
Ant Colony Algorithms for Constructing

Bayesian Multi-net Classifiers

Khalid M. Salama and Alex A. Freitas
School of Computing, University of Kent, Canterbury, UK.

{kms39,A.A.Freitas}@kent.ac.uk

December 5, 2013

Abstract

Bayesian Multi-nets (BMNs) are a special kind of Bayesian network
(BN) classifiers that consist of several local Bayesian networks, one for
each predictable class, to model an asymmetric set of variable depen-
dencies given each class value. Deterministic methods using greedy local
search are the most frequently used methods for learning the structure of
BMNs based on optimizing a scoring function. Ant Colony Optimization
(ACO) is a meta-heuristic global search method for solving combinatorial
optimization problems, inspired by the behavior of real ant colonies. In
this paper, we propose two novel ACO-based algorithms with two different
approaches to build BMN classifiers: ABC-Minermn

l and ABC-Minermn
g .

The former uses a local learning approach, in which the ACO algorithm
completes the construction of one local BN at a time. The latter uses
a global approach, which involves building a complete BMN classifier by
each single ant in the colony. We experimentally evaluate the performance
of our ant-based algorithms on 33 benchmark classification datasets, where
our proposed algorithms are shown to be significantly better than other
commonly used deterministic algorithms for learning various Bayesian
classifiers in the literature, as well as competitive to other well-known
classification algorithms.

Keywords. Ant Colony Optimization (ACO), Classification, Bayesian
Network Classifiers, Bayesian Multi-nets.

1 Introduction

Bayesian network (BN) classifiers are well-known kind of graphical probabilis-
tic models that aim to perform class prediction by modeling the dependency
relationships between the predictor attributes (variables) in a dataset given the
class variable. To classify a given case, the BN classifier computes the posterior
probability of each available class value, given the values of the attributes of
the case, and then labeling the case with the class having the highest posterior

1

probability [1, 2]. Several Bayesian network classifiers were introduced in the
literature: Näıve-Bayes, Tree Augmented Näıve-Bayes (TANs), Bayesian net-
works Augmented Näıve-Bayes (BANs) and General Bayesian Networks (GBNs)
[3, 2], where a single (probably complex) network structure is built to model the
variable dependencies from the whole dataset. In contrast, a Bayesian Multi-net
(BMN) classifier consists of several local networks, one for each available class
value. Each local Bayesian network in the class-based BMN has a different set
of (in)dependencies amongst the variables with respect to a specific class value,
which promotes the model’s predictive effectiveness and reduces its structural
complexity [2, 4].

Ant Colony Optimization (ACO) [5] is a meta-heuristic typically used for
solving combinatorial optimization problems, inspired by observations of the in-
telligent behavior (in particular, finding the shortest path between two points)
of ant colonies in nature. ACO has been effectively used for learning general-
purpose BNs (rather than BN classifiers) [6, 7, 8, 9], as well as different types
of classification models [10, 11, 12, 13, 14, 15]. However, ABC-Miner (where
“ABC” stands for Ant-based Bayesian Classifier), recently introduced by the au-
thors in [16, 17], is the only algorithm to use Ant Colony Optimization for learn-
ing BN classifiers by constructing a BAN structure with at most k-dependencies
from a dataset. The ABC-Miner algorithm has outperformed conventional de-
terministic algorithms in terms of predictive accuracy [16, 17].

The motivation behind this work is the following. Although learning the
optimal Bayesian network structure from a dataset is NP-hard [18], most of
the algorithms used in the literature for building Bayesian network classifiers
utilize greedy local search and deterministic techniques; while several stochastic
heuristic global search algorithms can be effectively applied to the task of build-
ing high-quality networks in an acceptable computational time. ACO has been
successful in solving several types of data mining problems, including classifica-
tion rule induction [12, 19, 13, 10, 11, 14] and BN classifier structure learning
[16, 17]. Therefore, we carry on exploiting the ACO paradigm and exploring
different techniques for building Bayesian classifiers.

Unlike ABC-Miner [16, 17], which builds a single BAN model, in this pa-
per we propose two novel ACO-based algorithms which build BMN classifiers,
where a different Bayesian network is built for each class label. These two al-
gorithms follow different approaches to build BMN classifiers, and are called:
ABC-Minermn

l and ABC-Minermn
g . The former uses a local learning approach,

in which the ACO algorithm completes the construction of one local BN at a
time. The latter uses a global approach, which involves building a complete
BMN classifier in a single ant trail of the ACO algorithm. We describe all the
elements necessary to tackle our target learning problem using ACO, and exper-
imentally compare the performance of our ACO-based algorithms for building
BMN classifiers with the recently introduced ABC-Miner, with other conven-
tional algorithms for learning BN classifiers used in the literature, and with 3
other types of classification algorithms: rule induction, decision tree construc-
tion and support vector machines. Note that this work is the first to utilize the
ACO meta-heuristic for building class-based BMN classifiers.

2

The structure of the paper is as follows. Section 2 gives a brief overview
of concepts and methods from the relevant areas of Ant colony Optimization,
Bayesian networks and Bayesian multi-net classifiers. In Section 3, we define
the essential elements for applying the ACO meta-heuristics to the problem of
learning BMN classifiers. We propose ABC-Minermn

l that uses a local approach,
and ABC-Minermn

g that uses a global approach for learning BMN classifiers
using ACO algorithms in Sections 4 and 5, respectively. Section 6 discusses our
experimental methodology, while the results and their analysis are presented in
Section 7. Finally, we conclude with some general remarks and provide possible
directions for future research in Section 8.

2 Background

2.1 Ant Colony Optimization

Social insect swarms are distributed systems that, in spite of the simple behavior
of their individuals, produce a group behavior that is able to effectively accom-
plish complex tasks. Inspired by the behavior of natural ant colonies, Dorigo et
al. [5, 20, 21] have defined an artificial ant colony meta-heuristic that can be
applied to solve optimization problems, called ant colony optimization (ACO).
The main idea is to utilize a swarm of simple individuals that use collective
behavior to achieve a certain goal, such as finding the shortest path between a
food source and the nest. ACO algorithms simulate the behavior of real ants
using a colony of artificial ants, which cooperate in finding good solutions to
optimization problems. The outline of the basic ACO procedures is presented
in Algorithm 1.

Algorithm 1 Pseudo-code of basic ACO algorithm.

Begin ACO
ConstructionGraph← Problem definition;
Initialize();
best← ϕ; /* best solution found so far */
repeat

current← ant.ConstructSolution()
ApplyLocalSearch(current)
if Quality(current) > Quality(best) then

best← current;
end if
ant.UpdatePheromone(current);

until termination condition

return best;
End

Each artificial ant creates candidate solutions to the problem at hand. Com-
munication between artificial ants in the colony is performed by depositing

3

pheromone on the part of the search space that was visited while constructing
the solution, indicating its quality, in order to guide the search. The iterative
process of building candidate solutions, evaluating their quality and updating
pheromone values allows an ACO algorithm to converge to near-optimal so-
lutions. In order to apply the ACO meta-heuristic to a given optimization
problem, the following elements should be defined in advance:
– Construction Graph - An appropriate representation of the problem’s
search space that contains the available decision components, with which an
ant can incrementally construct a candidate solution.
– Heuristic Information - Problem-specific knowledge that is associated with
each decision component in the construction graph and influences the choice of
which components will be used for constructing candidate solutions.
– State Transition Formula - A probabilistic transition rule that uses the
heuristic value η and the pheromone amount τ associated with the decision
components for an ant to move in the search space from a state to another (i.e.
selecting a decision component) during the solution construction process.
– Quality Evaluation Function - A problem-specific function by which the
quality of a constructed candidate solution is evaluated for the purpose of
pheromone update. The higher the quality of a solution constructed, the more
pheromone will be deposited on the decision components used in that solution,
which will encourage other ants to select those decision components in future
iterations.
– Pheromone Update Strategy - A formula to be used for pheromone re-
inforcement and evaporation. Pheromone reinforcement is applied on decision
components occurring in the constructed solution in proportion to its quality,
while pheromone evaporation is applied on the whole construction graph to
avoid stagnation and early convergence.
– Local Optimizer - An optional local search procedure to improve the quality
of a constructed solution. This can be performed on each candidate solution, or
just on the best solution among the colony to reduce computational time.

All the aforementioned elements for designing an ACO-based algorithm are
concretely defined later in the context of learning Bayesian multi-net classifiers
in Section 3.

2.2 Bayesian Networks

Bayesian networks are knowledge representation and reasoning tools that model
dependency and independency relationships amongst variables in a specific do-
main [22]. A directed acyclic graph (DAG) is used to model the network struc-
ture G where the nodes represent the domain variables, and the edges between
the nodes represent statistical dependencies between these variables. In addi-
tion, a conditional probability table (CPT) is obtained for each variable with
respect to its parents in the network. The set of CPTs represent the parameters
Θ of the network, which quantifies the dependency relationships between the
variables. A BN(G,Θ) specifies a joint probability distribution over the set of

4

variables X that is formulated in the product form:

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi|Parents(Xi),Θ, G), (1)

Learning a Bayesian network from a dataset (in which the attributes are
referred to as variables) consists of two phases: learning the network structure,
and then learning the parameters of the network. Parameter learning is con-
sidered a relatively straightforward process for any given BN structure with
specified (in)dependencies between variables, since the values of a CPT can be
estimated directly from the data by the relative frequencies of each variable
with respect to its parents. The CPT of variable Xi encodes the likelihood of
each value of this variable given each combination of values of its parents in the
graph G. On the other hand, the aim of network structure learning is to find
the graph G that best fits a given dataset D in terms of P (D|G) This is known
as the scoring-based approach [23, 22]. The algorithm uses a scoring function
that evaluates each G with respect to D, searching for the network structure
that maximizes the value of the scoring function. K2, MDL, KL, BDEu and
several other scoring functions can be used for this task [24, 25, 26].

A recent, very comprehensive review on learning Bayesian networks ap-
proaches and issues is presented by Daly et al. in [22]. For further information
about Bayesian networks, the reader is referred to [25, 23], which also provide
a detailed discussion of the subject.

2.3 Bayesian Multi-net Classifiers

Bayesian Network Classifiers (BNCs) [27, 2, 4] are a special kind of the prob-
abilistic networks, which focus on answering queries about the probability of a
specific node: the class attribute. A Bayesian multi-net (BMN) is composed of
the prior probability distribution of the class node and a set of local Bayesian
networks. Each Local BN corresponds to a value that the class variable can have
[3, 2, 28]. Unlike other types of BNs, a BMN allows different (in)dependencies
relationships amongst variables – given a dataset – to be represented sepa-
rately, with respect to each individual class value, as shown in Figure 1. For
instance, for a given pair of variables Xi and Xj , the actual dependency be-
tween them might be best represented as (Xi → Xj), given one class value, and
as (Xj → Xi) given another class value, and there might be no dependency
between them given yet another class value. Even if the same kind of depen-
dency (with the same direction) is represented in two local BNs for different
class values, it is possible that the precise values of the CPTs associated with
that dependency would be different in the two local BNs, since each one is learnt
from a different data subset (as discussed next). This should lead to a better
modeling for reasoning and class prediction [2].

A BMN classifier is learnt by partitioning the training set D into |C| subsets,
where |C| is the number of values in the domain of the class attribute. Each
subset Dl would contain only the instances labeled by class value l. Then, a

5

general (not a classifier by itself) Bayesian network BNl is built for each class
C = l with X = X1, X2, ..., Xn variables using the Dl subset, to capture the
variable-dependency relationship given the specific l class value. Thus, a BMN
classifier is a set of local BNs {BN1, BN2, ..., BN|C|} that, together with the
prior probability distribution of C, classifies an instance x by choosing the class
C(x) that maximizes the posterior probability, as shown in Equation 2.

C(x) = argmax
∀ l∈C

P (x = x1, x2, ..., xn|BNl)× P (C = l), (2)

P (x = x1, x2, ..., xn|BNl) =
n∏

i=1

P (xi|Pa(Xi), BNl) (3)

According to Equations 2 and 3, in order to classify an instance using a BMN
classifier, we select the class of the local BN that maximizes the probability of
this instance. In other words, we ask each local BN what is the probability
of this instance, and assign the instance with the class of the local BN that
answers with the highest probability, which means that this instance is more
likely to belong to the domain of that class - in terms of the variable-dependency
structure and parameters - than to any other class.

In BMNs, building the local models for each data subset can be performed
as a general BN learning process. A well-known greedy algorithm for learning a
BN structure is Algorithm-B, proposed in [29], which searches for the network
structure that optimizes the value of a scoring metric, such as K2, cross-entropy
or the Kullback distance [2, 30]. Chow-Liu tree Multi-net [2, 4] is a remarkable
algorithm for learning local BNs due to its simplicity and effectiveness. The
algorithm builds a tree-like network structure, based on the mutual informa-
tion between the variables. An extension to the Chow-Liu tree Multi-net was
proposed in [30], which involves maximizing the cross-class divergence. The
Bayesian class-matched multi-net algorithm [31] is another extension that uses
a scoring function based on detection-rejection behavior. The recursive Bayesian
Classifier induction [32] can build multiple local BNs for the same class by fur-
ther dividing its data subset recursively.

Figure 1: A Bayesian multi-net that consists of three different local BNs, one for
each class value. Each local BN has a different network structure that asserts
the variable dependencies in its corresponding class value data subset.

6

2.4 ACO Related Work

Ant Colony Optimization has contributed effectively in tackling the classifica-
tion problem. Parpinelli et al. proposed Ant-Miner [10], the first ant-based
classification algorithm, which learns a set of classification rules of the form: [IF
conditions THEN class]. Several extensions, such as AntMiner+ by Martens et.
al. [12], cAnt-Miner by Otero et al. [19, 13], and multi-pheromone Ant-Miner
by Salama et al. [33, 11, 14, 34] have been introduced in the literature. A recent
survey on Ant-Miner and its related work is presented in [35]. Besides, Ant-
Tree-Miner by Otero et al.[36] and cACDT by Boryczka et al. [37] are recently-
introduced ACO algorithms for building decision trees for classification. Note
that our work also utilizes ant-based algorithms to handle classification prob-
lems, yet with a very different approach: learning Bayesian networks to be used
as classifiers.

Besides, ACO has been employed for learning general -purpose BNs, rather
than classifiers, in several works, including ACO-B by Campos et al. [7],
MMACO by Pinto et al. [38, 9], ACO-E by Daly et al. [39, 8], CHAINACO and
K2ACO by Yanghui et al. [6] and recently HACO-B by Junzhong et al. [40].
These various works are briefly discussed in [17].

However, in the area of Bayesian classification, the authors have recently
introduced ABC-Miner [16] and extended the work in [17], at present the only
algorithm that tackles the classification problem via using ACO for learning a
BN classifier in the structure of a BAN, with at most k-dependencies at each
variable node. The ant-based ABC-Miner algorithm was shown to outperform
other conventional BN classifier learners proposed in the literature in terms
of predictive accuracy, overall, across 25 benchmarking classification datasets
from the well-known UCI dataset repository. For detailed discussion of the
algorithm and it results, the reader is referred to [16, 17]. Note that, unlike the
current work, ABC-Miner learns one BN model on a given dataset to perform
the classification task. Yet, in this work, we use ACO to learn a BMN for a
given dataset, which consists of several local BN models, one for each class value,
which is a different and more elaborated technique for Bayesian classification.

Besides, we have recently introduced an ACO-based algorithm that learns
cluster-based BMNs [41], rather than learning class-based BMNs; the focus of
this current work. Cluster-based BMN refers to partitioning the dataset into
arbitrary data subsets, and learning a local BN classifier for each subset. While
the procedure of ABC-Miner is comparable to the algorithms proposed in our
current work, the ACO clustering-based BMN algorithm [41] is very different for
the following reason. In the current proposed algorithms, ACO is employed for
finding the optimal structure of the local BNs – similar to ABC-Miner, in which
the ACO algorithm optimizes the structure of BAN classifiers. On the other
hand, in [41], ACO is utilized to produce the data clusters, rather than learning
the local BN classifiers, while a simple Näıve-Bayes classifier is constructed for
each data cluster.

7

3 ACO Elements for learning BMN Classifiers

In this work, we are concerned with building the structure of a Bayesian multi-
net. Unlike ABC-Miner that builds a single BAN model to represent the variable
(in)dependency relationships with respect to the class variable, our target is to
build several local Bayesian networks BNl, one for each class value l ∈ C, to
compose a BMN classifier. Each local BNl should model the (in)dependencies
between the input variables (attributes) with respect to its specific class value
l. This approach explicitly encodes asymmetric class-based (in)dependencies
assertions amongst the variables that cannot be represented in the structure of
a single Bayesian network. This in turn aims to improve the predictive power
of the Bayesian model, and simplify its interpretability as well.

The construction of a BMN classifier is carried out using two new ant-based
algorithms, ABC-Minermn

l and ABC-Minermn
g , which utilize two different ap-

proaches. While each approach is described later in a separate section, the
common ACO meta-heuristic elements that we used in our algorithms are pre-
sented in this section. It is important to highlight that one of the most important
elements of any ACO-based algorithm is the function by which the quality of
a constructed candidate solution is evaluated. However, the quality evaluation
functions used for the two proposed algorithms are not the same, since the type
of constructed solution differs from one approach to the other. ABC-Minermn

l

finishes the construction of a general local BN before it proceeds to the next
local BN, while in ABC-Minermn

g , each ant builds a complete BMN classifier at
once. Thus, each algorithm uses a different quality evaluation function, which
will be discussed later in the context of each proposed approach.

3.1 Construction Graph

Similar to ABC-Miner, the decision components in the search space are all the
edges X → Y where X ̸= Y and X,Y belongs to the input attributes of the
data subset Dl. These components (edges) represent the variable (attribute)
dependencies in the candidate local BN constructed by an ant. An ant should
select a good and valid combination of these decision components (variable-
dependency relationships) to construct a candidate solution (BN structure). A
representation of the construction graph for a dataset with five input attributes
(besides the class attribute) is shown in Figure 2.

At the beginning, the pheromone amount is initialized for each decision
component with the same value, given by: 1/TotalEdges, where TotalEdges is
the number of edges associated with a complete graph (with an edge between
every pair of nodes). In addition, the heuristic value for each edge X → Y is
set using the mutual information, which is computed as follows:

I(X,Y |Dl) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(4)

Mutual information is a measure of correlation between two variables. Such
a function is used as the local heuristic information associated with the edges

8

in order to lead the ants during the search to the edges between correlated
variables for building a local BN. Unlike conditional mutual information, used
by ABC-Miner, the calculation of the mutual information in this context is more
accurate with respect to the local BNl. Since the mutual information between
variables is calculated using only subset Dl, which contains only the instances
labeled with class value l, the mutual information is conditioned on the class
value l, which may change between the same two variables in different local
BNs (i.e., different class values). However, the conditional mutual information
between two variables is conditioned on the class variable as a whole and using
the whole dataset, which makes the current approach for calculating the mutual
information more class-based relevant.

Figure 2: Matrix representations of the construction graph for a five-input-
attributes dataset. The elements on the left represent the number of parents
that each variable can have in the network. The decision components on the
right are the edges to build the network structure, each has a current pheromone
amount τ , and heuristic information η.

3.2 State Transition Rule

The selection of the edges is performed according to the following probabilistic
– the standard formula in the ACO literature [5]:

Pij =
[τij(t)]

α · [ηij]β∑I
a

∑J
b [τab(t)]

α · [ηab]β
(5)

In Equation 5, Pij is the probability of selecting the edge i→ j, τij(t) is the
current amount of pheromone associated with edge i→ j at iteration t and ηij
is the heuristic information for edge i→ j . The edge a→ b represents a valid
selection in the set of available edges. An edge a → b is valid to be added in
the local BN being constructed if the following two criteria are satisfied: 1) its
inclusion does not create a directed cycle, 2) the upper limit of kb parents for
the child variable b (discussed in the next subsection) is not exceeded by the
inclusion of the edge. After the ant adds a valid edge to the local BN, all the
invalid edges are eliminated from the construction graph.

9

The exponents α and β are used to adjust the relative emphases of the
pheromone (τ) and heuristic information (η), respectively. Our proposed algo-
rithms adapt the “ants with personality” technique [11]. In other words, some
ants will give more emphases to pheromone information, while others will give
more emphases to heuristic information. The αi and βi parameters are each in-
dependently drawn from a Gaussian distribution centered at 2 with a standard
deviation of 1, as used in [11]. This approach aims to advance exploration and
promote diversity in the colony during the search process.

3.3 k-Parents Selection

In order to build the structure of a Bayesian network, the number of parents
(dependencies) that a node (variable) can have in the network should be specified
firstly. The maximum number of parents parameter is usually fixed for all the
variables in the network, and typically is set to a small value both for the sake
of computational efficiency and to avoid over-fitting.

Instead of having the user selecting the optimum number of dependencies
that a variable in the BN can have (at most k parents for each node), this
selection is carried out by the ants in the ACO algorithm in a self-adaptive
manner. Moreover, we allow each variable to have its own number of parents
selected independently prior to solution construction. As shown in the left side of
Figure 2, the number of dependencies is treated as decision components as well.
The selection of ki value is done probabilistically from a list of available numbers.
The user only specifies the max parents parameter, and all the integer values
from 1 to this parameter are available for the ant to use in the BN classifier
construction. More precisely, if the number of variables is n, the ant would
have n values for the k parents limit, one for each variable, where variable i is
restricted to have (at most) ki parents during the network construction. Later,
the ant updates the pheromone on the value ki (i = 1, 2, ..., n) after solution
creation according to the quality of this BN classifier, which used value ki for
variable i in the process of the solution construction. This pheromone amount
influences the selection probability of this value by subsequent ants, leading to
convergence on a near-optimal value of ki dependencies for each variable i.

3.4 Local Optimization

The best solution tbest constructed amongst the ants in the colony at the current
iteration t undergoes local search, which aims to improve its quality, with respect
to the used quality measure function for each learning approach.

The local search procedure works as follows. It temporarily removes one
edge at a time from the constructed BN, considering edges in the reverse order
of their addition to the BN (i.e. removing first the last edged that was added
to the BN). If this edge removal improves the quality of the BN, this edge is
removed permanently from the BN; otherwise it is added once again. Then it
proceeds to the next edge, and this process is iteratively repeated until all the
edges are tested to be removed from the constructed network and the BN with

10

the highest quality – with respect to the used quality measure – is obtained,
and used for pheromone update.

3.5 Pheromone Update

After the current iteration’s best solution is optimized via local search, pheromone
amounts are updated on the two types of decision components in the construc-
tion graph, i.e. on network edges as well as on the numbers of parents (vari-
able dependencies) to be selected for each node for constructing a BN classifier
structure. Pheromone update is carried out to affect the probability of select-
ing the decision components for building further candidate solutions according
to the quality of the previously constructed ones, and consists of two phases;
pheromone deposit and evaporation.

Concerning pheromone deposit, the pheromone amount is increased on each
decision component (edge i → j) according to the quality of two constructed
solutions: the iteration best tbest and the global best gbest using the following
weighting reinforcement strategy:

τij(t+ 1) =

{
τij(t) + ϕ1.Qtbest(t) if i→ j ∈ tbest
τij(t) + ϕ2.Qgbest(t) if i→ j ∈ gbest

(6)

where ϕ1 and ϕ2 represent the intensity of the pheromone to be deposited in
iteration t according to the quality of the iteration best and global best solutions
respectively, and are calculated as:

ϕ1 =
max iterations− t

max iterations
, ϕ2 =

t

max iterations
(7)

Hence, in early iterations more weight is given to the local best rather than
the global best (as max iterations − t is greater than t). This is applied in
order to improve search diversity. However, as the iterations go on, the qual-
ity of the global best increases, which gains more weight (as t increases and
max iterations− t decreases), leading to convergence towards a good solution.
Note that the two pheromone deposit conditions in Equation 6 are applied on
the same edge if it belongs to both tbest and gbest, and ϕ1 + ϕ2 is always 1 at
any given iteration t.

Pheromone normalization (to simulate evaporation as in [10]) is then ap-
plied to all the τij in the construction graph by dividing each τij over the total
amount of pheromone on the edges in the construction graph. An analogous
normalization is also carried out for the decision components representing the
maximum number of dependencies.

11

4 A Local ACO Approach for Learning BMN
Classifiers

4.1 The ABC-Minermn
l Algorithm Outline

The BMN classifier learning procedure in ABC-Minermn
l is carried out in a

local fashion. The Ant Colony Optimization meta-heuristic is utilized to build,
independently, a local Bayesian network BNl for class value l, using subset Dl

in the training set D which contains only the instances labeled with class value
l. This is repeated for each class value belonging to the domain of the class
variable C. We treat each local process as a separate problem, where a general
Bayesian network is built; each local BN by itself is not a classifier. Nevertheless,
we consider – in quality evaluation – that this local BN will play a part in a
global classification problem solved by the finally produced BMN classifier. The
overall process of ABC-Minermn

l is shown in Algorithm 2.

Algorithm 2 Pseudo-code of ABC-Minermn
l .

Begin
D← training set; BMC ← ϕ;
for l = 1 to |C| do

Dl ← Subset(D, l);
BNl(gbest)← ϕ;
Q(gbest)← 0;
t← 1;
InitializePheromoneAmounts();
InitializeHeuristicV alues();
repeat

BNl(tbest)← ϕ; Q(tbest)← 0;
for i = 1 to colony size do

BNl(i)← ant(i).CreateSolution(Dl);
Q(i)← ComputeQuality(BNl(i),D);
if Q(i) > Q(tbest) then

BNl(tbest)← BNl(i);
Q(tbest)← Q(i);

end if
end for
PerformLocalSearch(BNl(tbest));
UpdatePheromone(BNl(tbest));
if Q(tbest) > Q(gbest) then

BNl(gbest)← BNl(tbest);
Q(gbest)← Q(tbest);

end if
t← t+ 1;

until t = max iterations or Convergence()
append BNl(gbest) to BMC;

end for
return BMC;
End

In essence, each ant(i) in the colony creates a candidate solution BNl(i),
i.e., a local BN, for a given subset Dl. Then the quality of the constructed
solution is evaluated. The best solution BNl(tbest) produced in the colony

12

at iteration t is selected to undergo local search before the ant updates the
pheromone trail according to the quality of its solution Q(tbest). After that,
we compare the iteration best solution BNl(tbest) with the global best solution
BNl(gbest) to keep track of the best solution found so far. This set of steps
is considered an iteration of the repeat − until loop and is repeated until the
same solution is generated for a number of consecutive trials specified by the
conv iterations parameter (used by Convergence() function in Algorithm 2
to test for convergence) or until max iterations is reached. When this loop
terminates, BNl(gbest) is considered the local Bayesian network BNl for class
l, and is appended to the Bayesian multi-net classifier BMC. This process is
repeated to build a local BN for each class value l ∈ C to produce a complete
BMN classifier.

4.2 Local Bayesian Network Construction

In order to create a candidate local BN, each ant starts with an empty BN,
i.e., an edge-less network structure. As shown in Algorithm 3, which shows
the pseudo-code of the BN creation procedure, the ant starts to add edges
(representing variable dependencies) to construct a general Bayesian network.
Unlike ABC-Miner, which starts with a Näıve-Bayes structure to construct a
BAN classifier, the purpose of this procedure is to construct a local BN to be
a part of the overall produced BMN classifier. The selection of the edges is
performed according to the probabilistic state transition formula presented in
Equation 5. After the ant adds a valid edge to the local BN, all the invalid
edges are eliminated from the construction graph. The ant keeps adding edges
to the current solution until no valid edges are available. When the structure of
a candidate local BNl is completely constructed by an ant, the CPTs are learnt
for the network using the data subset Dl. Hence, all the parameters of BNl

are conditioned on the class value l, which makes a local BN in the BMN class
dependent.

Algorithm 3 Pseudo-code of local BN creation procedure.

Begin CreateBN
BNl(i)← ϕ;
Dl ← INPUT ;
k list← ant(i).SelectMaxParentsForEachV ariable();
while GetV alidEdges() ̸= ϕ do

{i→ j} ← anti.SelectEdgeProbablistically();
BNl(i)← BNl(i) ∪ {i→ j};
RemoveInvalidEdges(BNl(i), kj);

end while
BNl(i).LearnParameters(Dl);
return BNl(i);
End

13

4.3 Evaluating the Quality of a Candidate Local BN

Since the target of the algorithm is to build a classifier, the scoring function,
which the algorithm tries to maximize, should be related to the classification
effectiveness of the produced model. This reasoning was behind selecting clas-
sification accuracy as the scoring function by which a candidate solution is
evaluated in ABC-Miner.

However, we should recall that each ant in the ABC-Miner algorithm creates
a complete BN classifier, which can be evaluated directly using that scoring
function. On the other hand, since ABC-Minermn

l learns each local BN in the
multi-net separately, classification accuracy cannot be used as a scoring function,
because each ant builds a general Bayesian network BNl (not a classifier) for
just a subset Dl of the datasetD for class value l. Consequently, the constructed
local BNl cannot be evaluated as a classifier until all the local BNs are learnt
and the complete multi-net is composed. Hence, a candidate solution (local BN)
built by an ant must be evaluated as a general Bayesian network.

One of the most used scoring metrics for building and evaluating Bayesian
networks is K2, a metric based on uniform prior scoring [26]. It is used by
Algorithm-B [29] and ACO-B [7], which are a greedy and an ant-based algo-
rithm, respectively, aiming to build conventional Bayesian networks. However,
ABC-Minermn

l does not aim to build a BN as a final product; it builds a local
BN to serve as a part of a classifier. On the other hand, some discriminative
scoring functions, such as Kullback distance for cross-class divergence, have been
used to learn BMNs [30]. However, in such cases, the algorithm starts with a
complete initial structure for all the local BN in the BMN (unlike the current
local approach), and incrementally modifies this structure using a greedy search.
This complete structure can be evaluated as a classifier using a discriminative
objective function.

Accordingly, the target is to learn a local BNl that not only maximizes
the marginal likelihood P (Dl|BNl) of the data subset Dl, but also minimizes
the marginal likelihood P (D − Dl|BNl) of the other part of the training set.
This aims to increase the discriminative power of the local BNs with respect to
the class values, so that an instance xl labeled by class value l would have a
high probability in Bayesian network BNl and a low probability in other local
BNs when the multi-net is used as a classifier. Therefore, we propose a scoring
function – by which a candidate local BN is evaluated – based on maximizing
the difference between average marginal log-likelihood of positive and negative
instances of the whole training set, given the local BN currently constructed.
The function is formulated as follows:

Q(BNl) =

∑n
i=1 LL(x

+
i |BNl)

|x+|
−

∑m
j=1 LL(x

−
j |BNl)

|x−|
(8)

where LL(x|BN) is the log-likelihood of the instance x given BN, x+ are the
instances in the training set labeled by class value l – whose local BN is currently
being constructed by the algorithm, x− are the instances in the training set not
labeled by class value l, |x+| is the number of instances labeled by l, |x−| is the

14

number of instances not labeled by l. Although only the subset Dl is used to
learn the CPT of a local BNl (as shown in Algorithm 3), the whole training
set D is used to evaluated the quality of the constructed local BN (as shown
in Algorithm 2) to perform the discrimination between instances belonging and
not belonging to class l. This is performed by calculating the difference between
the average of the (log)likelihood of the instances belonging to the current class
and the instances belonging to the other classes (as shown in Equation 8), and
the optimization objective is to maximize this difference.

5 A Global ACO Approach for Learning BMN
Classifiers

5.1 The ABC-Minermn
g Algorithm Outline

The global approach algorithm works in a different way from its local counter-
part. A single run of the Ant Colony Optimization meta-heuristic is utilized to
build the whole solution; each ant builds a complete Bayesian multi-net (BMN)
classifier as a candidate solution at once. This is accomplished by building a
candidate local BNl for each class value l ∈ C in each single ant trial, appending
them to the BMN classifier, then evaluating the resulting final BMN classifier
as a whole. Unlike ABC-Minermn

l , which has to completely finish building the
local Bayesian network BNl before starting to build BNl+1, in ABC-Minermn

g

each ant builds the whole BMN classifier BMC (including all the local BNs)
before performing evaluation and pheromone update.

As shown in Algorithm 4, each ant(i) in the colony creates a candidate
solution BMC(i), i.e. a complete BMN classifier. Then the quality of the
constructed BMN is evaluated. The best solution BMC(tbest) produced in the
colony at iteration t is selected to undergo local search before the ant updates the
pheromone trail according to the quality of its solution Q(tbest). After that, we
compare the iteration’s best solution BMC(tbest) with the global best solution
BMC(gbest) to keep track of the best solution found so far. This is iteratively
repeated until the termination conditions are met. At the end, BMC(gbest) is
considered the final solution.

In order to apply such a global approach using ACO, we use several con-
struction graphs for a given dataset. More precisely, we use |C| construction
graphs, one for each class value l ∈ C. Pheromone amounts and heuristic infor-
mation (using mutual information) initialization are performed on all the used
construction graphs. As for solution creation, an ant uses each construction
graph to build each local BN, one for each class value. Once an ant creates
the structure of the local BNl and learns its parameters, it proceeds to the
construction of the local BNl+1, using the (l+1)th construction graph and the
Dl+1 subset of the data for parameter learning. The ant proceeds until it con-
structs a local BN for all the class values, to compose a complete BMN classifier.
At this point, the quality of the complete solution can be evaluated, and the
pheromone is updated on all construction graphs according to the quality of the

15

Algorithm 4 Pseudo-code of ABC-Minermn
g .

Begin
D← training set; t← 1;
BMC(gbest)← ϕ; Q(gbest)← 0;
InitializePheromoneAmounts();
InitializeHeuristicV alues();
repeat

BMC(tbest)← ϕ; Q(tbest)← 0;
for i = 1 to colony size do

BMC(i)← ϕ;
for l = 1 to |C| do

Dl ← subset(D, l);
BNl(i)← ant(i).CreateSolution(Dl);
append BNl(i) to BMC(i);

end for
Q(i)← ComputeQuality(BMC(i),D);
if Q(i) > Q(tbest) then

BMC(tbest)← BMC(i);
Q(tbest)← Q(i);

end if
end for
PerformLocalSearch(BMC(tbest));
UpdatePheromone(BMC(tbest));
if Q(tbest) > Q(gbest) then

BMC(gbest)← BMC(tbest);
Q(gbest)← Q(tbest);

end if t← t+ 1;
until t = max iterations or Convergence()
return BMC(gbest);
End

16

constructed BMN classifier. Then a subsequent ant can perform a new solution
construction trial. Figure 3 shows a diagram that compares the local and the
global approaches for building a BMN classifier.

Figure 3: The two proposed ACO approaches for building a BMN classifier for
a 3-class dataset: (a) the local approach, where each local BN is constructed
at a time and the best local BN constructed over n iterations for each class are
merged at the end to compose the final BMN, and (b) the global approach, where
a complete candidate BMN is constructed at each iteration and the best BMN
constructed over n iterations is the final solution. The diagram is simplified by
assuming that the size of the colony is 1; only one solution is constructed at
each iteration.

17

5.2 Evaluating the Quality of a Candidate BMN

The quality of a candidate BMN classifier is evaluated directly (as a classifier)
using the accuracy measure, as a conventional measure of classification perfor-
mance, which is computed as follows:

Accuracy =
|Correctly Classified Cases|

|Training Set|
(9)

Note that the use of classification accuracy as a solution quality evaluation
function is valid in ABC-Minermn

g , similar to ABC-Miner, since in both algo-
rithms the constructed candidate solution represents a classifier, which can be
evaluated using any measure of classification performance. This is in contrast
to the case in ABC-Minermn

l , which builds a general Bayesian network as a
candidate solution for a local BN in the BMN classifier.

6 Experimental Methodology

6.1 Comparative Evaluations

We compare the predictive accuracy of our proposed ant-based algorithms for
learning BMN classifiers with our previously introduced ABC-Miner that learns
BAN classifiers, as well as three other widely used Bayesian classifiers, namely
Näıve-Bayes, Tree Augmented Näıve-Bayes (TAN) and General Bayesian Net-
work (GBN). TAN allows a node in a BN to have one parent, besides the class
variable. This produces a tree-like structure BN. Unlike the other BN classifier
learners, a GBN treats the class variable as an ordinary node; it builds a gen-
eral BN, finds the Markov blanket of the class node and uses it as a Bayesian
classifier [2].

A variation of the Chow-Liu (CL) tree algorithm [3] is used for build-
ing TANs, as follows. First, it computes the conditional mutual information
I(X,Y |C) between each pair of variables X and Y given class variable C. Then
it builds a complete undirected graph connecting all the input variables to find
the maximum weighted spanning tree from the graph, where the weight of edge
X → Y is annotated with I(X,Y |C). After that, it chooses a root variable and
sets the direction of all edges to be outwards of it. Finally, it adds one edge
from the class node to each of the other variables to complete a TAN classifier.

As for the construction of GBNs, Algorithm-B [29] is used to build a general
Bayesian network. The algorithm utilizes a greedy search to optimize the K2
scoring function for the Bayesian network. Then, the Markov blanket of the
class node is extracted from the BN to be used as a classifier.

As for BMN algorithms, we compared our algorithms to Chow-Liu tree
Multi-net (CL-Tree MN) [4]. This algorithm builds a tree-like network structure,
one for each class value, using the mutual information between the variables,
by finding the maximum weighted spanning tree as in CL-tree algorithm [4]. In
addition, we implemented BMN-K2, which uses a greedy hill-climbing (GHC)

18

approach to learn local Bayesian networks for the BMN classifiers. That is,
for each local BN in the BMN, the algorithm starts with an empty (edge-less)
network. Then the algorithm searches for the edge that leads to the maximum
increase in the quality of the BN classifier being constructed according to the
K2 scoring function. Table 1 presents the main properties of the used Bayesian
classification algorithms.

Table 1: Summary of the BN classification algorithms used in the experiments.

Algorithm Type Search Strategy Output Optimization

Näıve-Bayes Determ. - NB -

CL-Tree Determ. Max. Spanning Tree TAN Cond. Mut. Info.

Algorithm-B Determ. Greedy Hill Clim. GBN K2 Function

CL-Tree MN Determ. Max. Spanning Tree. BMN Mut. Info.

BMN-K2 Determ. Greedy Hill Clim. BMN K2 Function

ABC-Miner Stoch. Ant Colony Optim. BAN Predictive Acc.

ABC-Minermn
l Stoch. Ant Colony Optim. BMN Likelihood Diff.

ABC-Minermn
g Stoch. Ant Colony Optim. BMN Predictive Acc.

Besides the Bayesian algorithms, we compare our proposed ACO algorithms
with three well-known classification algorithms: JRip, J48 (the WEKA tool’s
implementation of Ripper and C4.5, respectively), and SVM [42]. JRip is a
classification rule induction algorithm, which learns a classification model that
consists of a list of classification rules. J48 builds classification decision trees,
where the internal nodes are the input attribute values of the dataset, and the
leaf nodes are the classes to be predicted. An SVM maps the cases into a higher-
dimensional feature space and then finds the best hyperplane for separating cases
of different classes – where the best hyperplane is the one with the greatest
possible margin (a gap separating cases of different classes in the data space).
SVMs has the disadvantage of producing “black-box” models that can hardly
be interpreted by users [42, 43].

6.2 Experiment Setup

The experiments were carried out using stratified 10-fold cross validation [42].
For the stochastic ACO-based algorithms, we run each algorithm 10 times –
using a different random seed to initialize the search each time – for each cross-
validation fold. In the case of the deterministic algorithms, each is run just once
for each fold.

The parameter configuration used in our experiments is shown in Table 3.
Note that the max iterations parameter refers to the maximum number of
iterations used to build a single local BN in the ABC-Minermn

l algorithm. The

19

Table 2: Parameter settings of ABC-Minermn used in experiments.

Parameter Value

max iterations 100

colony size 10

conv iterations 15

max parents 3

value of this parameter is multiplied by the number of class values when used
with ABC-Minermn

g . On the other hand, for the BMN-K2 greedy algorithms,
we refer to max iterations as the maximum number of solution evaluations
that the algorithm performs during the hill-climbing search to build a single
local BN. It is set to 1000, which is equal to the value of max iterations

multiplied by colony size used for our stochastic ant-based algorithms. For
the sake of fair comparison, we limit each algorithm to the same fixed number
of solution evaluations to construct the BN classifier. However, the maximum
number might not be utilized completely; ACO-based algorithms might only use
a smaller number of iterations if they converged earlier and the greedy-based
algorithms might also stop earlier if they get stuck in a local optimum. Note
that, the results for ABC-Miner in the current experiments are slightly different
than its results in [17] because here we used different parameter settings and
different training/testing set folds.

Unlike our ant-based algorithms, the number of parents (k-dependencies)
must be specified for Algorithm-B and BMN-K2. We set it to 3, which is the
maximum number of parents used in our ACO algorithm, where the number
of parents is selected dynamically at each iteration (see Section 4.3). In our
experiments, we used WEKA [42] implementations for Rippper (JRip), J48
(J48), and SVM (SMO), with its default parameter settings.

6.3 Datasets

The performance of ABC-Minermn
l and ABC-Minermn

g was evaluated using 33
public-domain datasets from the University of California at Irvine UCI dataset
repository [44]. The main characteristics of the datasets, such as number of
cases, number of predictor attributes and number of classes are shown in Table 3.
For the BN classification algorithms, datasets having continuous attributes were
discretized in a pre-processing step, using the well-known J48-Disc algorithm
[42], applied to the training sets. For the other algorithms, the original datasets
with real-valued attributes were used.

20

Table 3: Description of datasets used in the experiments.

Dataset Cases Attributes Classes

abalone 4177 8 29

balance scale 625 4 3

breast cancer (wisconsin) 286 9 2

car evaluation 1,728 6 4

chess (rook vs. pawn) 3,196 36 2

contraceptive method choice 1,473 9 3

statlog credit (australian) 690 14 2

statlog credit (german) 1,000 20 2

dermatology 366 33 6

ecoli 336 8 8

glass 214 10 7

hayes-roth 160 4 3

heart (cleveland) 303 12 3

heart (statlog) 270 13 2

hepatitis 155 19 2

ionosphere 351 34 2

iris 150 4 3

lung cancer 32 56 3

monks 432 6 2

mushrooms 8,124 22 2

nursery 12,960 8 5

parkinsons 197 23 2

page Blocks classification 5,473 10 5

pima diabetes 768 8 2

post-operative patient 90 8 3

segmentation 2,310 19 7

soybean 307 35 19

SPECT heart 267 22 2

tic-tac-to 958 9 2

voting records 435 16 2

wine 178 13 3

yeast 1,484 8 10

zoo 101 17 7

21

7 Computational Results and Analysis

7.1 Predictive Accuracy Results

Table 4 reports the mean and the standard error (mean ± standard error) of
the predictive accuracy values obtained by 10-fold cross validation for the 33
datasets, where the highest accuracy for each dataset is shown in bold face.
The last row shows the average rank of each algorithm in terms of predictive
accuracy. The average rank for a given algorithm g is obtained by first comput-
ing the rank of g on each dataset individually. The individual ranks are then
averaged across all datasets to obtain the overall average rank. Note that the
lower the value of the rank, the better the algorithm.

According to the results in Table 4, our proposed ACO-based algorithm for
learning BMNs using a global approach, ABC-Minermn

g , obtained the best over-
all rank in terms of predictive accuracy of 2.9, and achieved the best predictive
results in 13 datasets out of 33. SVM came in the second place by obtaining 3.2
as an overall rank, and achieved the best predictive results in 10 datasets. Our
proposed ACO-based local approach for learning BMNs, ABC-Minermn

l , came
in the third place with overall rank of 3.6, and achieved the best predictive re-
sults in 6 datasets. J48 and JRip came in fourth and the fifth place, respectively,
by obtaining 5.2 and 6.5 overall rank, respectively, achieved the best result in 5
and 7 datasets, respectively.

22

T
a
b
le

4
:
P
re
d
ic
ti
v
e
ac
cu

ra
cy

%
(m

ea
n
±
st
a
n
d
a
rd

er
ro
r)

re
su
lt
s.

D
a
ta

se
t

N
ä
ıv
e
-B

C
l-
tr
e
e

A
lg
o
-B

C
l-
tr
e
e
M

N
B
M

N
-K

2
A
B
C
-M

in
e
r

A
B
C

m
n

l
A
B
C

m
n

g
J
R
ip

J
4
8

S
V
M

a
b
l

8
6
.1

±
0
.6

8
7
.2

±
0
.6

8
8
.3

±
0
.2

8
1
.2

±
0
.2

8
8
.3

±
0
.2

8
5
.6

±
0
.2

8
9
.0

±
0
.2

8
9
.1

±
0
.2

9
2
.6

±
0
.9

9
2
.6

±
0
.6

8
9
.1

±
0
.6

b
a
l

9
1
.2

±
0
.8

8
4
.4

±
0
.9

8
5
.6

±
0
.6

8
4
.7

±
0
.7

8
2
.1

±
0
.9

8
4
.7

±
0
.7

8
4
.7

±
0
.7

8
5
.6

±
0
.6

7
7
.6

±
1
.8

8
0
.2

±
1
.2

8
8
.4

±
0
.9

b
c
w

9
2
.1

±
0
.9

9
5
.4

±
0
.9

9
3
.8

±
0
.9

9
5
.7

±
0
.9

9
5
.7

±
0
.9

9
5
.4

±
0
.9

9
7
.2

±
0
.6

9
7
.5

±
0
.9

9
4
.7

±
2
.6

9
5
.1

±
1
.2

9
7
.7

±
0
.9

c
a
r

8
5
.3

±
0
.9

9
3
.6

±
0
.6

8
6
.2

±
0
.9

9
0
.6

±
0
.6

9
2
.8

±
0
.6

9
7
.2

±
0
.3

9
8
.6

±
0
.3

9
8
.6

±
0
.3

9
0
.6

±
2
.6

9
4
.3

±
3
.1

9
4
.1

±
0
.9

c
h
e
s
s

8
8
.2

±
1
.2

9
2
.5

±
1
.2

8
9
.8

±
0
.9

9
3
.1

±
0
.9

9
2
.5

±
0
.9

9
7
.6

±
0
.9

9
5
.5

±
0
.6

9
8
.4

±
0
.6

9
8
.1

±
0
.8

9
8
.4

±
3
.1

9
5
.1

±
2
.8

c
m
c

5
2
.2

±
1
.2

5
6
.4

±
1
.2

5
4
.6

±
1
.2

5
7
.9

±
0
.6

5
8
.2

±
0
.6

6
6
.4

±
0
.6

6
6
.4

±
0
.9

6
6
.7

±
0
.9

6
0
.1

±
0
.3

6
4
.2

±
1
.2

6
0
.2

±
2
.2

c
r
d
-
a

7
7
.5

±
1
.2

8
5
.1

±
0
.9

8
5
.7

±
0
.9

8
6
.8

±
0
.6

8
6
.1

±
0
.6

8
6
.8

±
0
.9

8
8
.4

±
0
.9

9
0
.6

±
1
.2

8
5
.7

±
0
.3

9
1
.9

±
0
.3

8
5
.5

±
1
.6

c
r
d
-
g

7
5
.6

±
0
.9

7
3
.7

±
1
.2

7
5
.6

±
1
.2

7
4
.2

±
0
.9

7
3
.2

±
0
.9

7
3
.7

±
0
.9

7
7
.6

±
0
.9

7
9
.5

±
0
.6

7
3
.2

±
2
.4

7
5
.7

±
0
.6

7
5
.2

±
0
.6

d
r
m

9
6
.2

±
0
.6

9
7
.8

±
0
.9

9
7
.2

±
0
.9

9
7
.2

±
0
.6

9
7
.2

±
0
.6

9
8
.6

±
0
.4

9
8
.6

±
0
.4

9
8
.6

±
0
.4

9
4
.8

±
0
.6

9
6
.1

±
2
.2

9
7
.2

±
0
.8

e
c
o
l
i

8
6
.5

±
1
.2

8
4
.2

±
1
.2

8
2
.6

±
1
.4

8
5
.0

±
1
.2

8
5
.2

±
0
.9

8
7
.4

±
0
.6

8
7
.4

±
0
.6

8
7
.5

±
0
.4

8
4
.3

±
0
.4

8
5
.7

±
0
.9

8
7
.6

±
2
.2

g
l
a
s
s

7
4
.2

±
1
.2

7
8
.4

±
0
.9

8
0
.7

±
0
.9

8
0
.7

±
0
.9

7
9
.3

±
0
.9

8
2
.6

±
1
.2

8
3
.1

±
0
.9

8
2
.4

±
1
.2

7
5
.7

±
0
.9

8
2
.2

±
0
.6

8
2
.6

±
0
.9

h
a
y

8
0
.0

±
2
.8

7
7
.9

±
3
.1

8
3
.1

±
3
.5

8
3
.3

±
1
.4

8
2
.0

±
2
.8

8
0
.2

±
3
.1

8
3
.6

±
2
.6

8
2
.6

±
2
.6

8
4
.2

±
2
.6

8
3
.3

±
0
.9

8
1
.6

±
0
.2

h
r
t
-
c

6
2
.7

±
2
.2

6
8
.8

±
2
.5

6
6
.1

±
2
.2

7
0
.5

±
0
.9

6
8
.8

±
2
.2

7
3
.8

±
3
.1

7
4
.7

±
2
.6

7
7
.5

±
2
.2

5
7
.1

±
2
.6

7
0
.9

±
0
.6

7
2
.6

±
0
.3

h
r
t
-
s

8
3
.4

±
2
.2

8
3
.3

±
1
.8

8
1
.5

±
1
.6

8
4
.2

±
3
.5

8
3
.6

±
1
.6

8
5
.6

±
1
.2

8
6
.8

±
0
.8

8
8
.1

±
1
.6

7
6
.6

±
0
.8

7
5
.5

±
0
.9

8
4
.1

±
2
.4

h
e
p

7
1
.9

±
1
.6

7
8
.0

±
1
.6

6
7
.3

±
2
.1

7
7
.8

±
1
.2

7
2
.7

±
1
.4

7
7
.8

±
1
.2

7
8
.0

±
1
.6

7
7
.8

±
1
.2

7
2
.7

±
1
.4

6
8
.9

±
1
.2

7
4
.2

±
1
.6

i
o
n
o

8
2
.6

±
0
.6

9
0
.7

±
0
.9

9
0
.7

±
0
.6

9
2
.1

±
2
.2

9
2
.1

±
0
.6

9
4
.5

±
0
.3

9
4
.3

±
0
.3

9
5
.6

±
0
.6

9
2
.8

±
0
.3

9
3
.1

±
0
.6

9
4
.3

±
0
.6

i
r
i
s

9
6
.2

±
1
.5

9
4
.2

±
1
.8

9
2
.9

±
0
.8

9
4
.8

±
2
.2

9
4
.2

±
0
.8

9
6
.2

±
0
.6

9
6
.2

±
0
.3

9
6
.2

±
0
.3

9
5
.6

±
0
.3

9
5
.0

±
1
.2

9
6
.6

±
0
.4

l
u
n
g

7
2
.5

±
2
.8

7
5
.4

±
2
.2

6
3
.2

±
2
.8

7
0
.1

±
1
.6

6
6
.6

±
2
.2

7
4
.8

±
2
.2

7
5
.4

±
2
.4

7
5
.7

±
2
.4

5
8
.7

±
2
.4

7
5
.7

±
0
.6

6
9
.3

±
0
.8

m
o
n
k

6
1
.6

±
0
.6

5
8
.8

±
0
.6

6
1
.6

±
0
.9

6
0
.9

±
0
.6

6
2
.7

±
0
.9

6
1
.8

±
0
.9

6
2
.9

±
0
.6

6
3
.1

±
0
.6

6
1
.4

±
0
.6

6
2
.2

±
0
.6

6
3
.3

±
0
.9

m
u
s
h

9
5
.8

±
0
.4

9
8
.2

±
0
.6

9
6
.1

±
0
.9

9
8
.4

±
0
.8

9
8
.2

±
0
.2

9
8
.8

±
0
.6

9
9
.8

±
0
.4

9
9
.8

±
0
.9

1
0
0
.
±

0
.4

1
0
0
.
±

0
.8

1
0
0
.
±

0
.6

n
u
r
s

9
0
.1

±
0
.9

9
4
.3

±
0
.9

9
2
.7

±
1
.2

9
5
.1

±
2
.2

9
4
.2

±
0
.6

9
8
.0

±
0
.9

9
8
.9

±
0
.8

9
8
.9

±
0
.8

9
6
.5

±
0
.8

9
7
.1

±
0
.6

9
3
.2

±
0
.9

p
a
r
k

8
4
.5

±
2
.5

9
1
.7

±
1
.8

8
4
.5

±
2
.1

9
2
.1

±
1
.9

8
8
.9

±
1
.8

9
5
.8

±
1
.6

9
6
.1

±
1
.6

9
6
.4

±
2
.1

9
8
.5

±
1
.4

9
6
.2

±
1
.6

9
8
.2

±
1
.5

p
b
c

9
3
.5

±
0
.9

9
6
.1

±
0
.6

9
5
.6

±
0
.6

9
6
.1

±
0
.9

9
5
.9

±
0
.8

9
6
.5

±
0
.6

9
6
.8

±
0
.6

9
7
.6

±
0
.6

9
7
.4

±
0
.4

9
8
.2

±
0
.6

9
8
.7

±
0
.6

p
i
m
a

7
5
.4

±
1
.2

7
7
.8

±
1
.5

7
6
.2

±
1
.5

7
6
.5

±
1
.2

7
8
.9

±
1
.9

7
8
.9

±
1
.9

7
7
.6

±
1
.4

7
7
.6

±
1
.4

7
9
.9

±
1
.9

7
9
.5

±
1
.6

7
5
.7

±
1
.2

p
o
p

6
8
.2

±
0
.6

6
4
.1

±
0
.6

6
6
.6

±
2
.5

6
5
.5

±
0
.2

6
9
.8

±
0
.9

7
4
.3

±
0
.9

7
3
.1

±
0
.6

7
6
.9

±
0
.4

7
1
.1

±
0
.9

7
1
.1

±
0
.6

7
2
.2

±
0
.9

s
e
g

9
1
.6

±
0
.8

9
4
.8

±
0
.6

9
4
.1

±
0
.8

9
5
.0

±
0
.6

9
5
.5

±
0
.4

9
5
.5

±
0
.6

9
5
.5

±
0
.6

9
6
.3

±
0
.8

9
4
.7

±
0
.9

9
6
.3

±
0
.9

9
7
.8

±
0
.6

s
o
y

9
1
.4

±
1
.2

9
5
.6

±
1
.2

9
3
.2

±
0
.6

9
5
.6

±
0
.6

9
5
.2

±
1
.2

9
5
.6

±
1
.2

9
5
.6

±
0
.9

9
6
.4

±
1
.2

9
1
.5

±
0
.6

9
5
.1

±
0
.8

9
7
.6

±
1
.2

S
P
E
C
T

7
3
.7

±
0
.8

7
2
.1

±
0
.9

7
4
.0

±
1
.2

7
5
.5

±
1
.2

7
5
.5

±
1
.2

7
9
.5

±
0
.8

7
8
.1

±
0
.8

8
0
.9

±
0
.6

7
6
.7

±
0
.9

7
4
.4

±
0
.6

7
8
.5

±
0
.8

t
t
t

7
0
.3

±
0
.3

7
6
.6

±
0
.3

7
4
.3

±
0
.9

7
8
.1

±
0
.9

7
8
.4

±
0
.6

8
6
.4

±
0
.3

9
0
.4

±
0
.6

9
1
.2

±
0
.3

9
7
.8

±
0
.6

8
5
.7

±
1
.2

9
6
.3

±
0
.3

v
o
t

9
0
.3

±
0
.9

9
2
.1

±
0
.9

9
0
.3

±
0
.6

9
2
.8

±
0
.6

9
4
.1

±
1
.2

9
4
.6

±
1
.2

9
4
.7

±
1
.2

9
5
.8

±
1
.4

9
6
.5

±
0
.9

9
6
.3

±
0
.9

9
5
.8

±
1
.2

w
i
n
e

9
5
.6

±
1
.2

9
7
.3

±
0
.9

9
7
.3

±
0
.6

9
7
.3

±
0
.6

9
7
.3

±
0
.9

9
8
.4

±
1
.5

9
8
.5

±
0
.9

9
8
.5

±
0
.9

9
7
.6

±
0
.6

9
5
.8

±
1
.2

9
8
.9

±
1
.5

y
e
a
s
t

5
9
.7

±
1
.5

6
1
.2

±
1
.2

6
0
.2

±
0
.9

6
2
.6

±
0
.9

6
2
.1

±
1
.2

6
2
.6

±
0
.8

6
3
.2

±
1
.2

6
3
.8

±
0
.9

6
3
.8

±
1
.2

6
4
.2

±
1
.2

6
4
.6

±
0
.8

z
o
o

9
4
.2

±
0
.6

9
7
.4

±
0
.3

9
5
.1

±
0
.6

9
7
.4

±
0
.6

9
7
.4

±
0
.3

9
8
.0

±
0
.1

9
8
.0

±
0
.1

9
8
.0

±
0
.1

9
4
.2

±
0
.8

9
6
.1

±
0
.8

9
7
.5

±
0
.1

R
a
n
k

9
.2

7
.6

8
.7

6
.8

7
.1

4
.6

3
.6

2
.9

6
.5

5
.2

3
.2

23

Table 5 shows the critical values’ results of the statistical significance tests ac-
cording to the non-parametric Friedman test with Holm’s post-hoc test [45, 46],
which is used to evaluate multiple algorithms on multiple datasets [47], with re-
spect to our two proposed algorithms: ABC-Minermn

l and ABC-Minermn
g . We

performed the Friedman test using the freely available Java program suggested
by Garcia et al. in [46], which applies the test with two different statistical sig-
nificance levels: α = 0.05 and α = 0.1. The values shown are the adjusted Holm
p-values, where a double underlined valued indicates that a result is significant
at 5% level, and a single underlined value indicates that a result is significant
at 10% level.

Table 5: The non-parametric Friedman statistical test results with Holm’s post-
hoc test.

Algorithm ABC-Minermn
l ABC-Minermn

g

Näıve-Bayes 5.4E-11 1.3E-14

CL-Tree 2.13E-6 3.3E-9

Algorithm-B 4.8E-9 2.4E-12

CL-Tree MN 0.0011 7.06E-6

BMN-K2 3.3E-4 1.59E-6

ABC-Miner 1.926 0.0958

JRip 0.0016 1.1E-5

J48 0.0795 0.0493

SVM 2.999 1.0044

7.2 Model Simplicity Results

Table 6 reports the model size results, in terms of the number of edges, of the
models produced by the Bayesian classification algorithms, as the average of
the 10-fold cross validation experiments. Note that the results reported for the
BMN learning algorithms represent the average number of edges for a single
local BN in the constructed BMN for a given dataset. The number of local BNs
produced equals the number of the classes, which is shown in the last column of
Table 6 for each dataset. Note also that for GBN, we report the class Markov
blanket size, whilst for TAN and ABC-Miner we report the number of edges
only between the input variables in the network, without counting the edges
between the class and the input variables. The last row in the table shows the
average result for the model sizes over all the datasets.

As shown in Table 6, TAN, as expected, produce the smallest BN models
in general, since the number of parents in a TAN is restricted to one (besides
the class parent whose edges are not counted), thus a TAN structure contains
n-1 edges, where n is the number of the attributes in the dataset. This is

24

Table 6: Model size (mean ± standard error) results in terms of number of
edges.
Dataset TAN GBN TAN-MN BMN-K2 ABC-Miner ABCmn

l ABCmn
g classes

abl 7.0 ± 2.3 18.9 ± 3.5 7.0 ± 2.2 15.4 ± 1.5 19.5 ± 3.6 16.4 ± 2.6 16.8 ± 3.5 29

bal 4.0 ± 2.3 3.7 ± 2.5 3.2 ± 1.1 2.4 ± 3.2 2.8 ± 1.3 2.4 ± 3.6 2.1 ± 3.9 3

bcw 8.0 ± 2.1 18.7 ± 2.7 8.0 ± 3.2 24.5 ± 2.3 31.0 ± 1.8 22.6 ± 3.4 16.1 ± 2.5 2

car 5.0 ± 1.5 13.6 ± 3.5 5.0 ± 3.6 6.7 ± 3.2 11.5 ± 1.1 9.8 ± 1.1 5.5 ± 3.2 4

chess 35.0 ± 3.2 63.4 ± 2.6 35.0 ± 2.5 51.8 ± 2.3 69.7 ± 3.4 55.2 ± 2.7 47.5 ± 2.5 2

cmc 8.0 ± 3.5 20.6 ± 2.4 8.0 ± 3.5 19.8 ± 3.7 21.9 ± 1.3 17.8 ± 3.8 19.3 ± 1.2 3

crd-a 13.0 ± 3.8 17.4 ± 2.3 13.0 ± 3.2 24.4 ± 2.4 18.6 ± 1.5 22.5 ± 2.4 16.8 ± 1.1 2

crd-g 19.0 ± 3.8 34.6 ± 1.4 19.0 ± 2.5 38.5 ± 1.3 39.8 ± 1.7 36.7 ± 2.2 32.2 ± 3.4 2

drm 32.0 ± 1.4 22.5 ± 3.5 32.0 ± 1.8 22.1 ± 1.7 25.4 ± 3.1 17.6 ± 1.1 21.8 ± 3.4 6

ecoli 7.0 ± 2.3 5.6 ± 1.1 7.0 ± 1.8 8.5 ± 2.4 7.6 ± 3.3 8.1 ± 3.2 6.1 ± 3.3 8

glass 9.0 ± 2.8 8.2 ± 1.7 9.0 ± 1.2 7.8 ± 2.7 8.5 ± 3.4 6.9 ± 2.4 6.4 ± 1.1 7

hay 3.0 ± 2.3 2.8 ± 2.5 3.0 ± 1.1 1.9 ± 3.2 2.5 ± 1.3 2.2 ± 3.6 1.8 ± 3.8 3

hrt-c 11.0 ± 2.3 21.8 ± 3.8 11.0 ± 1.6 20.9 ± 3.3 22.5 ± 3.3 21.9 ± 1.5 17.8 ± 2.7 3

hrt-s 12.0 ± 3.2 22.6 ± 3.3 12.0 ± 3.1 18.9 ± 2.3 24.4 ± 1.2 21.8 ± 2.1 15.5 ± 2.7 2

hep 15.0 ± 2.3 24.8 ± 1.2 15.0 ± 3.6 26.8 ± 2.7 26.9 ± 1.6 23.4 ± 1.4 21.2 ± 3.2 2

iono 33.0 ± 2.7 31.2 ± 3.8 33.0 ± 1.4 32.7 ± 2.5 41.8 ± 2.3 29.6 ± 3.7 31.3 ± 3.1 2

iris 3.0 ± 1.8 3.2 ± 2.7 3.0 ± 1.6 1.9 ± 3.4 1.9 ± 3.4 1.7 ± 3.1 0.8 ± 1.7 3

lung 55.0 ± 2.3 38.6 ± 1.5 55.0 ± 3.2 20.8 ± 2.5 41.5 ± 2.2 22.6 ± 3.3 18.8 ± 1.7 3

monk 5.0 ± 2.4 15.8 ± 3.5 5.0 ± 1.2 12.8 ± 2.6 11.2 ± 3.4 6.8 ± 1.7 10.4 ± 3.5 2

mush 21.0 ± 2.7 29.7 ± 2.5 21.0 ± 3.1 22.4 ± 2.1 36.4 ± 2.1 28.7 ± 1.1 19.6 ± 3.5 2

nurs 7.0 ± 1.4 10.5 ± 2.6 7.0 ± 3.2 11.9 ± 3.3 10.2 ± 3.5 8.6 ± 3.4 6.2 ± 3.5 5

park 22.0 ± 2.1 9.4 ± 3.4 22.0 ± 2.7 13.2 ± 2.3 8.8 ± 1.7 12.5 ± 1.2 9.1 ± 3.5 2

pbc 9.0 ± 1.4 25.6 ± 3.2 9.0 ± 3.7 20.5 ± 3.3 24.9 ± 1.1 18.2 ± 3.3 22.5 ± 2.8 5

pima 8.0 ± 1.4 14.2 ± 2.2 8.0 ± 1.8 18.6 ± 1.3 10.5 ± 1.8 15.7 ± 2.4 8.9 ± 2.5 2

pop 7.0 ± 1.2 13.4 ± 2.7 7.0 ± 3.7 15.9 ± 2.3 11.7 ± 1.3 14.7 ± 3.2 7.8 ± 1.5 3

seg 18.0 ± 3.3 28.8 ± 1.4 18.0 ± 3.6 30.8 ± 3.7 32.9 ± 1.4 28.4 ± 1.4 26.2 ± 3.2 7

soy 34.0 ± 3.1 21.7 ± 1.6 34.0 ± 1.8 21.9 ± 2.4 18.4 ± 1.4 20.8 ± 1.6 14.6 ± 1.6 19

SPECT 21.0 ± 2.6 19.6 ± 2.1 21.0 ± 3.6 22.8 ± 1.4 21.1 ± 1.5 20.4 ± 2.3 18.8 ± 2.8 2

ttt 8.0 ± 2.5 20.2 ± 2.1 8.0 ± 2.6 19.8 ± 3.6 18.7 ± 3.7 16.5 ± 2.3 19.2 ± 2.3 2

vot 15.0 ± 1.7 25.5 ± 3.2 15.0 ± 2.7 24.1 ± 1.1 27.3 ± 3.5 24.6 ± 2.6 22.7 ± 2.3 2

wine 12.0 ± 1.2 7.3 ± 1.4 12.0 ± 1.1 5.8 ± 3.8 6.8 ± 3.7 6.1 ± 2.1 4.5 ± 1.7 3

yeast 7.0 ± 3.1 8.6 ± 3.6 7.0 ± 1.1 10.5 ± 1.5 10.7 ± 1.4 8.4 ± 1.1 8.2 ± 1.3 10

zoo 16.0 ± 3.3 2.5 ± 1.4 16.0 ± 1.3 2.1 ± 1.2 2.4 ± 3.7 2.1 ± 2.7 1.7 ± 2.3 7

Avg. 15.4 19.41 15.4 18.3 20.9 17.6 15.5

25

also shown in CL-Tree MN, which produces a local tree structure for each class
value. The reason why in some cases the ACO-based algorithm produces smaller
models is due to the local search procedure that might remove edges, so that
the number of the edges left is less than n-1. We can also see that, overall,
each local BN produced by ABC-Minermn

l and ABC-Minermn
g is smaller than

the BAN models produced by ABC-Miner and GBN. However, note that the
former two algorithms produce several local BNs, as many as the class values in
the dataset, whilst the latter two algorithms produce only one model. On the
other hand, comparing our proposed ACO algorithms to the BMN-K2 that also
learns BMNs, we see that, overall, the ACO algorithms construct smaller local
BNs.

7.3 Computational Time Results

Running time results are shown in Table 7. The (10-folds average) running
time (in seconds) of each algorithm in each dataset is reported. Besides, the
ratio of the running time of each algorithm to the ABC-Miner algorithm (as a
baseline) is shown in the corresponding column with ”ratio” header. The last
row in the table reports the average ratio of the running time of each algorithm
to ABC-Miner across all the datasets.

As shown in Table 7, the ACO ABC-Minermn
l algorithm took less computa-

tional time, overall, compared to ABC-Miner, since it achieved on average about
79% of the running time of ABC-Miner. The global approach ABC-Minermn

g

algorithm, however, took about the double of the computational time of the
ABC-Miner algorithm. BMN-K2, which uses a greedy hill-climbing (GHC) ap-
proach to build a BMN, took less computational time compared to Algorithm-B,
which also uses GHC but builds a single BN. CL-tree MN, which learns local
tree structures in the BMN, obtained the best running time results.

7.4 Discussion

According to the predictive accuracy results (shown in Table 4), algorithms
that learn BMN classifiers outperform the corresponding algorithms that learn
BN classifiers. This can be observed when comparing three pairs of algorithms.
First, our proposed ACO algorithms, ABC-Minermn

l and ABC-Minermn
g , which

learn BMN classifiers, obtained overall better results than their corresponding
version, ABC-Miner, which learns BAN classifiers. Second, CL-tree MN that
learns BMNs with local tree structures obtained overall better results than CL-
tree that learns a single TAN classifier. Third, BMN-K2, which uses a greedy
search to maximize the K2 scoring function in building BMNs, obtained overall
better results than Algorithm-B, which also uses a greedy search to maximize
the same scoring function, yet to build a single GBN.

As for the results of the statistical significance tests with respect to the pre-
dictive accuracy (shown in Table 5), both of our proposed algorithms are statis-
tically better than the other conventional Bayesian classification algorithm with
a significance level of 5%. ABC-Minermn

g , which utilizes the global approach in

26

Table 7: Running time (in seconds) results.

Dataset CL-Tree MN Algo-B BMN-K2 ABCmn
l ABCmn

g ABC
time ratio time ratio time ratio time ratio time ratio time

abl 110 0.01 2200 0.12 1700 0.09 21000 1.17 39000 2.17 18000

bal 20 0.01 2105 0.96 2300 1.05 2700 1.23 3200 1.45 2200
bcw 35 0.02 2360 1.18 1300 0.65 1700 0.85 4800 2.4 2000

car 30 0.03 700 0.7 850 0.85 800 0.8 4300 4.3 1000

chess 590 0.02 8410 0.23 6900 0.19 24000 0.65 30000 0.81 37000

cmc 75 0.01 2100 0.39 2200 0.41 3100 0.57 16400 3.04 5400

crd-a 20 0.01 2105 0.96 2300 1.05 2700 1.23 3200 1.45 2200

crd-g 35 0.01 2365 0.53 1400 0.31 3700 0.82 9100 2.02 4500

drm 25 0.01 1041 0.37 1200 0.43 2600 0.93 7500 2.68 2800

ecoli 10 0.01 100 0.07 130 0.09 1000 0.67 2100 1.4 1500

glass 10 < 0.01 789 0.16 500 0.1 4500 0.9 8200 1.64 5000

hay 5 0.02 20 0.07 15 0.05 200 0.67 500 1.67 300

hrt-c 20 < 0.01 260 0.06 240 0.06 4300 1.02 9500 2.26 4200

hrt-s 20 < 0.01 385 0.09 330 0.07 3600 0.8 8000 1.78 4500

hep 30 0.12 780 3.12 640 2.56 200 0.8 850 3.4 250
iono 15 0.01 1000 0.37 850 0.31 2200 0.81 7300 2.7 2700

iris 1 0.01 10 0.1 15 0.15 70 0.7 220 2.2 100

lung 1 0.04 20 0.8 5 0.2 15 0.6 35 1.4 25

monk 70 0.02 995 0.23 570 0.13 1200 0.28 14600 3.4 4300

mush 180 0.01 4040 0.27 9000 0.6 12000 0.8 28000 1.87 15000

nurs 90 0.01 5520 0.65 6500 0.76 7000 0.82 18200 2.14 8500

park 25 0.01 789 0.38 600 0.29 2500 1.19 3900 1.86 2100

pbc 850 0.02 3800 0.11 3700 0.11 30500 0.87 54000 1.54 35000

pima 20 0.01 2105 0.96 2300 1.05 2700 1.23 3200 1.45 2200

pop 1 < 0.01 25 0.04 65 0.09 500 0.71 600 0.86 700
seg 260 0.01 4100 0.15 5400 0.19 21000 0.75 55000 1.96 28000

soy 25 0.02 500 0.38 620 0.48 700 0.54 4100 3.15 1300

SPECT 20 < 0.01 4600 0.96 2360 0.49 4100 0.85 6500 1.35 4800

ttt 25 0.01 4290 1.65 4800 1.85 2900 1.12 5600 2.15 2600

vot 35 0.01 1841 0.45 1200 0.29 3200 0.78 6700 1.63 4100

wine 30 0.12 780 3.12 640 2.56 200 0.8 850 3.4 250

yeast 35 0.01 720 0.24 950 0.32 2200 0.73 6300 2.1 3000

zoo 10 0.04 105 0.42 120 0.48 100 0.4 350 1.4 250

Avg. Ratio 0.02 0.51 0.46 0.79 2.09

27

learning BMNs, is statistically better than ABC-Miner with significance level
of 10%. Both ABC-Minermn

l and ABC-Minermn
g are statistically better than

JRip with significance level of 5%. ABC-Minermn
l is statistically better than

J48 with significance level of 10% and ABC-Minermn
g is statistically better than

J48 with significance level of 5%.
Concerning the comparison of the results with Support Vector Machines

(SVMs), broadly speaking, SVMs often obtain higher predictive accuracies than
other types of classification algorithms, although this is not true for all types
of datasets (as shown in Table 4). In our experiments, ABC-Minermn

g obtained
a better predictive accuracy rank than SVM, although the difference was not
statistically significant (see Table 5). In addition, the classifier built by an SVM
has the disadvantage of being in general a “black box” from the perspective of
users - i.e., the output of an SVM algorithm can hardly be interpreted by users.
By contrast, BN classifiers produce a graphical model of the dependencies be-
tween variables that can be directly interpreted by users, which is an advantage
in many application domains. For a review of the importance of comprehensible
classification models, see [43, 48].

Regarding the comprehensibility and the user interpretability of the con-
structed classification model, comparing the BMNs constructed by CL-Tree
MN, BMN-K2, ABC-Minermn

l , and ABC-Minermn
g to the BANs constructed

by ABC-Miner is controversial. On one hand, a BAN is one single model that
describes the whole domain, while a BMN consists of multiple local models, one
for each class value, which can be argued to add overhead in the overall classifier
interpretation. On the other hand, each local BN in a BMN is simpler and easier
to interpret, compared to a single BAN. Moreover, having different class-based
local BNs can enrich the analysis of the application domain by finding which
attribute dependencies are common to all classes and which dependencies are
specific to each class. Hence, more insight into the domain can be potentially
gained by the user of the model.

In terms of the algorithm running time, ABC-Minermn
l takes somewhat less

computational time compared to ABC-Miner, as shown in Table 7, where, on
average over the used 33 datasets, it took 0.79 of the time used by ABC-Miner.
The reason is that ABC-Minermn

l learns simpler BNs compared to ABC-Miner.
This is attributed to several facts, as follows. First, the data used for learning
a local BN in the BMN classifier is a subset of the training set. In addition,
the number of probabilities (CPT size for each variable) to be calculated for
each variable in the local BN is smaller in the BMN classifier. Moreover, the
convergence to a good solution is faster while learning local BNs. This makes
the overall time for building a BMN less than a BAN. The reason that ABC-
Minermn

g has a longer running time than ABC-Miner (about the double as shown
in Table 7) is that ABC-Minermn

g takes more iterations to converge than ABC-
Minermn

l and ABC-Miner. This is because the solution created in one iteration
of ABC-Minermn

g is more complex as it contains decision components for all
the local BNs that compose a BMN, compared to ABC-Minermn

l in which the
solution has only decision components for one local BN, and compared to ABC-
Miner in which the solution has only decision components for one BN classifier.

28

Therefore, it is less likely that the colony will converge fast to solutions with
a large number of decision components such as in the global approach, since
the number of combinations of decisions components is larger compared to the
local approach and ABC-Miner. However, ABC-Minermn

g compensates for this
by achieving the best predictive accuracy results.

One important remark to be mentioned regarding the computational time
is that both ABC-Minermn

l and ABC-Minermn
g increase the opportunities for

algorithm parallelization, by comparison with ABC-Miner. In other words,
since in ABC-Minermn

l each local BN is learnt independently, the creation of
the local BNs can be performed simultaneously without any inter-dependency.
As for ABC-Minermn

g , in a given iteration ants in each class-based construction
graph can construct their local BNs simultaneously; however, the algorithm
must wait until all the ants in the current iteration finish constructing all the
local BNs to build a BMN and proceed to the next iteration. In either way,
this parallelization can have a significant positive impact on the computational
efficiency of the algorithms.

8 Concluding Remarks

In this paper, we have proposed two new ACO algorithms for learning BMN
classifiers: ABC-Minermn

l , which utilizes a local approach in the learning pro-
cess, and ABC-Minermn

g , which uses a global approach in the learning process.
A novel BN quality measure was also introduced for ABC-Minermn

l , so that
each local BN is evaluated according to the difference in the Log-Likelihoods of
cases with positive and negative classes. Empirical results in terms of predic-
tive accuracy showed that our new algorithms significantly outperformed our
previously introduced ACO algorithm for learning BAN classifiers, as well as
significantly outperforming both BMN-K2 (a greedy search-based algorithm for
learning BMNs) and the well-known Näıve-Bayes, CL-tree for learning TANs,
CL-tree for learning BMNs, and Algorithm-B for learning GBNs. In addition,
our proposed algorithms have been shown to be very competitive to other well-
known classification algorithms: JRip, J48 and SVM. The running time results
showed that ABC-Minermn

l reduces the computational time compared to ABC-
Miner. Moreover, the algorithm’s search strategy makes it suitable for paral-
lelization, which can have a significant impact on the reduction of the running
time.

As a future work, we would like to explore the effect of using different mea-
sures to evaluate the quality of the constructed local BNs in ABC-Minermn

l

and to evaluate the constructed BMN classifiers in ABC-Minermn
g by each ant

in the colony before pheromone update. Probability-based measures, such as
Bayesian Information Reward (BIR) and Kullback-Leibler (KL) divergence can
be employed in the training phase, while the area under the Receiver Operating
Characteristic (ROC) and the Precision Recall (PR) curves can be used for the
classifier evaluation in the testing phase.

29

References

[1] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
2nd ed. Addison Wesley, 2005.

[2] N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and
P. Smyth, “Bayesian Network Classifiers,” Machine Learning, vol. 29, pp.
131–163, 1997.

[3] J. Cheng and R. Greiner, “Comparing Bayesian Network Classifiers,” in
15th Annual Conference on Uncertainty in Artificial Intelligence. San
Francisco, CA, USA: Morgan Kaufmann, 1999, pp. 101–108.

[4] ——, “Learning Bayesian Belief Network Classifiers: Algorithms and Sys-
tem,” in 14th Biennial Conference of the Canadian Society on Computa-
tional Studies of Intelligence: Advances in Artificial Intelligence. London,
UK: Springer, 2001, pp. 141–151.

[5] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA,
USA: MIT Press, 2004.

[6] Y. Wu, J. McCall, and D. Corne, “Two Novel Ant Colony Optimization
Approaches for Bayesian Network Structure Learning,” in IEEE Congress
on Evolutionary Computation (CEC). New York, NY, USA: IEEE Press,
2010, pp. 1–7.

[7] L. M. de Campos, J. M. Fernandez-Luna, J. A. Gamez, and J. M. Puerta,
“Ant Colony Optimization for Learning Bayesian Networks,” International
Journal of Approximate Reasoning, vol. 31, no. 3, pp. 291–311, 2002.

[8] R. Daly and Q. Shen, “Learning Bayesian Network Equivalence Classes
with Ant Colony Optimization,” Journal of Artificial Intelligence Research
(JAIR), vol. 35, pp. 391–447, 2009.

[9] P. C. Pinto, A. Nägele, M. Dejori, T. A. Runkler, and Ao, “Using a Local
Discovery Ant Algorithm for Bayesian Network Structure Learning,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 4, pp. 767–779,
2009.

[10] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an
ant colony optimization algorithm,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 4, pp. 321–332, 2002.

[11] K. Salama, A. Abdelbar, and A. A. Freitas, “Multiple Pheromone Types
and Other Extensions to the Ant-Miner Classification Rule Discovery Al-
gorithm.” Swarm Intelligence, vol. 5, no. 3-4, pp. 149–182, December 2011.

[12] D. Martens, M. D. Backer, R. Haesen, J. Vanthienen, M. Snoeck, and
B. Baesens, “Classification with ant colony optimization.” IEEE Transac-
tions on Evolutionary Computation, vol. 11, pp. 651–665, 2007.

30

[13] F. Otero, A. A. Freitas, and C. Johnson, “Handling continuous attributes
in ant colony classification algorithms,” in IEEE Symposium on Computa-
tional Intelligence in Data Mining (CIDM 2009). New York, NY, USA:
IEEE Press, 2009, pp. 225–231.

[14] K. Salama, A. Abdelbar, F. Otero, and A. A. Freitas, “Utilizing multiple
pheromones in an ant-based algorithm for continuous-attribute classifica-
tion rule discovery.” Applied Soft Computing, vol. 13, no. 1, pp. 667–675,
2013.

[15] J. Smaldon and A. A. Freitas, “A new version of the ant-miner algorithm
discovering unordered rule sets,” in Genetic and Evolutionary Computation
Conference (GECCO’06). ACM Press, 2006, pp. 43–50.

[16] K. Salama and A. A. Freitas, “ABC-Miner: an Ant-based Bayesian Classi-
fication Algorithm,” in 8th International Conference on Swarm Intelligence
(ANTS’12), ser. LNCS 7461. Berlin: Springer, 2012, pp. 13–24.

[17] ——, “Learning Bayesian Network Classifiers Using Ant Colony Optimiza-
tion,” Swarm Intelligence, vol. 7, no. 2-3, pp. 229–254, 2013.

[18] D. Chickering, M. Geiger, and D. Heckerman, “Learning Bayesian Net-
works is NP-Hard,” Advanced Technologies Division, Microsoft Corpora-
tion, Technical Report, 1994.

[19] F. Otero, A. A. Freitas, and C. Johnson, “cAnt-Miner: an Ant Colony Clas-
sification Algorithm to Cope with Continuous Attributes,” in Ant Colony
Optimization and Swarm Intelligence (ANTS’08), ser. LNCS, no. 5217.
Berlin: Springer, 2008, pp. 48–59.

[20] M. Dorigo and T. Stützle, The Ant Colony Optimization Metaheuristic:
Algorithms, Applications, and Advances. New York, NY, USA: Springer,
2003, vol. 57.

[21] M. Dorigo, G. M. Caro, and L. M. Gambardella, “Ant Algorithms for
Discrete Optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

[22] R. Daly, Q. Shen, and S. Aitken, “Review: Learning Bayesian Networks:
Approaches and Issues,” Knowledge Engineering Reviews, vol. 26, no. 2,
pp. 99–157, 2011.

[23] D. Heckerman, Studies in Computational Intelligence: Innovations in
Bayesian Networks. Berlin: Springer, 2008, vol. 156, ch. 3: A Tutorial on
Learning with Bayesian Networks., pp. 33–82.

[24] G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of
Probabilistic Networks from Data,” Machine Learning, vol. 9, no. 4, pp.
309–347, 1992.

31

[25] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian Net-
works: The Combination of Knowledge and Statistical Data,” Machine
Learning, vol. 20, no. 3, pp. 197–243, 1995.

[26] S. Yang and K.-C. Chang, “Comparison of Score Metrics for Bayesian Net-
work Learning,” IEEE Transactions on Systems, Man, and Cybernetics -
Part A, vol. 32, no. 3, pp. 419–428, 2002.

[27] R. Kelner and B. Lerner, “Learning Bayesian network classifiers by risk
minimization,” International Journal of Approximate Reasoning, vol. 53,
no. 2, pp. 248–272, 2012.

[28] D. Geiger and D. Heckerman, “Knowledge Representation and Inference
in Similarity Networks and Bayesian Multinets,” Artificial Intelligence,
vol. 82, no. 2, pp. 45–74, 1996.

[29] W. Buntine, “Theory Refinement on Bayesian Networks,” in 17th Confer-
ence on Uncertainty in Artificial Intelligence. San Francisco, CA, USA:
Morgan Kaufmann, 1991, pp. 52–60.

[30] K. Huang, I. King, and M. Lyu, “Discriminative Training of Bayesian
Chow-Liu Multinet Classifiers,” in International Joint Conference on Net-
works, vol. 1. New York, NY, USA: IEEE Press, 2003, pp. 484–488.

[31] Y. Gurwicz and B. Lerner, “Bayesian Class-Matched Multinet Classifier,”
in International Conference on Structural, Syntactic, and Statistical Pat-
tern Recognition (IAPR’6). Berlin: Springer, 2006, pp. 145–153.

[32] P. Langley, “Induction of Recursive Bayesian Classifiers,” in European Con-
ference on Machine Learning (ECML). Berlin: Springer, 1993, pp. 153–
164.

[33] K. Salama and A. Abdelbar, “Extensions to the Ant-Miner Classification
Rule Discovery Algorithm,” in 7th International Conference on Swarm In-
telligence (ANTS’10), ser. LNCS, no. 6234. Berlin: Springer, 2010, pp.
167–178.

[34] ——, “Exploring Different Rule Quality Evaluation Functions in ACO-
based Classification Algorithms,” in IEEE Swarm Intelligence Symposium.
Piscataway, NJ, USA: IEEE Press, 2011, pp. 1–8.

[35] D. Martens, B. Baesens, and T. Fawcett, “Editorial survey: swarm intelli-
gence for data mining,” Machine Learning, vol. 82, no. 1, pp. 1–42, 2011.

[36] F. Otero, A. A. Freitas, and C. Johnson, “Inducing Decision Trees with
an Ant Colony Optimization Algorithm,” Applied Soft Computing, vol. 12,
no. 11, pp. 3615–3626, 2012.

[37] U. Boryczka and J. Kozak, “Ant Colony Decision Trees,” in 4th Interna-
tional Conference on Computational Collective Intelligence: Technologies
and Applications (ICCCI’11). Berlin: Springer, 2010, pp. 4373–382.

32

[38] P. C. Pinto, A. Nägele, M. Dejori, T. A. Runkler, and J. M. C. Sousa,
“Learning of Bayesian Networks by a Local Discovery Ant Colony Al-
gorithm,” in IEEE World Congress on Evolutionary Computation (CEC
2008). New York, NY, USA: IEEE Press, 2008, pp. 2741–2748.

[39] R. Daly and Q. Shen, “Using Ant Colony Optimization in Learning
Bayesian Network Equivalence Classes,” in UK Workshop on Computa-
tional Intelligence (UKCI). Palo Alto, CA, USA: AAAI Pres, 2006, pp.
111–118.

[40] J. Ji, R. Hu, H. Zhang, and C. Liu, “A Hybrid Method for Learning
Bayesian Networks based on Ant Colony Optimization,” Applied Soft Com-
puting, vol. 11, pp. 3373–3384, 2010.

[41] K. Salama and A. A. Freitas, “Clustering-based Bayesian Multi-net Clas-
sifier Construction with Ant Colony Optimization,” in IEEE Congress on
Evolutionary Computation (IEEE CEC) (2013). New York, NY, USA:
IEEE Press, 2013, pp. 3079–3086.

[42] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, 3rd ed. San Francisco, CA, USA: Morgan Kaufmann,
2010.

[43] A. A. Freitas, D. Wieser, and R. Apweiler, “On the importance of compre-
hensible classification models for protein function prediction,” IEEE/ACM
Trans. on Computational Biology and Bioinformatics, vol. 7, no. 1, pp.
172–182, 2010.

[44] A. Asuncion and D. Newman, “UCI Machine Learning Repository.
URL:http://www.ics.uci.edu/ mlearn/MLRepository.html,” 2007.

[45] J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data Sets,”
Journal of Machine Learning Research, vol. 1, no. 7, pp. 1–30, 2006.

[46] S. Garca and F. Herrera, “An Extension on ”Statistical Comparisons of
Classifiers over Multiple Data Sets” for all Pairwise Comparisons,” Journal
of Machine Learning Research, vol. 9, pp. 2677–2694, 2008.

[47] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Classifica-
tion Perspective. Cambridge University Press, 2011.

[48] D. Marteens, J. Vanthienen, W. Verbeke, , and B. Baesens, “Performance of
Classification Models from a User Perspective.” Decision Support Systems,
vol. 51, no. 4, pp. 782–793, 2011.

33

