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Abstract—Coping with uncertainty is a very challenging
issue in many real-world applications. However, conventional
classification models usually assume there is no uncertainty in
data at all. In order to fill this gap, there has been a growing
number of studies addressing the problem of classification
based on uncertain data. Although some methods resort to
ignoring uncertainty or artificially removing it from data, it has
been shown that predictive performance can be improved by
actually incorporating information on uncertainty into classifi-
cation models. This paper proposes an approach for building an
ensemble of classifiers for uncertain categorical data based on
biased random subspaces. Using Naive Bayes classifiers as base
models, we have applied this approach to classify ageing-related
genes based on real data, with uncertain features representing
protein-protein interactions. Our experimental results show
that models based on the proposed approach achieve better
predictive performance than single Naive Bayes classifiers and
conventional ensembles.
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Bayes, Bioinformatics

I. INTRODUCTION

Data uncertainty is a common issue in many real-world
domains due to various reasons, including measurement
errors, data staleness, repeated measurements, data gener-
ation and collection process. Coping with uncertainty is
a challenging task in data mining applications since the
reliability of the information used to build models signif-
icantly impacts their performance. However, conventional
classification methods usually assume that data are precisely
defined, effectively disregarding uncertainty.

In order to fill this gap, there has been a growing number
of studies addressing the problem of classification based on
uncertain data. Although some methods resort to ignoring
uncertainty or artificially removing it from data, strate-
gies for actually incorporating information on uncertainty
into classification models have produced promising results,
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showing that this kind of approach can improve predictive
performance [1]–[4].

In this paper, we propose a new approach for building an
ensemble of classifiers tailored to cope with uncertainty in
the values of categorical features. We rely on the hypothesis
that the higher the degree of uncertainty for a given feature,
the less it might contribute to the predictive performance as
it provides less reliable information about the instances to be
classified. We evaluate this proposed approach by applying
it to build an ensemble of Naive Bayes classifiers.

Our experiments involve datasets of ageing-related genes
containing uncertain features. Ageing can be defined as a
progressive decline in the fitness of an organism that occurs
with increasing age, ultimately ending in death. While it
is unclear precisely what mechanisms drive ageing, genes
certainly play an essential role in it [5]. Therefore, ageing
genetics is an important subject in computational biology.
In addition, ageing is a strategic research area because the
proportion of elderly individuals among the population is
increasing fast, and old age is the greatest risk factor for
many diseases (including, e.g., most types of cancer).

The remainder of this paper is organized as follows. Sec-
tion II reviews the background on the main topics covered in
this work. In Section III, we introduce our proposed novel
approach. Section IV describes our experimental method-
ology. Section V reports the results obtained. Finally, we
present conclusions in Section VI.

II. BACKGROUND

A. Ensemble Methods

In this work, we consider ensemble methods categorized
as averaging methods. They build several base classifiers
independently on random subsets of the original training
set. Then, they aggregate the individual base classifiers’
predictions to form a combined prediction.

These methods can be differentiated by how they draw
random subsets of the original training set. In particular,
Bagging methods are those that draw random subsets of the
instances in the dataset with replacement [6], and if a method



draws random subsets of the features in the dataset, then it
is known as Random Subspaces [7].

B. Naive Bayes Classifiers

Given a class variable y and a feature vector X =
(x1, x2, . . . , xm), based on the application of Bayes’ theo-
rem under the “naive” assumption that the features are con-
ditionally independent given the value of the class variable,
a Naive Bayes classifier predicts the class y that maximizes
the approximation of P (y|X) given by:

P (y|X) ∝ P (y)
m∏
j=1

P (xj |y) (1)

We have chosen Naive Bayes as the base classifier to
evaluate our proposed ensemble scheme since it has obtained
good results in many real-world domains, including the
classification of ageing-related genes [8]–[10] – the target
application domain in this work. Furthermore, there are
several reports on the use of Naive Bayes classifiers to build
ensembles in the literature [11]–[13].

C. Classification with Uncertain Data

Data uncertainty is a common issue in many real-world
applications due to various reasons, including measurement
errors, data staleness, data generation and collection process.
The forms of data uncertainty have been usually classified
into existential uncertainty or value uncertainty.

Existential uncertainty refers to the case when it is uncer-
tain whether an object exists. For example, an instance in a
dataset could be associated with a probability representing
the confidence of its occurrence.

In contrast, value uncertainty, which we address in this
work, refers to the case when an instance is known to exist,
but its feature values are not precisely known. An uncertain
feature value is usually represented by a probability distri-
bution on the domain of the feature.

Uncertainty in numerical feature values has been the focus
of several studies, using multiple types of classification
models such as neural networks [1], decision trees [2],
k-nearest neighbors [3] and support vector machines [4].
Although some of those approaches could be adapted to cope
with uncertain categorical features, this kind of value uncer-
tainty has received relatively little attention in the literature.
Another noticeable characteristic about past work in this
field is that most experiments have been performed on data
that were not originally uncertain. Instead, uncertainty was
artificially introduced into the data through augmentation
processes. In contrast, we evaluate our proposed approach
using real-world data with uncertain categorical features.

III. PROPOSED APPROACH

The specification of the approach proposed in this work
considers the following definitions.

Let F = {f1, f2, . . . , fm} be the set of predictive features,
where m ≥ 1, and C = {c1, c2, . . . , cq} be the set of
classes, where q ≥ 2. The domain of a feature fj is
dom(fj). A dataset D = {(X1, y1), (X2, y2), . . . , (Xn, yn)}
consists of n labelled instances. Each instance in D, iden-
tified by an index i, is associated with a feature vector
Xi = (xi1, xi2, . . . , xim) and a class label yi ∈ C. The
classification problem is to construct a model from D that
is capable of predicting the class of an unlabelled instance
given its corresponding feature vector.

Our uncertainty framework considers that some of the
features are uncertain, i.e., there is a set of uncertain features
U ⊆ F , all of which are assumed to be categorical. If fj
is a categorical feature, its domain is a finite set of values
dom(fj) = {vj1, vj2, . . . , vj|dom(fj)|}, |dom(fj)| ≥ 2. If a
feature fj is not uncertain, its corresponding value xij for
an instance i is represented by a single value vij . Otherwise
it is a discrete probability distribution represented by a
probability vector Pij . That is:

xij =

{
vij ∈ dom(fj), if fj ∈ F \ U
Pij = (pij1, pij2, . . . , pij|dom(fj)|), otherwise

where, if fj ∈ U , pijk ∈ [0, 1] represents the probability
that xij assumes the value vjk and

∑|dom(fj)|
k=1 pijk = 1.

A. An Ensemble Approach for Coping with Uncertainty in
Categorical Features

We propose a new approach for building an ensemble of
classifiers that incorporates uncertainty about the value of
categorical features into the model. The intuition motivating
this proposal is that the higher the degree of uncertainty for
a given feature, the less it might contribute to the predictive
performance as it provides less reliable information about
the instances to be classified. Furthermore, missing values,
i.e., the absence of values for a feature in a dataset, are
also considered since they represent another factor that may
undermine the contribution of a feature to the model.

This approach relies on the use of a bias value computed
for each feature fj based on its degree of uncertainty and
on its fraction of missing values in the dataset, given by:

bj =

1− 1

|I \Mj |
∑

i∈I\Mj

Eij

× |I \Mj |
|I|

where I = {1, 2, . . . , n} is the set of indices of all instances
in D, Mj is the set of indices of instances in D with a
missing value for the feature fj , and Eij is the entropy of
the probability distribution represented by Pij if fij is an
uncertain feature (or zero, otherwise), that is:

Eij =

{
−
∑|dom(fj)|

k=1 pijklog(pijk), if fj ∈ U
0, otherwise

In the feature bias definition, the first factor (between
parentheses) is the complement of the mean entropy over



all probability distributions associated with the feature fj ,
whereas the second factor is the fraction of non-missing
values for the feature. Therefore, the computed bias is a
value in the range [0, 1] with higher values indicating lower
uncertainty degrees, i.e., more reliable features.

The feature bias values are normalized over all features,
defining a probability distribution B = (β1, β2, . . . , βm),
where a probability βj associated with a feature fj is given
by βj = bj/(

∑m
l=1 bl).

Recall that in the general Random Subspaces strategy,
each base classifier in the ensemble is trained with a different
set of features, sampled from the full set F . In this approach,
we use the probability distribution B to sample the features
to be considered by each base classifier in the ensemble
instead of the default uniform distribution. Hence, we call
our proposed approach Biased Random Subspaces (BRS).

Note that no assumption is made about if or how the
base classifiers in the ensemble handle uncertain data, as
our focus is on the BRS approach to cope with uncertainty
at the ensemble level. Even if the base classifiers do not cope
with uncertainty, this approach can still be straightforwardly
applied. As an example, it can be done by replacing each
probability distribution Pij corresponding to an uncertain
feature in the dataset with its expected value, i.e., the value
vjk that maximizes pijk.

IV. EXPERIMENTAL METHODOLOGY

A. Dataset Creation

In this work, we have applied the proposed approach to
the classification of ageing-related genes in different types
of organisms, which several studies have addressed in recent
years [8]–[10], [14]–[16]. In this problem, the objective is to
identify the effect of genes on the longevity of an organism.
More specifically, given an ageing-related gene, the problem
is to predict whether its effect on the lifespan of an organism
is positive (pro-longevity) or negative (anti-longevity).

The GenAge database, part of the Human Ageing Ge-
nomic Resources (HAGR) collection [17], is an essen-
tial resource in this context, comprising data about over
two thousand genes, including their classification regarding
longevity influence.

Genes encode proteins, and information about the in-
teraction between two proteins, known as protein-protein
interaction (PPI), has been used in past work addressing the
classification of ageing-related genes [10], [14], [16], leading
to improvements in predictive performance. STRING [18] is
a database of PPIs that stem from computational predictions,
from knowledge transfer between organisms, and from in-
teractions aggregated from other databases.

Due to the technical difficulties of detecting PPIs via
biological experiments, the available information on PPI
is incomplete and exhibits varying levels of reliability.
Furthermore, it is complemented with computational predic-
tions (which are less reliable than biological experiments in

general). Therefore, the STRING database provides a score
for each PPI, computed by combining the probabilities from
the different evidence channels, which means the available
data on PPI are intrinsically uncertain.

We have generated four datasets1 of ageing-related genes
by integrating data from the GenAge database (Build 20) and
the STRING database (Version 11.0). Each dataset contains
data regarding ageing-related genes of one of the four major
biomedical model organisms from the GenAge database:
C. elegans (roundworm), D. melanogaster (fruit fly), M.
musculus (mouse), and S. cerevisiae (baker’s yeast).

Each instance in our datasets refers to an ageing-related
gene of the corresponding model organism and consists
of uncertain features referring to PPIs and a binary class
variable indicating if the instance is positive (pro-longevity
gene) or negative (anti-longevity gene) according to the
GenAge database. Each PPI feature refers to one protein and
has a binary domain, indicating whether or not an interaction
between the protein encoded by the corresponding gene (the
current instance) and the protein referred by the feature
has been observed. Since these features are uncertain, they
are represented by probability distributions according to our
uncertainty framework.

A value xij for a PPI feature fj corresponding to an
instance i in the dataset is represented by a probability
distribution Pij = (pij1, pij2), where pij1 and pij2 are the
complimentary probabilities of xij assuming each of the two
values in dom(fj). Therefore, each probability distribution
associated with a PPI feature value can actually be encoded
by a single value pij , in which case Pij = (pij , 1 − pij).
In our datasets, this value is the confidence score obtained
from the STRING database for the corresponding PPI, which
indicates its probability of occurrence.

Some distinctive characteristics of these datasets, which
make them quite challenging, are a very large number of
features, a small number of instances, and a very high
percentage of missing values (which occur when there is
no information regarding a specific PPI in the STRING
database). We have discarded PPI features with low support
(annotating less than ten genes) to avoid overfitting.

Table I presents detailed information about the datasets.
The first column indicates the corresponding model organ-
ism, whereas the remaining columns present, respectively,
the number of instances, the number of features, the per-
centage of missing values, and the percentage of instances
corresponding to each class (Anti- and Pro-longevity).

B. Algorithms Being Evaluated

In the experiments, we consider two baseline methods,
both based on conventional Naive Bayes classifiers. Each of
these methods uses a different interpretation of the uncertain
feature values since they do not cope with uncertainty.

1The datasets used in the experiments are publicly available on the web
at https://github.com/marcelorhmaia/ensembles-for-uncertain-data



Table I
INFORMATION ABOUT THE DATASETS USED IN THE EXPERIMENTS

Dataset Instances Features Missing
Values (%)

Class (%)
Anti Pro

C. elegans 763 9692 93.8 66.3 33.7
D. melanogaster 185 3883 88.4 37.3 62.7
M. musculus 82 4216 78.4 37.8 62.2
S. cerevisiae 382 4274 90.3 88.0 12.0

The first baseline method (referred to as NB-NV) treats
each uncertain value (the probability of occurrence of the
corresponding PPI) as a numeric value. Therefore, it assumes
that dom(fj) = [0, 1],∀j ∈ {1, 2, . . . ,m} and that the
feature value probability distributions are Gaussian.

The other baseline method (referred to as NB-EV) re-
places each uncertain value with the expected value from
the corresponding probability distribution, i.e., it binarizes
the value representing the probability of occurrence of the
corresponding PPI using the threshold value 0.5. It considers
multivariate Bernoulli distributions for the data.

In both baseline methods, we replace missing values with
zeros, i.e., if there is no information regarding a PPI in the
dataset, we assume it does not occur, a case represented by a
zero value, as usual in the literature using PPIs as predictive
features for classifying genes.

For each baseline method, we build an ensemble that uses
the conventional Bagging and Random Subspaces strategies
(referred to as ENB-NV and ENB-EV, respectively) and
another one that uses our proposed BRS approach in com-
bination with conventional Bagging (ENB-NV+BRS and
ENB-EV+BRS, respectively). Note that ENB-NV and ENB-
EV do not cope with uncertainty, but only the proposed
ENB-NV+BRS and ENB-EV+BRS ensembles do so.

We have used available implementations from the scikit-
learn library [19] as the baseline methods, as well as for
the conventional ensembles. The algorithms based on our
proposed approaches have been implemented through the
extension of scikit-learn’s original methods2. We have set the
ensembles to use 500 base classifiers, building each one on a
different subset of the training set consisting of n instances
drawn by the Bagging procedure and

√
m features drawn

by the Random Subspaces (or the BRS) procedure.
We first separate the experiments into two groups (con-

sisting of methods based on the NV and EV approaches),
and then compare three algorithms in each group:

• a single Naive Bayes classifier (one of the two baseline
methods)

• a conventional ensemble of this base classifier
• another ensemble that uses our proposed BRS approach

Then we compare the best models from the two groups.

2The source-code used in the experiments is publicly available on the
web at https://github.com/marcelorhmaia/ensembles-for-uncertain-data

C. Measuring Predictive Performance

We assess the predictive performance of the evaluated
algorithms using two metrics: the Area Under the Receiver
Operating Characteristic curve (AUROC) and the geometric
mean of sensitivity and specificity.

The ROC curve is a method for evaluating the perfor-
mance of a binary classifier by plotting its true-positive
rate (sensitivity) versus its false-positive rate (one minus
the specificity) at various threshold settings. The AUROC
summarizes this information into one number.

The geometric mean of sensitivity and specificity (G-
mean) measures the balance between predictive perfor-
mances on both the majority and minority classes. There-
fore, it is suitable for assessing predictive performance on
imbalanced datasets, like the ones used in our experiments.

Each algorithm was evaluated by running a well-known
10-fold cross-validation procedure. In addition, we have
assessed the statistical significance of the differences in
the predictive performance measures between each pair
of algorithms. We have used a paired Wilcoxon signed-
rank test for each dataset for this evaluation, considering
a significance level of 0.05.

V. COMPUTATIONAL RESULTS

In the first experiment, we have compared the three
models based on NB-NV. Table II presents the specificity
(Spec.) and sensitivity (Sens.) values obtained by each
model, as these measures are used to compute predictive
performance metrics. Specificity and sensitivity correspond
to the recall values for the Anti-longevity and Pro-longevity
classes, respectively.

Table II
SPECIFICITY AND SENSITIVITY VALUES (%) FOR MODELS BASED ON

NB-NV

Dataset NB-NV ENB-NV ENB-NV+BRS
Spec. Sens. Spec. Sens. Spec. Sens.

C. elegans 70.54 56.61 35.54 94.47 42.30 87.47
D. melanogaster 36.19 85.12 76.65 42.85 80.23 44.56
M. musculus 46.83 86.45 64.33 50.67 64.33 49.24
S. cerevisiae 99.69 0.00 50.68 65.83 40.81 85.00

Tables III and IV present the results for this group of
models regarding the AUROC and G-mean metrics, respec-
tively. Besides the predictive performance values achieved
by each model on each dataset, these tables present the
average rank for each model in the last row. The best value in
each comparison is presented in bold. Furthermore, the sta-
tistically significant differences in the comparisons between
the model using our proposed BRS approach and each of
the other models are indicated by superscript symbols next
to the respective higher values.

Based on the results presented in Tables III and IV, the
general conclusion from this first experiment is that ENB-



Table III
AUROC RESULTS (%) FOR MODELS BASED ON NB-NV

Dataset NB-NV ENB-NV ENB-NV+BRS
C. elegans 63.52 71.46 72.33a
D. melanogaster 60.83 65.62 65.03
M. musculus 67.93 66.73 68.51
S. cerevisiae 49.84 61.62 61.22a

Avg. Rank 2.75 1.75 1.50
aStatistically significant (NB-NV vs. ENB-NV+BRS),

p-value = 0.003 for C. elegans,
p-value = 0.004 for S. cerevisiae.

Table IV
G-MEAN RESULTS (%) FOR MODELS BASED ON NB-NV

Dataset NB-NV ENB-NV ENB-NV+BRS
C. elegans 63.19 57.94 60.83b
D. melanogaster 55.50 57.31 59.79
M. musculus 63.63 57.09 56.28
S. cerevisiae 0.00 57.76 58.90a
Avg. Rank 2.00 2.25 1.75
aStatistically significant (NB-NV vs. ENB-NV+BRS),

p-value = 0.003.
bStatistically significant (ENB-NV vs. ENB-NV+BRS),

p-value = 0.033.

NV+BRS is the best model regarding both AUROC and G-
mean, with the average ranks of 1.50 and 1.75, respectively.

In the second experiment, we have compared the three
models based on NB-EV. Table V presents the specificity
and sensitivity values obtained by each model, whereas
Tables VI and VII present the results for this group of models
regarding the AUROC and G-mean metrics, respectively.

Table V
SPECIFICITY AND SENSITIVITY VALUES (%) FOR MODELS BASED ON

NB-EV

Dataset NB-EV ENB-EV ENB-EV+BRS
Spec. Sens. Spec. Sens. Spec. Sens.

C. elegans 74.99 58.42 96.44 13.64 90.27 26.89
D. melanogaster 26.91 86.26 8.33 96.09 8.33 94.55
M. musculus 34.83 85.14 18.67 92.64 23.67 92.64
S. cerevisiae 85.56 36.67 98.83 5.00 94.45 24.17

Table VI
AUROC RESULTS (%) FOR MODELS BASED ON NB-EV

Dataset NB-EV ENB-EV ENB-EV+BRS
C. elegans 76.89a 76.91b 74.81
D. melanogaster 66.65 64.05 69.00
M. musculus 66.87 69.26 69.30
S. cerevisiae 77.13 75.55 76.79
Avg. Rank 2.00 2.25 1.75
aStatistically significant (NB-EV vs. ENB-EV+BRS),

p-value = 0.012.
bStatistically significant (ENB-EV vs. ENB-EV+BRS),

p-value = 0.033.

Based on the results presented in Tables VI and VII,
the general conclusion from the second experiment is that

Table VII
G-MEAN RESULTS (%) FOR MODELS BASED ON NB-EV

Dataset NB-EV ENB-EV ENB-EV+BRS
C. elegans 66.19a 36.27 49.27b
D. melanogaster 48.18a 28.28 28.06
M. musculus 54.46 41.59 46.82
S. cerevisiae 56.01 22.23 47.78b

Avg. Rank 1.00 2.75 2.25
aStatistically significant (NB-EV vs. ENB-EV+BRS),

p-value = 0.003 for C. elegans,
p-value = 0.010 for D. melanogaster.

bStatistically significant (ENB-EV vs. ENB-EV+BRS),
p-value = 0.005 for C. elegans,
p-value = 0.017 for S. cerevisiae.

the proposed ENB-EV+BRS is the best model regarding
AUROC and the second best (out of three) regarding G-
mean, with the average ranks of 1.75 and 2.25, respectively.
In this experiment, a single NB-EV classifier performed
better than both ensembles regarding G-mean. Nonetheless,
it is noticeable that our proposed BRS approach was still
able to improve the predictive performance of an ensemble,
as the ENB-EV+BRS model outperformed the ENB-EV.

Our third experiment aims at determining the best overall
method regarding the AUROC metric. Table VIII presents
the results for ENB-NV+BRS and ENB-EV+BRS, the best
models from experiments 1 and 2, respectively, regarding
this metric. The proposed ENB-EV+BRS was the best
overall model in this comparison, outperforming the ENB-
NV+BRS for all datasets.

Table VIII
AUROC RESULTS (%) FOR THE BEST MODEL FROM TABLE III AND

THE BEST MODEL FROM TABLE VI

Dataset ENB-NV+BRSa ENB-EV+BRSb

C. elegans 72.33 74.81
D. melanogaster 65.03 69.00
M. musculus 68.51 69.30
S. cerevisiae 61.22 76.79∗
Avg. Rank 2.00 1.00
aResults from Table III. bResults from Table VI.
∗Statistically significant, p-value = 0.012.

Finally, our fourth experiment aims at determining the
best overall method regarding the G-mean metric. Table IX
presents the results for ENB-NV+BRS and NB-EV, the best
models from experiments 1 and 2, respectively, regarding
this metric. ENB-NV+BRS was the best overall model in
this comparison, with an average rank of 1.25.

As a general conclusion from the reported experiments,
we can point out that the results support the hypothesis
that our proposed BRS approach improves the predictive
performance of ensembles on uncertain data, as the best
overall models for the AUROC and G-mean metrics were
the ENB-NV+BRS and ENB-EV+BRS, respectively, both
based on the BRS approach.



Table IX
G-MEAN RESULTS (%) FOR THE BEST MODEL FROM TABLE IV AND

THE BEST MODEL FROM TABLE VII

Dataset ENB-NV+BRSa NB-EVb

C. elegans 60.83 66.19
D. melanogaster 59.79∗ 48.18
M. musculus 56.28 54.46
S. cerevisiae 58.90 56.01
Avg. Rank 1.25 1.75
aResults from Table IV. bResults from Table VII.
∗Statistically significant, p-value = 0.038.

VI. CONCLUSIONS

In this work, we have addressed the problem of classifica-
tion in datasets containing categorical features with uncertain
values, i.e., values represented by probability distributions
in the respective features’ domains. We have proposed
an ensemble approach called Biased Random Subspaces
(BRS) for coping with this kind of uncertainty, based on
the hypothesis that features with lower uncertainty degrees
have better class-discrimination power since there is higher
confidence about their actual values across the dataset.

Our experiments have compared two types of single Naive
Bayes classifiers, conventional ensembles of these classifiers
and ensembles based on the BRS approach. We have applied
them to classify ageing-related genes from four model
organisms based on real data containing uncertain features
referring to protein-protein interactions. The results show
that the ensembles applying our BRS approach achieved the
best overall predictive performance, supporting the hypoth-
esis that applying BRS-based ensembles of classifiers is an
effective approach to cope with uncertainty in categorical
features, leading to higher predictive performance.

Some directions for future work include applying the
proposed BRS approach to build ensembles of other base
classifiers than Naive Bayes and perform experiments with
other datasets containing uncertain data.
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