the case, some attributes are likely to be important for some of the
instances but not for the others. Therefore, we need to evaluate for each
attribute Aj, 1 ≤ j ≤ n, of a data set D(A1, A2, ..., An, C), the average of the
modulus (absolute value) of the differences between the value Ent(D, Aj)
and each of its values Ent(D, Aj, aji), 1 ≤ i ≤ kj, for each value aji of the
attribute Aj. This average value is then defined by:

V (D, Aj) =
1

kj

∗
kj∑

i=1

[|Ent(D, Aj, aji)− Ent(D, Aj)|]. (5)
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Table 10: Accuracies by the Naive Bayes classifier

Data set Eager Lazy No Sel
anneal 94.9 (80) 96.3 (10) 94.9
audiology 74.3 (40) 76.6 (60) 73.0
autos 81.0 (20) 77.6 (20) 72.7
breast-cancer 73.1 (40) 72.4 (30) 71.7
breast-w 97.6 (90) 97.6 (90) 97.0
chess-kr-vs-kp 89.6 (20) 91.2 (20) 87.7
credit-a 86.7 (70) 86.5 (70) 86.4
diabetes 78.8 (60) 79.0 (60) 78.1
flags 62.9 (60) 61.9 (90) 61.3
glass 74.3 (80) 74.3 (80) 74.3
heart-cleveland 84.5 (20) 84.2 (50) 82.8
heart-hungarian 84.0 (20) 84.0 (50) 84.0
hepatitis 85.8 (50) 86.5 (40) 83.9
horse-colic 85.6 (20) 84.5 (20) 82.1
hypo-thyroid 95.3 (60) 94.8 (80) 95.3
ionosphere 92.0 (50) 92.6 (10) 90.9
labor 98.3 (60) 98.3 (70) 98.3
letter 74.3 (70) 74.7 (70) 74.0
lymph 86.5 (70) 86.5 (80) 86.5
mol-bio-promot 94.3 (10) 93.4 (80) 93.4
mol-bio-splice 96.1 (60) 95.3 (90) 95.5
mushroom 98.8 (10) 99.4 (10) 95.5
optdigits 92.5 (90) 92.5 (70) 92.5
pendigits 87.2 (90) 87.5 (90) 87.8
postoperative 71.1 (20) 71.1 (20) 70.0
primary-tumor 49.6 (80) 50.7 (80) 49.3
solar-flare1 72.8 (30) 72.1 (30) 65.0
solar-flare2 75.2 (30) 75.7 (10) 74.8
sonar 68.3 (10) 71.6 (10) 67.8
soybean-large 89.9 (80) 90.0 (30) 89.9
spambase 90.5 (20) 91.6 (10) 90.2
statlog-heart 84.4 (50) 84.4 (40) 83.0
statlog-segment 91.6 (90) 91.6 (90) 91.6
statlog-vehicle 62.9 (60) 63.0 (70) 62.2
thyroid-sick 97.2 (10) 97.2 (30) 97.0
vote 95.2 (10) 94.3 (10) 90.1
vowel 57.7 (70) 57.7 (70) 52.7
waveform-5000 81.1 (40) 81.1 (40) 80.7
wine 98.9 (90) 100.0 (30) 98.9
zoo 96.0 (80) 96.0 (80) 93.1

Total No. of Wins 24 27 8
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For each data set, we can compute the metric V (D) by taking the average
of the values V (D, Aj) for all attributes Aj. The higher this value, the most
likely it is that the data set D would benefit from the lazy strategy. However,
to define a more specific and appropriate metric, we need to take into account
the number of attributes to be selected. Therefore, for a data set D and a
percentage x of attributes to be selected, we calculate the metric V (D, x) by
the average of the V (D, Aj) values for the set of attributes with the highest
x% values of V (D, Aj). Analogously, the higher the V (D, x) value, the most
likely it is that the data set D would benefit from the lazy strategy when
selecting x% of the attributes.

Figure 1 shows that a high value for this metric does indeed imply a
better confidence in the superiority of the lazy attribute selection. This
analysis is based on all executions of the lazy and eager strategies with the
1-NN classifier, taking as input all the 40 UCI data sets (D) and the variation
of the percentage (x) of selected attributes from 10% to 90%, in increments
of 10%, which represents a total of 360 executions per strategy.

For each threshold value in the horizontal axis the correspondent percent-
age value in the vertical axis, in Curve 1, represents the percentage of the
cases where the lazy strategy achieved higher predictive accuracy than the
eager strategy out of all the 360 cases where the respective value of V (D, x) is
greater than or equal to the corresponding threshold value in the horizontal
axis. In Curve 2, only the comparisons with statistical significance, out of
the 360 cases, are considered in the percentage calculation.
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Figure 1: Evaluation of the V (D, x) metric.
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The leftmost point of the Curve 1 indicates that, for all combinations of
D and x in which V (D, x) ≥ 0 (in all 360 cases) the lazy strategy in about
61.1% of the time (or 220 out of 360 executions) achieved better results than
the eager strategy. When we restrict the experiments to just the data sets D
and value x in which V (D, x) ≥ 0.2 the lazy strategy prevailed 64.9% of the
time (148 out of 228 executions) and for V (D, x) ≥ 0.4, the results indicate
77.3% of prevailing lazy executions (or 34 out of 44 total executions).

The same occurs in the experiments conducted with a statistical signifi-
cance analysis, represented by Curve 2: the higher the value of V (D, x), the
most probable it is that the lazy selection strategy achieves a better result
than the eager strategy.

Similar results were obtained with the 3-NN, 5-NN and Naive Bayes clas-
sifiers, showing that indeed this metric can be used to estimate with more
conviction whether the lazy strategy is able to yield a superior result for a
specific data set, given the percentage of attributes to be selected.

4.4 Experiments with large data sets

The experiments with the UCI data sets revealed that the k-NN and Naive
Bayes classifiers benefit from the lazy attribute selection in most cases.

For these data sets the number of features varies, between 8 and 69, so
we cannot infer from these experiments the behavior of the lazy attribute
selection for data sets with a much larger number of attributes.

In order to evaluate if the lazy selection is scalable and effective on larger
data sets, additional experiments were performed with data sets from the
NIPS 2003 challenge on feature selection (Guyon et al, 2004). This compe-
tition took place in the NIPS 2003 conference, and made available five data
sets to be used as benchmarks for attribute selection methods.

The experiments with these large data sets were performed as follows.
There were three sets of instances per data set – training, validation and
test – and the class label of each instance was provided only for the training
and validation data. These two collections were merged in one data set,
and the cross-validation procedure adopted in the earlier experiments was
also employed for them. Table 11 summarizes the characteristics of each
NIPS data set: name, number of attributes, number of classes and their
distribution, and the total number of instances.

The same procedure to discretize continuous attributes was adopted for
these data sets, except for the Dorothea, which has only binary attributes (0/1).
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Table 11: Data sets from NIPS 2003 Feature Selection Challenge

Data set Attributes Classes Instances Class A Class B

Arcene 10000 2 200 56% 44%
Madelon 500 2 2600 50% 50%
Gisette 5000 2 7000 50% 50%
Dexter 20000 2 600 50% 50%
Dorothea 100000 2 1150 90% 10%

Some irrelevant and random attributes, referred to as “probes” in (Guyon
et al, 2004), are present in these data sets. In many cases, these attributes
were discretized into a single bin by the discretization procedure. When this
happened, we removed the attribute from the data set.

Table 12 shows the number of times each strategy achieved a higher ac-
curacy on these data sets, using the same procedure from the earlier exper-
iments: nine executions with the percentage of attributes selected varying
from 10% to 90%. Again, a major predominance of best results for the lazy
strategy was achieved. Also, the total number of victories taking into account
statistical significance confirmed a higher number of successes with the lazy
selection.

Table 12: Number of executions where each strategy achieved the best result
using the NIPS 2003 large data sets

Data set 1-NN 3-NN 5-NN NB
Eager Lazy Eager Lazy Eager Lazy Eager Lazy

Arcene 4 5 3 6 6 3 0 9
Madelon 3 6 3 6 3 6 3 6
Gisette 0 9 1 8 0 9 0 9
Dexter 0 9 1 8 0 9 0 9
Dorothea 7 2 8 1 9 0 2 7

Totals 14 31 16 29 18 27 5 40
Totals with statistical
significance (p=0.05) 6 10 6 8 5 13 0 22

The best accuracies achieved by each strategy are shown in Table 13.
Each result is summarized for the five data sets, using both the k-NN and
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Naive Bayes classifiers. For each data set and classifier, we compare the ac-
curacy of the strategies when we vary the percentage of attributes selected
from 10% to 90% with a regular increment of 10%. The “Lazy” and “Ea-
ger” rows present the best accuracy obtained by each strategy. The number
in parentheses represents the percentage of attributes selected with which
this accuracy was obtained. The “No Sel” rows represent the accuracy ob-
tained when no attribute selection was executed. For each data set and each
classifier, the bold-faced values indicate the best result obtained.

Similarly to the experiments with the UCI repository, the results with
larger data sets from the NIPS 2003 feature selection challenge have also
presented favorable results for the lazy strategy. For three data sets – Arcene,
Gisette and Dexter – the best overall accuracies were reached by the lazy
strategy. The data set Madelon seems not to benefit from any of the attribute
selection strategies, and the Dorothea data set was the only one for which
the eager approach achieved better accuracy values. These results indicate
that the lazy strategy can lead to a better behavior also for larger data sets.

Table 13: Best predictive accuracies achieved by each strategy using the
NIPS 2003 large data sets

Arcene Madelon Gisette Dexter Dorothea

1-NN Eager 90.0 (80%) 71.9 (90%) 96.7 (80%) 90.2 (50%) 91.5 (10%)
Lazy 92.5 (80%) 72.7 (90%) 97.1 (60%) 93.7 (20%) 90.3 (10%)

No Sel 91.0 73.0 96.8 88.3 90.6

3-NN Eager 87.0 (10%) 72.0 (90%) 96.8 (90%) 91.0 (90%) 91.6 (40%)
Lazy 87.5 (70%) 72.6 (90%) 97.4 (20%) 93.5 (20%) 90.3 (10%)

No Sel 88.0 73.0 96.8 90.2 90.3

5-NN Eager 88.0 (60%) 71.5 (90%) 96.6 (90%) 92.2 (90%) 92.6 (50%)
Lazy 87.0 (60%) 72.4 (90%) 97.2 (10%) 94.0 (20%) 90.3 (10%)

No Sel 87.5 72.3 96.7 91.8 90.3

NB Eager 70.0 (10%) 65.1 (40%) 90.0 (90%) 94.5 (90%) 91.8 (10%)
Lazy 80.5 (20%) 64.2 (20%) 90.3 (30%) 95.2 (20%) 90.6 (20%)

No Sel 67.0 62.8 90.2 94.5 90.0

5 Conclusions

In this paper, we have proposed using a lazy strategy to perform attribute se-
lection for the classification problem. Although our strategy is general, here
we concentrated on a specific version based on entropy ranking and compare
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it with the analogous eager strategy. Our experimental results show that by
postponing the choice of attributes to the moment when a new instance is
ready to be classified, we can in most cases improve the accuracy of classi-
fication, when compared with the attribute selection performed eagerly as a
data preprocessing phase. We have also proposed a metric that can be used
to predict if a specific data set might take advantage of the lazy attribute
selection approach.

The proposed lazy selection strategy is naturally able to work embedded
in lazy classifiers. Thus, it is particularly appropriate for traditional lazy
classification techniques, such as k-NN, for eager techniques that can be
easily implemented in a lazy scenario, such as Naive Bayes, and for lazy
versions of other eager techniques, such as lazy decision trees, lazy associative
classification and lazy rule induction. In an extreme case, one could also
consider using the lazy selection strategy in combination with a traditional
eager technique. When an instance is presented for classification the most
appropriate attributes would be selected in a lazy fashion and then used to
construct a model for that instance using the eager technique. This would be
computationally expensive because a complete model would be constructed
for each instance, but could still be profitable given the potential gain in
predictive accuracy associated with lazy selection as shown in this paper
(and recalling that predictive accuracy is normally considered significantly
more important than computational time in classification).

Even though the entropy is usually a good measure for assessing the
relevance of an attribute, it has some drawbacks that could be avoided by
employing other ranking measures for attribute selection, such as the gain
ratio, chi-square or gini index measures. Therefore, we plan to conduct ex-
periments with other measures in the near future. We also plan as future
work to extend the lazy attribute selection model to filter strategies that
evaluate subsets of attributes instead of weighting them individually, like
Correlation-based Feature Selection (Hall, 2000) and Consistency-based Fea-
ture Selection (Liu and Setiono, 1996). Furthermore, we expect to be able to
apply the lazy idea to a wrapper attribute selection technique, and evaluate
its results and performance.
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