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Abstract ABC-Miner is a Bayesian classification algorithm based on the Ant
Colony Optimization (ACO) meta-heuristic. The algorithm learns Bayesian
network Augmented Näıve-Bayes (BAN) classifiers, where the class node is
the parent of all the nodes representing the input variables. However, this as-
sumes the existence of a dependency relationship between the class variable
and all the input variables, and this relationship is always a type of “causal”
(rather than “effect”) relationship, which restricts the flexibility of the algo-
rithm to learn. In this paper, we extended the ABC-Miner algorithm to be
able to learn the Markov blanket of the class variable. Such a produced model
has a more flexible Bayesian network classifier structure, where it is not nec-
essary to have a (direct) dependency relationship between the class variable
and each of the input variables, and the dependency between the class and the
input variables varies from “causal” to “effect” relationships. In this context,
we propose two algorithms: ABC-Miner+1, in which the dependency relation-
ships between the class and the input variables are defined in a separate phase
before the dependency relationships among the input variables are defined,
and ABC-Miner+2, in which the two types of dependency relationships in the
Markov blanket classifier are discovered in a single integrated process. Em-
pirical evaluations on 33 UCI benchmark datasets show that our extended
algorithms outperform the original version in terms of predictive accuracy,
model size and computational time. Moreover, they have shown a very com-
petitive performance against other well-known classification algorithms in the
literature.
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1 Introduction

Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial
optimization problems, inspired by the observation of the behavior of biolog-
ical ant colonies [14]. One of the fields in which ACO has been successfully
applied is data mining, which involves finding hidden patterns and construct-
ing analytical models from real-world datasets [53]. Classification is one of the
widely studied data mining tasks, where the aim is to discover, from labeled
cases (instances), a model that can be used to predict the class of unlabeled
cases. There are many types of classification methods [53], but in this paper
we focus on Bayesian network (BN) classifiers.

BN classifiers model the (in)dependency-relationships between the input
domain variables given the class variable by means of a probabilistic network
[18], which is used to predict the class of a case by computing the class with the
highest posterior probability given the case’s predictor attribute values. Since
learning the optimal BN structure from a dataset is NP-hard [5,6], stochastic
heuristic search algorithms – such as ACO – can be a good alternative to build
high-quality models, in terms of predictive accuracy and network size, within
an acceptable computational time. Developing ACO-based algorithms to learn
BN classifiers is the research topic addressed in this work.

We have recently introduced ABC-Miner [45,49], as an Ant-based Bayesian
Classification algorithm that learns the structure of a Bayesian network Aug-
mented Näıve-Bayes (BAN), where the class node is the parent of all the input
variables, and at most k parents are allowed for each variable in the network.
The ABC-Miner algorithm showed predictive effectiveness compared to other
Bayesian classification algorithms, namely: Näıve-Bayes, TAN and GBN [45,
49]. However, the BAN structure produced by ABC-Miner has two limitations.
First, it assumes there is a dependency relationship between the class and all
the input variables. However, this assumption is unrealistic and may harm the
classification effectiveness in the domains where there are redundant or irrele-
vant input variables to the class variable prediction. Second, this dependency
relationship between the class and the input variables is only specified as a
“causal” relationship, i.e., the class variable is always a parent to the input
variables. This restricts the flexibility of the algorithm to discover other struc-
tures in constructing BN classification models, where the relationship between
the class and an input variable is an“ effect” relationship — i.e., the class
variable can be a child to some input variables.

In this paper, we extend our ABC-Miner algorithm to learn more flexible
BN classifier structures, where it is not necessary to have a (direct) depen-
dency relationship between the class variable and each of the input variables.
In addition, we allow the dependency between the class and the input vari-
ables to vary from “causal” to “effect” relationships, where the class variable
can be a parent or a child of an input node. The produced model is called
the Markov blanket (MB) of the class variable. Such a model specifies a more
effective posterior probability distribution of the class variable given the sub-
set of input variables that are relevant to the class prediction, which avoids
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the negative effect of the redundant and irrelevant input variables to the tar-
get class. In this context we propose two variations of ACO-based algorithms
for learning Markov blanket classifiers. The first algorithm is ABC-Miner+1,
which executes in two phases. The first phase is dedicated to construct a struc-
ture where only the relationship types (if any exists) between the class and
the input variables are defined, while in the second phase the dependency re-
lationships among the input variables, according to the previously discovered
structure, are defined. The second algorithm, ABC-Miner+2, utilizes an inte-
grated approach, where the whole MB structure – including the dependency
relationships between the class and the input variables, and among the input
variables – is constructed in a synergic fashion.

The present paper is an extended version of the NICSO 2013 workshop
paper [48], where ABC-Miner+1, the two-phase ACO algorithm for learning
MB classifiers, was introduced. We build on the work described in [48] in four
ways. First, we introduce the novel ABC-Miner+2 algorithm, which discovers
the dependency structure of the MB classifier in a single integrated phase.
Second, in order to mitigate possible training-phase overfitting, we propose two
new ideas: 1) randomly changing the validation set during the training phase
at each iteration; and 2) introducing a new penalty component in the model
quality evaluation function according to the number of class variable parents to
limit it and avoid producing overfitted structures. Third, we use two different
types of classification measures to evaluate the quality of the candidate model
constructed during the training phase: accuracy and probabilistic accuracy.
Fourth, in terms of empirical evaluations, the number of datasets used in
the experimental evaluation is increased from 18 to 33, and we compare our
proposed algorithms with various well-known classification algorithms.

Note that we use the word “causal” in a loose sense in this work, simply to
refer to a direction of the dependency relationship between two variables. The
issue of whether or not Bayesian networks learned from observational data
represent truly causal knowledge is controversial (depending on how we define
causality) [41], and is out of the scope of this paper.

The rest of the paper is structured as follows. The next section gives some
background on the two related areas of this research, namely BN classifiers
and ACO. Then, we briefly review the ABC-Miner algorithm in Section 3,
to make this paper more self-contained. In Section 4, we discuss the motiva-
tion behind our target task, which is learning Markov blanket classifiers, and
the difference between directly aiming at that target and learning General
Bayesian Networks (GBNs) and then extracting the class variable’s Markov
Blanket. We introduced our two ACO-based algorithms, ABC-Miner+1 and
ABC-Miner+2, in Section 5, along with the quality evaluation functions used
in our algorithms for building the MB classification models and the overfitting
mitigation techniques. Our experimental methodology is presented in Section
6, followed by the computational results and their analysis in Section 7. Finally,
we conclude with general remarks in Section 8.
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2 Background

2.1 Bayesian Networks

Bayesian Networks (BNs) are a statistically sound method for representing
probabilistic (in)dependencies among variables and using those (in)dependencies
for probabilistic inferences [9]. In a BN, nodes represent variables (features
or attributes) and edges represent dependencies among variables. The set of
nodes and edges forms a DAG (Directed Acyclic Graph). Each node in that
DAG is also associated with a Conditional Probability Table (CPT), which
specifies the probability for each value of its variable given the values of all
the variables that are parents of that node. The set of CPTs are the set of
parameters Θ of the BN. The joint probability distribution of the set of vari-
ables X = {X1, X2, X3, ..., Xn} in a BN given its DAG structure G and its set
of parameters Θ is given by the following factorized formula:

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi|Parents(Xi), Θ,G), (1)

where Parents(Xi) are the parents of variable Xi, and G is the DAG that
represents the BN’s structure.

Learning a BN from a dataset involves two steps: learning the DAG struc-
ture, and then learning the set of parameters Θ. The DAG structure learning
step is usually considered the most difficult one, since parameter learning can
be performed by estimating the relative frequency of each variable value di-
rectly from the dataset.

Broadly speaking, there are two approaches for learning the DAG structure
of a BN. The first one is often called the CI-based (Conditional Independence-
based, or constraint-based) approach [23,9]. This approach is based on itera-
tively using some kind of statistical independence test (e.g. the Chi-squared
test) to detect whether a certain set of variables is (in)dependent – possibly
given other variables. Two issues with this approach are that the results of such
statistical tests are quite sensitive to the value of a (ad-hoc) user-specified sig-
nificance level value and the iterative use of such tests leads to the well-known
problem of multiple statistical hypothesis testing.

By contrast, the second approach, usually called the scoring-based ap-
proach, uses a scoring function to evaluate each DAG structure G with respect
to the dataset D at hand [23,9]. The basic idea is to find the DAG structure
G that best fits the dataset D in terms of P (D|G). This idea is implemented
by using a search method (usually a greedy one) G that maximizes the value
of a given scoring function. This approach has been more popular in the data
mining and machine learning fields, possibly because it views the problem of
BN learning as a well-defined optimization task (avoiding difficult issues of
multiple hypothesis testing), where various types of search methods can be
employed [4]. K2, MDL, KL, BDEu and several scoring functions can be used
for this scoring-maximization task [7,24,55].
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For a more detailed review on learning BNs, we recommend the very com-
prehensive review by Daly et al. [9] as well as [24,23].

2.2 Bayesian Network Classifiers

A general-purpose BN can compute the probability of any set of variables’
values given any other set of variables’ values. By contrast, a BN classifier
is built specifically for the classification task, i.e., to compute the probability
of each value of the class variable for an instance given the values of all the
other variables of that instance. More formally, a BN classifier computes the
posterior probability of each value (label) l of the class variable C given an
instance x = (x1, x2, ..., xn) using a DAG structure G and parameters Θ, then
labels this case with the class value having the highest posterior probability,
as show in the following formulas:

C(x) = argmax
∀ l∈C

P (C = l|x = x1, x2, ..., xn, BNC), (2)

and according to the Bayes’ theorem,

posterior probability︷ ︸︸ ︷
P (C = l|x = x1, x2, ..., xn) ∝

prior probability︷ ︸︸ ︷
P (C = l)

n∏
i=1

likelihood︷ ︸︸ ︷
P (xi|Parents(Xi)) , (3)

where ∝ denotes the proportionality relationship. The above formulas refer
to a typical type of BN classifier, where the class variable is a parent (cause)
node to all the input variables (predictor attributes). As will be seen later,
this is not the case in all types of BN classifiers.

Among the many types of BN classifiers, the simplest one is Näıve-Bayes
(NB) [15,18]. NB makes the assumption that the input variables are inde-
pendent of each other given the class variable, so its network has no edges
connecting input variables. This reduces the posterior probability formula to:

P (C = l|x = x1, x2, ..., xn) ∝ P (C = l)

n∏
i=1

P (xi|l) (4)

Since the assumption of independence among input variables is usually
not realistic, many extensions of NB have been proposed. As discussed in
[28,56], those extensions can be broadly divided into three main approaches:
1) applying NB to a subset of the input variables [31,34,27]; 2) extending
the network structure of NB [3,4,19]; and 3) building local models based on
different subsets of the dataset [25,21,33,4,30,50]. The current work is related
to the first two types of extensions.

The first approach, called feature selection [31,35], consists of selecting a
subset of relevant variables (features) from the dataset for use in model con-
struction. This is in contrast to conventional NB, where all the input variables
have some effect on computing the posterior probability of the class, and so
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redundant, strongly-correlated, and irrelevant variables may degrade the pre-
dictive performance of NB. Several feature selection methods were introduced
in the literature, such as Backward Sequential Elimination (BSE) method [31],
Forward Sequential Selection (FSS) [34], and Evolutional Näıve-Bayes (ENB)
[27].

The second approach to improve NB is extending its structure to represent
the dependency relationships between the input variables given the class vari-
able, adding edges edges between the input nodes in the network. In practice,
imposing restrictions on the number of parents that an input node can have in
the BN classifier is important for at least two reasons. First, finding the opti-
mal structure of a BN (classifier) is NP-hard [5,6], thus restricting the number
of dependencies would reduce the search space and make the problem com-
putationally tractable. Second, including too many dependency relationships
in the BN classifier may result in producing a complex classification model
that is prone to overfitting the training set and does not generalize well on
the test set. Besides, BN models with a large number of edges tend to be less
comprehensible and harder to be interpreted by the user. Figure 1 illustrates
the various structural types of BN classifiers.

Fig. 1 Different types of Bayesian classifiers are presented: (a) Näıve-Bayes, where all the
input variables have only the class variable as a parent. (b) TAN, where a variable can have
one parent besides the class variable. (c) BAN, where a variable can have multiple parents
beside the class variable. (d) MBC, where the class variable can have both parent and child
variables.

A simple extension of NB is the Tree Augmented Näıve-Bayes (TAN),
which allows a node in a BN to have one parent, in addition to the class variable
[18]. This produces a BN with a tree-like structure. The Chow-Liu tree (CL-
Tree) [3,4], and the SuperParent TAN (SP-TAN) algorithms are examples of
well-known TAN classifier learning algorithms. A more elaborated extension
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of NB is the Bayesian Network Augmented Näıve-Bayes (BAN). In a BAN,
either there are no restrictions on the number of parents of a node or, more
commonly, there is a maximum number of k parents (k-dependencies) that a
node can have. Another variation of the Chow-Liu algorithm can be utilized
to build BANs as well [3,4]. Note that if k = 1 a BAN becomes a TAN. The
original version of our ABC-Miner algorithm produces BN classifiers with a
BAN structure [49]. Since, the Markov blanket classifier (MBC), Figure 1 (d),
is the focus of the current work; it is discussed separately in Section 4.

2.3 Ant Colony Optimization

Ant colony optimization (ACO) is a meta-heuristic inspired by the behavior
of natural ant colonies [14,13,12]. Although each individual ant has a simple
behavior, the ants in a colony cooperate with each other to solve complex
optimization problems, resulting in an emergent intelligent behavior at the
level of the colony. The pseudo-code of a typical ACO algorithm is shown, at
a high level of abstraction, in Algorithm 1.

Algorithm 1 Pseudo-code of basic ACO algorithm.
Begin ACO
ConstructionGraph← Problem definition;
Initialize();
best← ϕ; /* best solution found so far */
repeat

current← ant.ConstructSolution()
ApplyLocalSearch(current)
if Quality(current) > Quality(best) then

best← current;
end if
ant.UpdatePheromone(current);

until termination condition

return best;
End

The first step of Algorithm 1 is the definition of the construction graph,
whose nodes represent the components to be used to construct a candidate
solution to the target problem. In the repeat-until loop, first each ant incre-
mentally constructs a candidate solution by following a path in the graph,
choosing which components are added to the current candidate solution in
a heuristic manner (see below). Then, a local search procedure is applied to
the just-constructed candidate solution, in order to try to improve it. Next,
the quality of the current candidate solution is evaluated, and the quality of
the best solution constructed so far by the algorithm is tracked and saved in
the “best” variable. In the last step of the repeat-until loop, the current ant
deposits pheromone on the construction graph components that were included
in its constructed candidate solution.
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Importantly, the amount of pheromone deposited on each graph compo-
nent is proportional to the quality of the current candidate solution, which
is measured by a predefined quality evaluation function. In future iterations,
ants will be attracted by larger amounts of pheromone. Hence, the deposit
of pheromone acts as a positive feedback mechanism, which encourages the
ants to prefer solution components that were often used to produce good solu-
tions in the previous iterations of the search. The algorithm also incorporates
a pheromone evaporation strategy (not shown in the high-level pseudo-code
of Algorithm 1), where the amount of pheromone in each solution component
decreases gradually over time. This makes the search to put more emphasis on
the quality of solutions constructed in recent iterations, rather than in early
iterations, helping convergence to good solutions.

In order to design an ACO algorithm, one has to specify not only a con-
struction graph (representing solution components) and a quality-evaluation
function, but also the state transition formula used by each ant to decide which
component should be added next to the current solution. A typical state tran-
sition formula consists of the product of two factors: the heuristic value η and
the pheromone amount τ associated with each candidate solution component.
The value of η is usually computed by a predefined “local” heuristic function
that measures the quality of a solution component by itself, regardless of the
quality of the entire solution using that component, and regardless of the pre-
vious history of the search. By contrast, the value of τ is given by the amount
of pheromone accumulated on a solution component, taking into account the
history of the search – i.e., solution components that were used to build better
solution in the past accumulate more pheromone, as mentioned earlier. Typ-
ically, an ant chooses which component to add next to a candidate solution
with a probability proportional to the product of the heuristic value η and the
pheromone amount τ for that component. In addition, one also has to specify
specific formulas for pheromone updating (based on the quality function) and
pheromone evaporation, of course. All these design decisions will be specified
in the context of our proposed ACO algorithm in later sections.

It is important to note that, unlike the conventional local, greedy search
methods which are commonly used in search and optimization problems, an
ACO algorithm performs a global search for near-optimal solutions in the
search space. The global search stems from using a population of ants which
is initially spread across different regions of the search space and which iter-
atively cooperate with each other (based on the positive feedback associated
with depositing more pheromone on better solution components) in order to
converge to a near-optimal solution.

ACO has been effectively used for learning general-purpose BNs [54,10,
8,42], as well as different types of classification models [40,43,37,39,44,51].
Moreover, ABC-Miner, recently introduced by the authors [45,49], is the first
ACO algorithm for learning BN classifiers with a BAN structure, and it was
shown to outperform several BN classification algorithms. Thus, we extend the
ant-based ABC-Miner algorithm to learn the more advanced structure of MB
classifiers. The authors have also introduced a clustering-based Bayesian multi-
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net classification algorithm [47], which uses ACO to cluster the dataset into
subsets, then builds several local BN classifiers. However, this paper addresses
the problem of building BN classifiers with a very different approach.

3 An Overview of the ABC-Miner Algorithm

In ABC-Miner, the decision components in the construction graph (which are
available for each ant to construct its candidate solution) are all the edges
of the form X → Y where X ̸= Y and X,Y belong to the set of input
variables. Each edge X → Y indicates that the value of variable Y depends
(probabilistically) on the value of variable X. ABC-Miner selects edges from
the construction graph in order to build a BAN classifier. Algorithm 2 outlines
the ABC-Miner procedures.

Algorithm 2 Pseudo-code of ABC-Miner.
1: Begin
2: BANbsf = ϕ; t = 1; Qbsf = ϕ;
3: Initialize();
4: repeat
5: BANtbest = ϕ; Qtbest = 0;
6: for i = 1 → colony size do
7: BANi = CreateSolution(anti);
8: Qi = ComputeQuality(BANi);
9: if Qi > Qtbest then
10: BANtbest = BANi;
11: Qtbest = Qi;
12: end if
13: end for
14: PerformLocalSearch(BANtbest);
15: UpdatePheromone();
16: if Qtbest > Qbsf then
17: BANbsf = BANtbest;
18: Qbsf = Qtbest;
19: end if
20: t = t+ 1;
21: until t = max iterations or Convergence(conv iterations);
22: return BANbsf ;
23: End

Each ant builds a candidate BAN classifier by executing the CreateSolution()
procedure in line 7 of Algorithm 2. That procedure is described in in Algorithm
3. Before starting to build its BAN classifier, each ant automatically selects
the maximum number of parent variables (in addition to the class variable,
which is a parent of all other variables) for each variable in the network [45,
49] (line 2).

In Algorithm 3, an ant starts with the network structure of Näıve-Bayes
(line 3), where every variable has only the class variable as its parent. Then
the ant expands that structure into a BAN structure by adding one edge at
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Algorithm 3 Pseudo-code of solution creation procedure by an ant.
1: Begin CreateSolution(ant)
2: k list = ant.SelectMaxParentsForEachV ariable();
3: BAN ← Näıve-Bayes structure;
4: while GetV alidEdges() ̸= ϕ do
5: {i→ j} = ant.SelectEdgeProbablistically();
6: BAN = BAN ∪ {i→ j};
7: RemoveInvalidEdges(BAN, kj);
8: end while
9: BAN.LearnParameters();
10: return BAN ;
11: End

a time to the network (lines 4 to 8). The edge selected to be added in the
current step is determined probabilistically. More precisely, the probability of
each edge being selected is given by the product of the pheromone amount in
the edge (reflecting the usefulness of that edge for constructing good BANs in
previous iterations of the search) times the heuristic function value of that edge
– measured by its conditional mutual information [45,49] (line 5). However, an
edge can be added to the current BAN structure only if its inclusion does not
produce a directed cycle and does not violate the constraint on the maximum
number of parents k (chosen by the current ant) for the node that the edge is
pointing to. When an edge is added to the current BAN, all invalid edges are
removed from the construction graph (line 7). An ant keeps adding edges to
the current BAN as long as there are valid edges in the construction graph.
Then, the CPT of each variable is computed, in order to create a complete
BAN classifier (line 9). That classifier is then evaluated, and all edges become
available again for constructing other BAN classifiers (line 8 in Algorithm 2).

ABC-Miner evaluates the quality of a candidate BAN classifier using a
measure of predictive accuracy [45,49], since the BAN will be used only for
predicting the value of a specific class attribute. This is in contrast to general-
purpose BN learning algorithms, whose solution-quality function does not dis-
tinguish between the input (predictor) and the class attributes. As shown in
Algorithm 2, only the colony’s iteration best solution BANtbest undergoes local
search and is used for updating pheromone (lines 14 and 15). The best-so-far
solution BANbsf is saved during the search and returned as the output of the
algorithm.

4 Learning Markov Blanket Classifiers

4.1 Target and Motivation

The motivation behind our proposed extension is the following. As discussed in
Section 2.2, two different limitations can be concluded from conventional TAN
and BAN, which are the commonly used structures of the BN classifier that
extends Näıve-Bayes. First, it assumes that the class variable has dependency
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relationships with all the input variables (attributes), which means that the
state of each input variable affects the posterior probability of the class values,
and consequently the class prediction. This assumption is not necessarily valid
in all applications domains. In some domains, some attributes are irrelevant,
or at least not directly related, to the prediction of the target class. Including
these irrelevant attributes in the computation of the posterior probability of
the class values, according to Equation 3, can be disadvantageous, and may
lead to incorrect predictions.

Second, the relationship between the class and all the input variables is
always a type of “causal” relationship, that is, the class variable can only be a
parent of an input variable. This is noticed in ABC-Miner’s BAN creation pro-
cedure; it starts with a Näıve-Bayes structure where the class variable is fixed
to be the parent of all the input variables (Algorithm 3, line 3). Such a prop-
erty limits the flexibility of the algorithm to learn. Nonetheless, in real-world
domains, some input variables are “causes” (parents) of the class variable,
whereas others are “effects” (children) of the same class variable. For exam-
ple, in a cancer diagnosis domain, the state of the smoker variable can be
considered a cause of the state of the Cancer class variable, while the state of
the X-Ray variable can be considered an effect of the class variable.

Our proposed ACO algorithms learn Markov blanket classifiers, which have
the most flexible and elaborated BN structure, as shown Figure 1(d). The
process of learning the class variable’s MB structure performs an embedded
feature selection with respect to the target class variable, by including only
the input variables that contain the relevant information with respect to the
target class prediction. It is not necessary to have a dependency relationship
between the class variable and each of the input variables. This means that
an input variable may not have a direct connection (edge) to the class node in
the network, or an input variable may not even be presented in the network.
In addition, the algorithm allows (up to) k dependency relationships to be
defined for an input variable in the MB classifier, to relax the (unrealistic)
independency assumption of Näıve-Bayes.

Moreover, our proposed algorithms allow the type of dependency (edge)
between the class and the input variables to vary from “causal” to “effect”
relationships in the MB classifier, where the class variable can be a parent
or a child of an input node, unlike the BAN structures produced by ABC-
Miner. The advantage of allowing this kind of edges in the BN model is the
possibility of capturing new conditional (in)dependency relationships. For ex-
ample, if X and Y are input variables that are unconditionally independent
of the class variable C, then X and Y should be parents to C. This kind
of (in)dependency relationship cannot be modeled by a BAN structure. Such
a flexible MB classifier structure should better represent the class posterior
probability distribution according to the dependency relationships, and lead
to higher classification accuracy.

Formally, given the set of variables X and target class variable C, a Markov
blanket for C is the smallest subset S of the input variables X, such that C
is independent of X− S, conditional on the variables in S. Since the Markov
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condition is assumed in a BN, every node Xi in X is independent of its non-
descendants and non-parents in the network, conditional on its parents. There-
fore, the variable subset S, which composes the Markov blanket of the class
variable C (MBC), is the union of C’s parents, C’s children, and the parents of
C’s children (Figure 1(d)). These are basically the variables on which the class
variable is dependent — i.e., the information about the nodes in the Markov
blanket of the class variable affects the posterior probability calculation of the
class [32], as follows:

P (C = l|x) ∝ P (C = l|Parents(C))

|M|∏
v=1

P (xv|Parents(Xv),MBC), (5)

where Xv ∈M, where M the subset of the input variables that have the class
as parent, and Parents(C) ∪M = S.

4.2 Learning MB Classifiers vs. GBNs

It is worth mentioning that a straightforward known approach to discover the
Markov blanket of a class variable is the use of General Bayesian Networks
(GBNs) [3,4]. In essence, any BN learning algorithm can be used to construct
a general-purpose BN. Then one can find the Markov blanket of the class node,
delete all the other nodes outside that blanket and use the resulting network
structure as a Bayesian classifier. However, such an approach is very differ-
ent from the approach employed in this work, which focuses only on directly
constructing an MB classifier, on a number of aspects. First, the algorithms
utilized for learning GBNs do not treat the class variable as a special node
in the network, i.e., the algorithm may add dependency-relationships (edges)
that are irrelevant to the class posterior probability calculation, because the
target is constructing a general BN. On the other hand, the search space of
the class variable’s MB gets much smaller during the construction process. For
example, if the edge X ← C is added between the input variable X and the
target class variable C in the MB classifier being constructed, then an edge
from any input variable X to Y becomes invalid (irrelevant) to be added in the
network, which is unlike GBN algorithms. This is described in more details in
Section 6.

Moreover, the GBN algorithms are oriented toward estimating any marginal
probability distribution. Unlike our proposed algorithms, which are specifically
focused on the task of estimating the conditional probabilities of the class at-
tribute given the set of input variable values in constructing the MB classifier.
This implies that a GBN does not perform well in the classification task com-
pared to a MB classifier, and other types of BN classifiers, that are constructed
with the classification purpose in mind. Such a purpose (building a BN classi-
fier rather than a general BN) has an implication on different design aspects.

For instance, ACO-B [10], an ACO algorithm for learning GBNs, used the
K2 scoring function as the heuristic information and solution quality evalua-
tion. The aim is to increase the general inference capabilities of the constructed
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BN, with no respect to a specific target (class) variable. On the other hand, an
ACO algorithm for learning BN classifiers (such as ABC-Miner and the two
algorithms proposed in the current paper) would use a classification-based
evaluation function, which measures the quality of the constructed model di-
rectly as a classifier, with respect to predicting the class value. Section 5.6
discusses the quality evaluation functions used in our work.

5 The Proposed ACO-based Algorithms

5.1 Construction Graphs

The aim of our proposed ACO algorithms is to discover the variable depen-
dency structure of the Markov blanket, given a training set, with respect to
the target class variable. At first glance, one would suggest that the deci-
sion (solution) components in the ACO construction graph, by which the ants
would construct the candidate solution (MBC structure), are the possible de-
pendency relationships between the variables of the domain. However, with
a closer look at the problem, we can define two different types of these rela-
tionships; the relationships between the class and the input variables, and the
relationships among the input variables. The reason we distinguished between
the two types of the relationships is that we think that the latter type of re-
lationship should be discovered based on a complete definition of the former
type. Hence, for constructing a candidate MB classifier structure, the class-
input variables dependency relationships should be completely defined before
the input variable-variable dependency relationships are discovered. Other-
wise, a part the search process would be wasted by adding irrelevant decision
components to the solution being constructed.

For example, let us assume that both types of dependency relationships are
available in the search space (construction graph). An ant would select the edge
X ← Y to define a dependency relationship between the two input variables
X and Y in the MBC structure. However, the search process would finish
constructing the MBC structure without adding the edge C ← Y between
the class variable C and the input variable Y , which is necessary to make the
previously added dependency relationship X ← Y relevant to calculating the
posterior probability of the class variable (see Section 4.1). Therefore, adding
edges between input variables before defining all the edges between the class
and the input variable would introduce waste of time in the search process.

According to the previous reasoning, we define two different construction
graphs, one for each type of dependency relationships. The ACO algorithm
uses the first construction graph to completely define the relationships between
the class and the input variables, then it uses the second construction graph
to define the relationships among the input variables based on the previously
defined structure. A graphical representation of the two construction graphs
is illustrated in Figure 2.
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Fig. 2 Matrix representations for the construction graphs to define the two types of depen-
dency relationships: a) between the class and the input variables; and b) among the input
variables, where the variables on the columns are the parents. Invalid components are shown
in light grey.

Figure 2(a) is a matrix representation of the construction graph for defin-
ing the dependency relationships between the class and the input variables.
In essence, for each input variable X, an ant has to choose between three
decision components, each represents a relationship type between X and the
class variable C. If the “cause” relationship type is chosen, the edge X → C
is added to the MBC structure, where the input variable X becomes a parent
node to the class variable C. If the “effect” relationship type is chosen, the
edge C → X is added to the MBC structure, where the input variable X
becomes a child node to the class variable C. However, if the decision com-
ponent representing the “none” relationship type is selected, there should not
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be an edge (direct dependency relationship) between the class and the input
variables. The black-highlighted decision components in Figure 2(a) represent
an example of the relationship types selected. Figure 3(a) shows the output
structure of this selection.

The dependency relationships among the input variables can be defined
using the construction graph shown in Figure 2(b). Similar to ABC-Miner, the
left side of the construction graph represents the allowed number of parents
that a variable can have in the network structure. The idea is that instead
of having the user selecting the optimum number of the (at most) k parents
for each node, this selection is carried out by the ACO algorithm in a self-
adaptive manner [49]. The selection of ki value, for the input variable Xi, is
done probabilistically from a list of available numbers. The user only specifies
the max parents parameter, and all the integer values from 1 to this parameter
are available for the ant to use in the structure construction. More precisely, if
the number of variables is n, the ant would have n values for the k parents limit,
one for each variable, where variable i is restricted to have (at most) ki parents
during the network construction. Later, the ant updates the pheromone on the
value ki (i = 1, 2, ..., n) after solution creation according to the quality of this
MB classifier, which used value ki for variable i in the process of solution
construction. This pheromone amount influences the selection probability of
this value by subsequent ants, leading to convergence on a near-optimal value
of ki dependencies for each variable i.

The right side of the construction graph in Figure 2(b) includes the decision
components representing the valid dependency relationships that can occur
between the input variables, where the variables on the columns are parents. In
other words, the search space contains all the edges X → Y where X ̸= Y and
X,Y belongs to the input variables. The validity of an edge in this construction
graph depends on the primary structure that defines the edges between the
class and the input variables constructed using the first construction graph.
For example, according to Figure 2(a), since X2 and X5 are parents to the
class variable C, then no edge can be added from any input variable to X2

and X5. The invalid components Figure 2(b) are shown in light gray, based
on the selected components in Figure 2(a). On the other hand, an example
of a selected set of edges among the input variables in 2(b) is in black, and
the complete output structure of a MB classifier based on all the component
selections in Figure 2 is shown in Figure 3(b).

5.2 The Two-Phase ABC-Miner+1

The first proposed ACO algorithm for learning MB classifiers is ABC-Miner+1,
which executes in two sequential phases, as shown in Algorithm 4. In the first
phase (lines 4 from to 20), it finds the dependency relationship types between
the class variable and each of the input variables. Then, in the second phase
(line 21), it finds the dependency relationships among the input variables,
based on the structure discovered in the previous phase. Note that each phase
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Fig. 3 Example of output structures defining the two types of dependency relationships:
a) between the class and the input variables; and b) among the input variables.

is considered a completely separate ACO procedure, where the output of phase
one is fixed during the execution of phase two. In the first phase, the product is
a primary BN structure STR that contains only the edges between the input
variables and the class variable, if any exists, and does not contain edges
between the input variables.

Algorithm 4 Pseudo-code of ABC-Miner+1.
1: Begin
2: MBCfinal = ϕ;STRbsf = ϕ;
3: Initialize(); t = 1;
4: repeat
5: sets = trainingSet.Split(); /* split into learning and validation sets */
6: learningSet = sets[0]; validationSet = sets[1];
7: STRtbest = ϕ; /* an empty network structure */
8: for i = 1 → colony size do
9: STRi = FindRelationshipTypes(anti); /* create a candidate solution */
10: LearnParameters(STRi, learningSet);
11: if Quality(STRi, validationSet) > Quality(STRtbest, validationSet) then
12: STRtbest = STRi;
13: end if
14: end for
15: UpdatePheromone(STRtbest);
16: if Quality(STRtbest, validationSet) > Quality(STRbsf , validationSet) then
17: STRbsf = STRtbest;
18: end if
19: t = t+ 1;
20: until t = max iterations or Convergence(conv iterations);
21: STRfinal = PerformLocalSearch(STRbsf );
22: MBCfinal = ExecuteABCMiner(STRfinal); /* extend the final structure */
23: return MBCfinal;
24: End
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In essence, each anti in the colony constructs a candidate primary structure
STRi, using the FindRelationshipTypes() method (line 9). The construction
is performed by probabilistically selecting a relationship type for each input
variable with respect to the class variable from the construction graph (as
shown in Figure 2 (a)) according to the pheromone amounts associated with
the decision components. Then, the parameters are learnt for the structure
using the learning set (subset of the training set) to produce a BN classifier.
The predictive quality of the produced model is evaluated on the validation
set (a subset of the training set with no intersection with the learning set) and
compared with the iteration-best candidate solution STRtbest (lines 11 to 13).
The pheromone update is performed according to the quality of STRtbest, in
order to influence the component selection of the ants during the construction
of the subsequent candidate solutions (line 15).

After that, the quality of the iteration-best solution STRtbest is compared
to the quality of the best-so-far solution STRbsf (lines 16 to 18), in order to
keep track of the best constructed primary structure. This set of steps is re-
peated until the same solution is generated for a number of consecutive trials
specified by the conv iterations parameter (indicating convergence) or until
max iterations is reached (line 20). conv iterations, max iterations and
colony size are user-specified parameters. The best-so-far STRbsf structure
undergoes local search, and the optimized primary STRfinal structure is pro-
duced to be used in the next phase. Note that the BN structure discovered in
the first step contains no edges between the input variables, as shown in Figure
3(a). The quality evaluation, local search, pheromone update, and training set
split procedures are discussed in the following subsections.

In the second phase, the best constructed and optimized STRfinal struc-
ture of the BN classifier is extended to a complete Markov blanket of the class
variable, by finding the dependency relationships among the input variables.
To include this type of edge in the network structure, we execute the origi-
nal ABC-Miner algorithm in this phase (line 22). However, in the context of
ABC-Miner+1, the solution creation procedure (Algorithm 3) of ABC-Miner
starts with the STRfinal structure constructed in the previous phase, rather
than a Näıve-Bayes structure as in the ABC-Miner algorithm (Algorithm 3,
line 3). Therefore, the output of the procedure is a MB classifier, rather than
a BAN.

5.3 The Integrated ABC-Miner+2

The second proposed ACO algorithm, ABC-Miner+2, employs an integrated
approach for building MB classifiers, where the relationships between the class
and the input variables on one hand, and the relationships among the input
variables on the other hand, are discovered in synergic fashion using a single
phase, as shown in Algorithm 5.
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Algorithm 5 Pseudo-code of ABC-Miner+2.
1: Begin
2: MBCbsf = ϕ;
3: Initialize(); t = 1;
4: repeat
5: sets = trainingSet.RandomSplit(); /* split into learning and validation sets */
6: learningSet = sets[0]; validationSet = sets[1];
7: STRtbest = ϕ; MBCtbest = ϕ;
8: for i = 1 → colony size do
9: STRi = FindRelationshipTypes(anti); /* wrt the class variable */
10: LearnParameters(STRi, learningSet);
11: if Quality(STRi, validationSet) > Quality(STRtbest, validationSet) then
12: STRtbest = STRi;
13: end if
14: end for
15: for i = 1 → colony size do
16: MBCi = CreateSolution(anti, STRtbest); /* edges among input variables */
17: if Quality(MBCi, validationSet) > Quality(MBCtbest, validationSet) then
18: MBCtbest = MBCi;
19: end if
20: end for
21: MBCtbest = PerformLocalSearch(MBCtbest);
22: UpdatePheromone(MBCtbest);
23: if Quality(MBCtbest, validationSet) > Quality(MBCbsf , validationSet) then
24: MBCbsf = MBCtbest;
25: end if
26: t = t+ 1;
27: until t = max iterations or Convergence(conv iterations);
28: return MBCbsf ;
29: End

Recall that the two-phase ABC-Miner+1 algorithm finishes the construc-
tion of the primary BN structure (STR) that defines the edges between the
class and the input nodes, and fix this structure during the process of the sec-
ond phase, which extends this structure by finding the edges between the input
nodes to complete the construction of a MB classifier (MBC). We can notice
that the ABC-Miner+1 has two separate repeat-until loops representing the
search process of the ACO algorithms: 1) the one that produces the primary
structure STR (lines from 4 to 20 in Algorithm 4); and 2) the one that extends
the primary structure to a complete MBC (in the execution of ABC-Miner,
line 22 in Algorithm 4). By contrast, the ABC-Miner+2 algorithm consists of
one integrated repeat-until loop (lines from 4 to 27 in Algorithm 5), and in
each iteration of that loop a complete candidate MB classifier is constructed.

In each iteration of ABC-Miner+2, shown in Algorithm 5, the integrated
construction of a candidate MBC is carried out in two steps, as follows. First,
the ant colony responsible for creating candidate primary structures (using
the construction graph shown in Figure 2(a)) constructs several candidate
STR solutions, using the FindRelationshipTypes() method, and selects the
iteration-best STRtbest to go to the second step (lines 8 to 14). Then, the
ant colony responsible for extending a primary structure STR to a complete
MB classifier MBC (using the construction graph shown in Figure 2(b)),
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extends the best discovered structure STRtbest in the previous step, using
the CreateSolution() method, to construct several candidate complete MBC
solutions (lines 15 to 20).

The key integration aspect in this approach is that the pheromone update
is not performed on the two construction graphs until the complete MBC so-
lution is constructed, local searched and evaluated. More precisely, in the first
phase of the ABC-Miner+1 algorithm, the pheromone feedback of the ants is
performed in each iteration according to the quality of the primary structure
(line 15 in Algorithm 4), rather than a complete MB classifier. That is, the first
phase optimizes the primary structure, which defines the dependency relation-
ships between the class and the input variables, independently of the possible
dependency relationships that can be defined among the input variables. On
the other hand, in the integrated approach of ABC-Miner+2, the pheromone
feedback is performed according to the quality (tested on a validation set) of
the complete MB classifier (line 22 in Algorithm 5). The pheromone is up-
dated on the decision components in the two construction graphs, introducing
a relationship between the quality of the input variable-input variable depen-
dency selection and the input variable-class dependency selections. Therefore,
the optimization of the primary structure is also dependent on (or a part of)
the optimization of the whole MB classifier structure.

5.4 A Note Regarding the Execution Time

The execution of the procedure shown in Algorithm 3, which adds the edges
between the input variables, is more efficient (faster) in the context of our two
proposed ACO algorithms (line 22 in Algorithm 4 and line 16 in Algorithm 5)
than in the original ABC-Miner algorithm, which can be explained as follows.
First, the search space of this procedure is smaller in the context of Algorithms
4 and 5 than the search space in context of the original ABC-Miner. The reason
is that, in ABC-Miner, the initial structure is the Näıve-Bayes’ structure, where
all the input variables are children of the class variable, so all the candidate
edges between the input variables are available for selection by an ant (i.e.,
any variable can be a parent to any other variable).

On the other hand, in the proposed algorithms, the initial structure has
some input variables as parents of the class variable, and others are not even
related to the class variable. In this case, the candidate edges available for selec-
tion to be added to the network are only the edges that satisfy two conditions,
namely: the edge is connecting two input variables (rather than connecting an
input variable to the class), and the edge is pointing to a child node of the
class node. The algorithm does not consider adding edges between the class
variable’s parents because these edges do not affect the predictions (posterior
probability calculation) of the MB classifier. For example, in Figure 2 (a),
the valid edges to be added (white and black boxes) are the ones that are
pointing to the variables X1 and X3, since they are the only child nodes to
(effect of) the class variable, according to the previously constructed example
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structure, as shown in Figure 3. Hence, line 22 in Algorithm 4 and line 16 in
Algorithm 5 call a somewhat modified version of Algorithm 3, where the only
modified lines are the BAN initialization in line 3 and the implementation of
the GetV alidEdges() procedure.

Second, in the MB models produced by our proposed ACO algorithms, the
size of the CPT for the variables that do not have the class variable as parent
is relatively smaller compared to the CPT of the BN classifiers produced by
ABC-Miner, where the class node has to be a parent to all the variables, besides
their other parents. Smaller CPT size leads to less computational time.

Note that both ABC-Miner+1 and ABC-Miner+2 perform the same (max-
imum) number of solution quality evaluations, which represents the compu-
tational budget of each algorithm, and is equal to max iterations times
colony size times 2. In the sequential two-phase ABC-Miner+1 (Algorithm
4), the first half of the budget is utilized in the first phase (from line 4 to
line 20), while the second half of the budget is utilized in the second phase
(line 22). In ABC-Miner+2 (Algorithm 5), the whole computational budget is
utilized in one, integrated phase (from line 4 to 27).

5.5 Local Search

In the context of the two phase ABC-Miner+1 algorithm, local search is per-
formed in two different positions of the algorithm. The first position is at
the end of the first phase, where the local search is performed once on the
best-so-far primary structure STRbsf (line 21 in Algorithm 4), to produce the
optimized STRfinal that goes to phase two. In this procedure, the algorithm
tries a different relationship type for each variable with respect to the class
variable. For example, if the relationship type between the input variable Xi

and the class variable C in the STRbsf is “cause”, the algorithm temporar-
ily changes it: one time to “effect”, and another time to “none”. Then we
calculate the classification accuracy of each temporary BN structure (using a
validation set), and select the one with the highest quality. We perform the
same operations iteratively to each input variable Xi ∈ X. The best locally
optimized structure STRfinal goes to the second phase.

In the second phase, the conventional local search procedure of ABC-
Miner[49], embedded in the execution of line 22 of Algorithm 4, is performed
after each iteration. The procedure tentatively removes one edge between two
input variables at a time from the constructed MBC in a reverse order (remov-
ing last the edge that was added to the network first). If that removal improves
the quality of the MB classifier, this edge is removed permanently from the
network; otherwise it is added once again. This process continues until all the
edges between the input variables are tested to be removed from the MB clas-
sifier, and then the MBCfinal with the highest quality is returned. Note that
the local search of the second phase does not affect the primary structure (the
edges between the class and the input variables) discovered and optimized in
the first phase.
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In the integrated ABC-Miner+2, the local search procedure is performed
in one position in the algorithm (line 21 in Algorithm 5). In each iteration
t, the iteration-best constructed MB classifier MBCtbest undergoes the local
search as follows. First, the edges between the input variables are temporarily
removed, one edge at a time, in a reversed order, where the edges whose
removal improves the quality of the MBCtbest (tested on a validation set) are
removed permanently from the structure. Next, the edges between the class
and the input variables are tested to be removed, that is, for each variable
that has a dependency relationship to the class variable other that “none”, we
temporarily change it to “none”. This is performed for one variable at a time
for each valid variable, where the change is kept if it improves the quality of
the MB classifier.

We can notice that the second part of this local search procedure (involv-
ing the edges between the class and the input variables) is simpler than its
corresponding procedure in ABC-Miner+1 that optimizes the primary struc-
ture STRbsf , since only the “none” relationship type is tried for only a subset
of variables (which have edges with the class), rather than trying the other
two relationship types for each variable. This is intended for two reasons. The
first reason is to reduce the computational time, since this procedure is called
in each iteration in ABC-Miner+2, (line 21 in Algorithm 5), unlike ABC-
Miner+1, which calls the local search procedure only once on the best-so-far
constructed primary structure (line 20 in Algorithm 4).

The second reason is that changing the relationship type from “cause” to
“effect” or vice versa, after adding a dependency relationship among the input
variables, may introduce irrelevant edges in the MBC structure. For example,
suppose that X and Y are input variables, and there is a dependency relation-
ship between them: X → Y . Suppose that the relationship type between Y
and the class variable C is “effect”, i.e., the edge is C → Y . Now suppose we
change the relationship type from “effect” to “cause”, i.e., the edge becomes
C ← Y . In this case, the dependency relationship X → Y between X and Y
becomes irrelevant to the class variable prediction and outside the scope of
the class variable’s Markov blanket.

5.6 Solution Quality Evaluation

As discussed in Section 4.2, GBN algorithms do not recognize any special
target class variable. They treat all the variables of the dataset in the same
way, and they are used to answer all types of inference queries about any set
of variables, which may or may not include the class variable. By contrast, a
BN classifier is only concerned about the queries regarding the class variable,
and so the BN classification algorithm should be designed to build a model
that maximizes its effectiveness concerning the prediction of the target class
variable.

Taking into account the aforementioned argument, ABC-Miner evaluates
the quality of a candidate BN during the training phase directly as a classifier,
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using the accuracy measure as the indicator of the predictive performance of
that classifier. Accuracy is a simple and yet popular predictive performance
measure, computed as:

Accuracy =
|Correct|
|V Set|

, (6)

where Correct is the set of the correctly classified instances, and V Set is the
current validation set.

However, the conventional accuracy measure discards the fact that a BN
classifier does not only predict a class label of any given instance, it also as-
sociates a probability to this predicted class label. This probability represents
the confidence of the BN classifier regarding its prediction.

More precisely, suppose we have two candidate BN classifiers BNC1 and
BNC2, which are used to classify instance X l, where l is the correct class label
of the instance. Now let us assume that the posterior probabilities of the class
C given instance X and each BN classifier are (C = l|X l, BNC1)=0.9 and
(C = l|X l, BNC2)=0.55. If we used accuracy as the predictive performance
measure, instance X l will be counted as 1 correctly classified instance for both
BN classifiers, and the performance of the two classifiers would be equal (with
respect to the classification of instance X). However, this discards the fact
that BNC1 produced a higher posterior probability of the correct class label
than the one produced by BNC2. Therefore, during the training phase, BNC1

should be considered to have a higher quality than BNC2, and consequently
should receive a better pheromone feedback.

We have addressed such an issue in our ACO algorithms for learning MB
classifiers, where we used probabilistic accuracy to evaluate the quality of the
candidate constructed MBC solutions and perform pheromone update. As
shown in Equation 7, the probabilistic accuracy will count each of the classified
instances in the validation set according to the posterior probability of its
correct class label produced by the candidate MB classifier.

Probabilistic Accuracy =

∑|V Set|
j P (C = l|X l

j)

|V Set|
, (7)

where X l
j is the j-th instance in the validation set, and l is the correct class

label of instance Xj . Note that the probabilistic accuracy (Equation 7) is
only the first component of the quality measure used to evaluate a candidate
MB classifier. The second component, which concerns mitigating overfitting,
is described in the next subsection.

As for pheromone update, we use the same procedure employed by the
ABC-Miner algorithm [49]. Concerning pheromone deposit, the pheromone
amount is increased on each decision component according to the quality of
two constructed solutions: the iteration-best tbest and the best-so-far bsf us-
ing a weighted reinforcement strategy. The strategy aims at focusing on the
exploration aspect during the early iterations in the algorithms by giving more



Title Suppressed Due to Excessive Length 23

weight to the tbest solution in depositing pheromone. Gradually, the proce-
dure moves to exploitation as the search progresses by giving more weight to
the bsf in depositing pheromone, leading to convergence towards a good so-
lution. Then, the pheromone amounts are normalized to simulate pheromone
evaporation [49].

5.7 Overfitting Mitigation

A key objective of a classification algorithm is to learn models with good gen-
eralization capabilities, i.e., models that are able to accurately predict the class
labels of previously unknown instances. In fact, the available instances in the
dataset used for building and validating a classification model are considered
just a sample of a larger population of possible instances in the application
domain of concern. The aim is to build a model that can generalize over the
current dataset to correctly fit the data of the whole application domain as
much as possible [22,52].

Overfitting occurs when the induced model (classifier) reflects good clas-
sification performance (fit) on the training (in-sample) data used for in the
learning process, yet shows bad predictive performance (generalization) in-
volving new/testing data. This is in general a property of complex classifiers
that have a high degree of freedom — i.e., a BN classifier with a large num-
ber of dependency relationships (edges). In general, overfitting can occur due
to two factors. First, if the classification algorithm used the whole training
dataset for both learning (building the model) and validating the model’s ac-
curacy. In this case, the generalization ability would not be tested during the
training phase, since the model would be validated on the same instances used
to learn that model. The quality of the induced classifier might be due to a
high (undesirable) fit on the training set, and the same classifier might show
a bad predictive accuracy on the unseen test (out-of-sample) dataset. Second,
allowing the classification algorithm to build too complex models might lead it
to learn an over-tuned model that “memorizes” the training data, which harms
its generalization ability. Learning, in the sense of using a set of instances to
build a classifier that can predict the class of unseen instances, needs induction,
which refers to discovering a general hypothesis (classification model) that can
describe both the sample instances at hand and the whole population of the
instances in the application domain as well [38,52].

In the context of our proposed algorithms, we tried to mitigate the over-
fitting problem, to produced well-generalized MB classification models, as fol-
lows. First, in order not to allow building complex BN structures, we limited
the maximum number of parents that each node can have in the network to
3 (as applied in ABC-Miner [45,49]). However, learning MBC models is more
prone to overfitting than learning BANs, since in the class variable MB struc-
ture, the class can have input variables as parents. In an extreme case, if the
class variable would have all the input variables as its parents, the produced
model would be perfectly memorizing the training data in the parameters of
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the constructed BMC. More precisely, one big CPT would be built for the class
variable that stores the probability of each class label given each combination
of the input variables, which is an undesirable behavior.

We have noticed that, the more parent nodes the class variable has, the
more it is prone to overfitting. Therefore, we introduced a penalty compo-
nent to the quality evaluation formula, which affects the pheromone update
procedure, based on the number of parents of the class variables, as follows:

Quality(MBC) = ProbabAcc(MBC, validation set)− Penalty(MBC), (8)

Penalty(MBC) =
1

2(n−p)
, (9)

where ProbabAcc() refers to the probabilistic accuracy measure that is shown
in Equation 7, p is the number of parent nodes to the class variables, and n is
the total number of the input variables. Note that Equation 8 represents the
complete formula for evaluating a candidate MBC solution quality to perform
pheromone update.

As shown in Equation 9, the penalty value can range from 0 to 1 (the same
range as the probabilistic accuracy), according to the number of parents that
the class variable has. If all the input variables are parents to the class node
(i.e., p = n) – which is totally undesirable, the penalty value would be the
maximum (equals 1), and the total quality value of the model according to
Equation 8 would be less than or equal to 0. However, if the p = n − 1, the
penalty would be reduced to its half. This means that, according to Equation
9, adding one more parent to the class variable would double the penalty
value, as it would be increasing the possibility of the MBC model to overfit
the training data.

Second, instead of having the algorithm build the MB classifier over the
whole training set, the training set is split into two mutually exclusive parts:
1) the learning set, which contains 75% of the training set and is used to
build a candidate MBC (i.e., BN parameter learning, as shown in Algorithm
4, line 10 and Algorithm 5, lines 10 and 16); and 2) the validation set, which
contains 25% of the training set and is used to evaluate the quality of the
constructed MBC for pheromone update. Such a strategy is common in many
classification algorithms. However, these two parts are usually fixed during the
whole training process, which may lead to optimize the model construction
over the validation set. To avoid that the model overfits a fixed validation set,
we propose randomly changing the partitioning of the learning/validation sets
in each iteration, in order to push the generalization ability of the constructed
models over any part of the training set. In our experiments, we utilize this
idea in the two versions of ABC-Miner+ (as shown in Algorithm 4 and 5, lines
5 to 6), as well as in the original ABC-Miner algorithm.
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6 Experimental Methodology

6.1 Comparative Evaluations

We compare the predictive accuracy of our proposed ACO algorithms for learn-
ing MB classifiers with our previously introduced ABC-Miner that learns BAN
classifiers, as well as three other widely used Bayesian Network (BN) classi-
fiers, namely Näıve-Bayes, Tree Augmented Näıve-Bayes (TAN) and General
Bayesian Network (GBN). A variation of the Chow-Liu (CL) tree algorithm
[3] is used for building TANs, as follows. First, it computes the conditional
mutual information I(X,Y |C) between each pair of variables X and Y given
class variable C. Then it builds a complete undirected graph connecting all the
input variables to find the maximum weighted spanning tree from the graph,
where the weight of the edge X → Y is annotated with I(X,Y |C). After that,
it chooses a root variable and sets the direction of all edges to be outwards of
it. Finally, it adds one edge from the class node to each of the other variables
to complete a TAN classifier. As for the construction of GBNs, Algorithm-B
[2] is used to build a general Bayesian network. The algorithm utilizes a greedy
search to optimize the K2 scoring function for the Bayesian network. Then,
the Markov blanket of the class node is extracted from the BN to be used as
a MB classifier. We implemented in the experiments another version of the
GBN learning algorithm, which optimizes the predictive accuracy, denoted as
GHC-Acc. That is, it starts with an edge-less BN structure, and incrementally
adds the edge which leads to the highest increase in classification accuracy
on the validation set. Table 1 presents the main properties of the used BN
classification algorithms.

Table 1 Summary of the BN classification algorithms used in the experiments.

Algorithm Type Search Strategy Output Optimization

Näıve-Bayes Determ. - NB -

CL-Tree Determ. Max. Spanning Tree TAN Cond. Mut. Info.

Algorithm-B Determ. Greedy Hill Clim. GBN K2 Function

GHC-Acc Determ. Greedy Hill Clim. GBN Predictive Acc.

ABC-Miner Stoch. Ant Colony Optim. BAN Predictive Acc.

ABC-Miner+1 Stoch. Ant Colony Optim. MBC Probabilistic Acc.

ABC-Miner+2 Stoch. Ant Colony Optim. MBC Probabilistic Acc.

Besides the BN classification algorithms, we compare our proposed ACO
algorithms with three well-known classification algorithms: Ripper, C4.5, and
SVM [53]. Ripper is a classification rule induction algorithm, which learns a
classification model that consists of a list of classification rules, where each
rule has the form: “IF (Antecedent) THEN (Class)”. C4.5 builds classification
decision trees, where the internal nodes are the input attribute values of the
dataset, and the leaf nodes are the classes to be predicted. An SVM maps
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the instances into a higher-dimensional feature space and then finds the best
hyper-plane for separating instances of different classes – where the best hyper-
plane is the one with the greatest possible margin (a gap separating instances
of different classes in the data space). Note that SVMs have the disadvantage
of producing black-box classification models that can hardly be interpreted by
users [53,17,16], unlike the other types of classifiers used in our experiments.

6.2 Experimental Setup

The experiments were carried out using stratified 10-fold cross validation [53].
For the stochastic ACO-based algorithms, we run each algorithm 10 times
– using a different random seed to initialize the search each time – for each
cross-validation fold. In the case of the deterministic algorithms, each is run
just once for each fold.

The parameter configuration used in our experiments is shown in Table
2. Note that the max iterations parameter refers to the maximum number
of iterations used in ABC-Miner and ABC-Miner+2. However, in the case of
the two-phase ABC-Miner+1, each phase is allocated half of the total max-
imum number of iterations (i.e. 500 iterations in our experiments). On the
other hand, for the greedy Algorithm-B and GHC-Acc algorithms, we re-
fer to max iterations as the maximum number of solution evaluations that
the algorithm performs during the hill-climbing search to build a GBN. It
is set to 1000, which is equal to the value of max iterations multiplied by
colony size used for our stochastic ant-based algorithms. For the sake of fair
comparison, we limit each algorithm to the same fixed number of solution eval-
uations to construct the model. However, the maximum number might not be
utilized completely; ACO-based algorithms might only use a smaller number
of iterations if they converged earlier and the greedy-based algorithms might
also stop earlier if they get stuck in a local optimum.

Unlike our ant-based algorithms, the number of parents (k-dependencies)
must be specified for Algorithm-B and GHC-Acc. We set it to 3, which is the
maximum number of parents used in our ACO algorithm, where the number
of parents is selected dynamically at each iteration (see Section 5.1). Note
also that we have employed the two overfitting mitigation procedures (i.e.,
adding the penalty component in the quality evaluation function and randomly
splitting the training set into a learning set and a validation set each iteration),
discussed in Section 5.7, in both versions of the ABC-Miner+ algorithm. As
for the other classification algorithms, in our experiments, we used WEKA
[53] implementations for Rippper (JRip), C4.5 (J48), and SVM (SMO), each
with its default parameter settings.

6.3 Evaluation Datasets

The performance of ABC-Miner+1 and ABC-Miner+2 was evaluated using 33
public-domain datasets from the University of California at Irvine UCI dataset
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Table 2 Parameter settings of ABC-Miner+ used in experiments.

Parameter Value

max iterations 100

colony size 10

conv iterations 10

max parents 3

.

repository [1]. The main characteristics of the datasets, such as number of
instances, number of predictor attributes and number of classes are shown in
Table 3.

Datasets having continuous attributes were discretized in a pre-processing
step, using the well-known C4.5-Disc algorithm [53], applied only to the train-
ing set of each dataset (i.e., the cut-points of the intervals were computed by
C4.5-Disc using the training data only, and the computed cut-points were used
to discretize both the training and the test sets).

7 Computational Results

7.1 Predictive Performance

Table 4 reports the mean and the standard error (mean± standard error) of
the predictive accuracy values obtained by 10-fold cross validation for the 33
datasets, where the highest accuracy for each dataset is shown in bold face.
The last row shows the average rank of each algorithm in terms of predictive
accuracy. The average rank for a given algorithm g is obtained by first com-
puting the rank of g on each dataset individually. The individual ranks are
then averaged across all datasets to obtain the overall average rank. Note that
the lower the value of the rank, the better the algorithm.

As shown in Table 4, our proposed ACO-based algorithm for learning MB
classifiers using the integrated approach, ABC-Miner+2, obtained the best
overall rank in terms of predictive accuracy of 2.7, and achieved the best
predictive results in 10 datasets out of 33. SVM came in the second place by
obtaining 3.2 as an overall rank, and achieved the best predictive results in
10 datasets as well. The two-phase ACO algorithm for learning MB classifiers,
ABC-Miner+1, came in the third place with overall rank of 3.5, and achieved
the best predictive results in 6 datasets. In the fourth place came the original
ABC-Miner algorithm, which learns BAN classifiers, with overall rank of 4.5,
and achieved the best results in one dataset. C4.5 and Ripper came in fifth and
the sixth place, respectively, by obtaining 4.8 and 5.9 overall rank, respectively.
C4.5 achieved the best predictive results in 4 datasets, while Ripper obtained
the best result in 6 dataset.

Table 5 shows the critical values’ results of the statistical significance tests
according to the non-parametric Friedman test with Holm’s post-hoc test [11,
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Table 3 Description of datasets used in the experiments.

Dataset Cases Attributes Classes

abalone 4177 8 29

balance scale 625 4 3

breast cancer (wisconsin) 286 9 2

car evaluation 1,728 6 4

chess (rook vs. pawn) 3,196 36 2

contraceptive method choice 1,473 9 3

statlog credit (australian) 690 14 2

statlog credit (german) 1,000 20 2

dermatology 366 33 6

ecoli 336 8 8

glass 214 10 7

hayes-roth 160 4 3

heart (cleveland) 303 12 3

heart (statlog) 270 13 2

hepatitis 155 19 2

ionosphere 351 34 2

iris 150 4 3

lung cancer 32 56 3

monks 432 6 2

mushrooms 8,124 22 2

nursery 12,960 8 5

parkinsons 197 23 2

page Blocks classification 5,473 10 5

pima diabetes 768 8 2

post-operative patient 90 8 3

segmentation 2,310 19 7

soybean 307 35 19

SPECT heart 267 22 2

tic-tac-to 958 9 2

voting records 435 16 2

wine 178 13 3

yeast 1,484 8 10

zoo 101 17 7

20], which is used for comparing multiple algorithms on multiple datasets
[26]. The results show the statistical comparison between the results of all the
used algorithms with respect to the results of our two proposed algorithms:
ABC-Miner+1 and ABC-Miner+2. We performed the Friedman test using
the freely available Java program suggested by Garcia et al. in [20], which
applies the test with two different statistical significance levels: α = 0.05 and
α = 0.1. The values shown are the adjusted Holm p-values, where a double
underlined valued indicates that the difference between the predictive results of
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the two corresponding algorithms in the table is statistically significant at 5%
level, and a single underlined value indicates that the difference is statistically
significant at 10% level. A result shown with no underlines indicates that there
is no statistically significant difference between predictive performances of the
corresponding algorithms.
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Table 5 The non-parametric Friedman statistical test results (adjusted p-values) with
Holm’s post-hoc correction.

Algorithm ABC-Miner+1 ABC-Miner+2

Näıve-Bayes 7.8E-1 1.9E-13

CL-Tree 3.3E-4 1.2E-6

Algorithm-B 3.4E-7 2.4E-10

GHC-Acc 0.0023 1.4E-5

ABC-Miner 1.0 0.0946

Ripper 0.0681 0.0012

C4.5 1.0 0.08012

SVM 1.0 1.0

7.2 Model Simplicity

Table 6 reports the model size results – in terms of the number of edges –
of the models produced by the BN classification algorithms, as the average
of the 10-fold cross validation experiments. The last row in the table shows
the average rank of results for the model sizes over all the datasets, where the
lower the rank, the better the algorithm. Note that we do not report the size
results for Näıve-Bayes, since it is obvious that it produces the smallest model
size; a Näıve-Bayes model has a number of edges that is equal to the number
of input variables in the dataset.

As shown in Table 6, TAN, as expected, produces the smallest BN models
in general, since the number of parents for each node in a TAN is restricted
to one, besides the class parent. The reason why in some cases the ACO-
based algorithm produces smaller models is due to the local search procedure
that might remove edges. We can also see that, in most of the datasets, the
MB classifier structures produced by our proposed ACO algorithms are smaller
than the BAN models produced by ABC-Miner. More precisely, ABC-Miner+1

and ABC-Miner+2 obtained overall rankings of 2.3 and 3.1, respectively, while
ABC-Miner obtained overall ranking of 4.3 (coming in the last place).

7.3 Execution Time

The execution time results are shown in Table 7. The running time (in seconds)
of each algorithm in each dataset is reported. Besides, the ratio of the running
time of each algorithm to the ABC-Miner algorithm (as a baseline) is shown in
the column with ”ratio” header in bold face. The last row in the table reports
the average ratio of the running time of each algorithm to ABC-Miner across
all the datasets. All the experiments were performed with an Intel dual-core i7
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Table 6 Model size (mean± standard error) results in terms of number of edges.

Dataset CL-Tree Algo-B GHC-Acc ABC-Miner ABC-Miner+1 ABC-Miner+2

abl 8.0 ± 0.0 18.9 ± 2.2 12.9 ± 1.8 28.5 ± 2.4 21.7 ± 2.4 24.5 ± 2.7

bal 4.0 ± 0.0 3.7 ± 2.5 3.6 ± 3.2 3.4 ± 3.2 3.4 ± 2.1 4.1 ± 2.2

bcw 9.0 ± 0.0 18.7 ± 2.8 16.2 ± 2.4 23.6 ± 2.8 14.8 ± 1.4 20.4 ± 1.7

car 6.0 ± 0.0 13.6 ± 2.7 13.1 ± 1.2 15.5 ± 2.7 11.2 ± 2.1 13.3 ± 2.7

chess 36.0 ± 0.0 63.4 ± 2.3 65.7 ± 2.3 71.7 ± 1.7 61.8 ± 2.4 58.6 ± 2.8

cmc 9.0 ± 0.0 20.6 ± 2.2 12.6 ± 1.2 18.7 ± 1.7 10.4 ± 1.7 14.3 ± 1.5

crd-a 14.0 ± 0.0 17.4 ± 1.4 15.2 ± 2.7 23.6 ± 1.7 15.3 ± 1.6 16.6 ± 1.7

crd-g 20.0 ± 0.0 34.6 ± 1.2 30.4 ± 1.3 28.2 ± 2.5 18.5 ± 2.6 18.6 ± 1.4

drm 33.0 ± 0.0 22.5 ± 2.4 23.2 ± 2.7 34.6 ± 1.6 26.6 ± 2.1 33.8 ± 2.7

ecoli 8.0 ± 0.0 5.6 ± 1.2 9.8 ± 1.8 15.6 ± 2.6 17.2 ± 1.8 17.9 ± 1.8

glass 10.0 ± 0.0 8.2 ± 1.1 10.3 ± 1.5 15.5 ± 2.7 11.4 ± 2.8 10.2 ± 2.8

hay 4.0 ± 0.0 2.8 ± 2.4 3.1 ± 1.7 12.7 ± 2.6 7.3 ± 1.3 8.6 ± 1.7

hrt-c 12.0 ± 0.0 21.8 ± 1.6 20.4 ± 2.6 18.4 ± 1.5 21.3 ± 1.6 20.6 ± 1.1

hrt-s 13.0 ± 0.0 22.6 ± 2.4 19.6 ± 1.1 26.4 ± 1.8 26.9 ± 2.3 22.4 ± 2.6

hep 15.0 ± 0.0 24.8 ± 1.2 20.4 ± 1.2 26.9 ± 1.6 22.5 ± 2.4 24.6 ± 2.2

iono 34.0 ± 0.0 31.2 ± 1.4 36.7 ± 1.6 43.8 ± 1.8 41.6 ± 2.5 45.5 ± 1.3

iris 4.0 ± 0.0 3.2 ± 2.1 3.2 ± 2.4 4.9 ± 2.5 3.2 ± 1.8 3.4 ± 2.7

lung 56.0 ± 0.0 38.6 ± 2.3 34.8 ± 1.3 44.5 ± 1.7 36.7 ± 2.5 34.9 ± 2.4

monk 6.0 ± 0.0 15.8 ± 1.4 8.6 ± 1.3 17.4 ± 1.7 9.3 ± 1.2 12.4 ± 1.8

mush 22.0 ± 0.0 29.7 ± 1.3 18.3 ± 1.3 38.4 ± 1.2 27.9 ± 1.5 31.5 ± 1.6

nurs 8.0 ± 0.0 10.5 ± 2.3 12.4 ± 2.2 22.6 ± 2.7 14.6 ± 2.5 14.2 ± 2.8

park 23.0 ± 0.0 9.4 ± 1.2 14.9 ± 2.2 25.6 ± 1.8 19.7 ± 1.5 19.6 ± 1.2

pbc 10.0 ± 0.0 25.6 ± 1.4 19.4 ± 1.4 29.9 ± 2.6 21.7 ± 1.6 23.4 ± 1.2

pima 8.0 ± 0.0 14.2 ± 2.2 9.2 ± 2.7 10.5 ± 1.8 7.3 ± 2.3 7.0 ± 1.8

pop 8.0 ± 0.0 13.4 ± 1.1 11.5 ± 2.4 14.7 ± 1.6 8.2 ± 1.2 9.1 ± 1.2

seg 19.0 ± 0.0 28.8 ± 2.3 25.2 ± 1.3 39.9 ± 1.5 23.7 ± 2.5 28.9 ± 1.6

soy 35.0 ± 0.0 21.7 ± 2.2 20.5 ± 2.2 21.8 ± 2.3 28.6 ± 1.3 22.7 ± 2.5

SPECT 22.0 ± 0.0 19.6 ± 1.7 19.4 ± 1.5 23.1 ± 1.7 25.9 ± 2.2 24.7 ± 2.2

ttt 9.0 ± 0.0 20.2 ± 2.1 13.1 ± 1.5 15.8 ± 1.8 10.6 ± 2.5 14.2 ± 1.5

vot 16.0 ± 0.0 25.5 ± 1.8 22.6 ± 2.8 34.6 ± 1.5 15.6 ± 1.8 18.9 ± 1.6

wine 13.0 ± 0.0 7.3 ± 1.3 8.7 ± 2.4 9.8 ± 1.7 13.2 ± 2.3 12.8 ± 1.8

yeast 8.0 ± 0.0 8.6 ± 1.4 11.9 ± 1.6 20.7 ± 2.2 12.7 ± 1.7 12.2 ± 2.1

zoo 17.0 ± 0.0 12.5 ± 1.5 10.7 ± 1.1 20.3 ± 2.8 19.5 ± 1.7 16.2 ± 1.5

Rank 1.4 2.4 1.6 4.3 2.3 3.1

and 8G RAMmachine, running Windows 7 operating system. We implemented
our algorithms with C# programming language, using .Net framework v4.0.

As shown in Table 7, both of our proposed algorithms for learning MB
classifiers, ABC-Miner+1 and ABC-Miner+2, took less computational time,
overall, compared to the ABC-Miner algorithm, since they achieved on av-
erage about 79% and 87% of the running time of ABC-Miner, respectively.
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Table 7 Running time (in seconds) results.

Dataset CL-Tree Algo-B GHC-Acc ABC+1 ABC+2 ABC
time ratio time ratio time ratio time ratio time ratio time

abl 210 0.12 7400 4.11 1600 0.89 1300 0.72 1500 0.83 1800

bal 20 0.01 2105 0.96 2300 1.05 2700 1.23 3200 1.45 2200

bcw 34 0.02 1200 0.6 3500 1.75 980 0.49 1400 0.7 2000

car 27 0.03 700 0.7 5700 5.7 710 0.71 750 0.75 1000

chess 590 0.16 6800 1.84 6700 1.81 3100 0.84 2700 0.73 3700

cmc 78 0.01 2100 0.39 5800 1.07 2050 0.38 3200 0.59 5400

crd-a 21 0.01 2200 1 2100 0.95 2110 0.96 2100 0.95 2200

crd-g 36 0.01 1400 0.31 4300 0.96 4200 0.93 4100 0.91 4500

drm 26 0.01 500 0.18 4600 1.64 1900 0.68 2700 0.96 2800

ecoli 7 0 700 0.47 1600 1.07 1400 0.93 1600 1.07 1500

glass 8 0 400 0.08 700 0.14 3800 0.76 3800 0.76 5000

hay 6 0.02 15 0.05 200 0.67 150 0.5 180 0.6 300

hrt-c 21 0.01 400 0.1 2200 0.52 3600 0.86 3900 0.93 4200

hrt-s 32 0.01 600 0.13 4300 0.96 3600 0.8 4000 0.89 4500

hep 30 0.01 780 0.31 640 0.26 200 0.08 850 0.34 2500

iono 13 0 450 0.17 2200 0.81 1900 0.7 2100 0.78 2700

iris 1 0.01 10 0.1 100 1 100 1 110 1.1 100

lung 1 0.04 15 0.6 30 1.2 20 0.8 25 1 25

monk 70 0.02 470 0.11 3000 0.7 3700 0.86 5200 1.21 4300

mush 180 0.12 6000 4 1800 1.2 1200 0.8 1500 1 1500

nurs 90 0.01 6500 0.76 9000 1.06 6400 0.75 6000 0.71 8500

park 26 0.01 400 0.19 6000 2.86 2300 1.1 2100 1 2100

pbc 320 0.09 9200 2.63 3500 1 3200 0.91 3100 0.89 3500

pima 20 0.01 2105 0.96 2300 1.05 2700 1.23 3200 1.45 2200

pop 1 0 14 0.02 100 0.14 300 0.43 310 0.44 700

seg 160 0.06 1200 0.43 3900 1.39 2800 1 2700 0.96 2800

soy 24 0.02 320 0.25 4200 3.23 1160 0.89 890 0.68 1300

SPECT 45 0.01 690 0.14 4600 0.96 4700 0.98 4600 0.96 4800

ttt 24 0.01 3800 1.46 2300 0.88 1200 0.46 1200 0.46 2600

vot 35 0.01 500 0.12 1800 0.44 2800 0.68 3900 0.95 4100

wine 27 0.11 200 0.8 700 2.8 220 0.88 230 0.92 250

yeast 30 0.01 3500 1.17 3800 1.27 3200 1.07 3000 1 3000

zoo 29 0.12 180 0.72 250 1 190 0.76 210 0.84 250

Avg. ratio 0.03 0.68 1.3 0.79 0.87

Moreover, both of them outperformed the greedy hill-climbing GHC-Acc for
learning GBNs. Obviously, Näıve-Bayes and TAN algorithms took much less
computational time compared to the other Bayesian classification learning al-
gorithms used in the experiments.
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8 Discussion

According to the predictive accuracy results, our two proposed ACO algo-
rithms for learning MB classifiers obtained better results than the original
ACO algorithm that learns BAN classifiers: ABC-Miner+1 and ABC-Miner+2

achieved better overall rank and reached the highest predictive accuracy re-
sults in more datasets compared to ABC-Miner. However, according to the
Friedman test with post-hoc Holm test, only ABC-Miner+2 was shown to
be statistically better than ABC-Miner at the significance level of 10%. Note
that in [48], we used the matched-pair samples Wilcoxon Signed-Rank statis-
tical test [26] to compare the predictive accuracy results of ABC-Miner+1 and
ABC-Miner where the samples are the datasets. In that work ABC-Miner+1

was shown to be statistically better at the significance level of 5%. However,
in this current paper we are using different and more sophisticated statisti-
cal tests, which are necessary due to the fact that in the current paper we
are comparing six algorithms (which requires the p-value to be corrected ac-
cordingly), unlike the case in [48], where only two algorithms were compared.
Hence, overall the results show that the proposed extension for learning class
variable MB structures, which allows capturing different types of dependency
relationships between the class and the input variables, as well as performing
embedded variable selection, improved the performance of the original ABC-
Miner algorithm in terms of the predictive accuracy of the produced models.

On the other hand, ABC-Miner+1 and ABC-Miner+2 significantly outper-
formed the conventional BN classification algorithms, including Algorithm-B
and GHC-Acc, which also produce MB classifiers. As discussed in Section 4.2,
our proposed algorithms are focused on directly learning MB classifier struc-
tures, rather than building a GBN structures and then extracting the class
variable’s MB. In that sense, in our algorithms, all the computational bud-
get (maximum number of solution evaluations as discussed in Section 6.2) is
utilized for adding and evaluating relevant edges to the target class variable.
However, in case of the GBN learning algorithms, the algorithm is allowed
to add and evaluate any edge in the BN, which wastes part of the computa-
tional budget with irrelevant structures to the target class variable. Moreover,
our proposed algorithms use the ACO-meta heuristic, which performs a global
search that is less likely to get stuck into a local optimum in the search space,
compared to the greedy local search performed by Algorithm-B and GHC-Acc.

In addition, both our proposed ACO algorithms were shown to be very
competitive to well-known classification algorithms: Ripper, C4.5 and SVM.
SVM, in particular, is currently a very popular type of classification algorithm
because it often achieves higher predictive accuracy than other types of algo-
rithms – although of course this is not always the case, as shown by the results
in Table 4. Note, however, that a classifier built by SVM has the disadvantage
of being a “black-box” from the perspective of users - i.e., the output of an
SVM algorithm can hardly be interpreted by users. By contrast, MB classifiers
represent graphical models of the dependencies between variables that can be
directly interpreted by users, which is an advantage in many application do-
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mains. For a review of the importance of comprehensible classification models,
see [17,36,16].

Figure 4 shows an example of the comprehensible graphical model of an MB
classifier, produced by ABC-Miner+2, for the “voting records” dataset used in
our experiments, with comparison to a BAN model produced by the original
ABC-Miner algorithm for the same dataset. Note that the MB model shown
in the figure has better classification accuracy and fewer edges, compared to
its correspondent BAN model, which makes it more useful and reliable.

According to the model size results, the ABC-Miner+1 and ABC-Miner+2

algorithms that learn MB classifiers, overall, produced smaller BN models, in
terms of the number of edges, compared to the BAN classifiers produced by the
original ABC-Miner algorithm. This is due to the variable selection process,
as well as allowing the class to have input variables as parents. These options
have limited the number of the available edges to be added between the input
variables in the network during the execution of the two variations of the ABC-
Miner+ algorithm, compared to the BAN construction in ABC-Miner. This,
in turn, leads to producing models with a smaller number of edges. Figure 4
shows an example of an MB classifier that has fewer edges compared to a BAN
model constructed for the same dataset.

Besides, compared to GBN learning algorithms, our proposed algorithms
for learning MB classifiers produced, overall, larger model sizes (however,
ABC-Miner+1 obtained better ranking than Algorithm-B). The reason be-
hind this, as explained in the previous section, is that our algorithms use the
computational budget to add relevant edges to the MB of the target class. On
the other hand, for the Algorithm-B and GHC-Acc, during the search process,
several irrelevant edges are tested and added to the BN, which wastes a lot
of the allowed iterations without adding relevant edges to the class variables’
MB. Therefore, the extracted MB would have a relatively low number of edges,
with low predictive accuracy (see Section 7.1).

According to the computational time results, our extensions seemed to
improve the execution performance of the ABC-Miner algorithm, as discussed
in Section 5.4. In general, both of the proposed algorithms execute two steps
(in two sequential phases as in ABC-Miner+1, and in one integrated phase as
in ABC-Miner+2). The first step finds a primary structure that defines the
edges between the class and the input variables, and the second step finds the
edges among the input variables. If the primary structure – which defines the
edges between the class and the input variables – has an input variable as a
parent to the class variable, no edge pointing to this input variable becomes
available in the process of finding the edges among the input variables. The
first step reduces the search space for the second step, while the first step does
not take much time. This makes the overall execution faster.

In addition, it is noticeable that GHC-Acc took more computational time
compared to our proposed algorithms. As discussed earlier, the algorithm eval-
uates many irrelevant edges in the search space, which consumes a lot of execu-
tion time before finding an edge that is relevant to the target class prediction
and can improve the classification accuracy of the model. Note that GHC-Acc
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Fig. 4 BN classifiers output from voting records dataset. (a) A BAN that is produced by
ABC-Miner, where the class variable is parent to all the input variables. (b) MBC that is
produced by ABC-Miner+2, where the class variable has three parent input variables, and
three other input varibales are not included in the model as an effect of the feature selection.
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is not designed to learn MB classifiers; rather, it learns GBNs using accuracy
as a scoring function. Note also that, although Algorithm-B suffers from the
same search space problem, it uses the decomposable K2 scoring function,
which takes less time for BN re-evaluation.

9 Concluding Remarks

In this paper, we have proposed two new ACO algorithms for Markov blan-
ket classifiers: ABC-Miner+1, which utilizes two sequential phases, and ABC-
Miner+2, which uses one integrated phase in the learning process. Our pro-
posed algorithms build BN structures in which the class variable does not have
to be a parent to all the input variables, which performs an embedded variable
selection with respect to the target class. Moreover, the algorithms allow hav-
ing various dependency relationships between the class and an input variable,
where the input variable can be a parent or a child (or have no relationship)
to the class variables. These flexible structures can capture new conditional
(in)dependency relationships that cannot be modelled by the BAN structure
constructed by the original ABC-Miner algorithm, and probably compute more
accurate class posterior probability.

In addition, we proposed a new probabilistic accuracy measure for eval-
uating the candidate BN structures constructed during the learning process,
besides the structure complexity penalty that mitigates overfitting.

Empirical results in terms of predictive accuracy showed that our new
algorithms outperformed our previously introduced ACO algorithm for learn-
ing BAN classifiers, as well as outperforming other conventional BN learn-
ing algorithms. In addition, our proposed ACO algorithms have been shown
to be very competitive to other well-known classification algorithms: Ripper,
C4.5 and SVM. Moreover, both ABC-Miner+1 and ABC-Miner+2 produced
smaller-sized models, with less computational time, compared to ABC-Miner.

As a future work, we would like to evaluate the quality of the produced
model using probability-based measures, such as Quadratic Loss Funciton,
Bayesian Information Reward (BIR) and Kullback-Leibler (KL) divergence.

Moreover, we would like to investigate the effect of each over-fitting mitiga-
tion mechanisms separately to evaluate the contribution of each in improving
the predictive performance of the algorithms. This can be accomplished com-
paring the classification accuracy of the produced model on the training set
to the predictive accuracy of the model on the test set, with and without each
mechanism. Plus, we would like try to remove the k-parents restriction in the
construction of the Bayesian network classifiers, and introduce a generalized
formula to penalize the complexity of the model with respect to the number
of parents that each node has in the network, including the class node.

Besides, we would like to build MB classifiers for hierarchical classifica-
tion problems [29]. A preliminary work in this direction has been done in [46],
but that paper used ABC-Miner in a local-classifier-per-node hierarchical ap-
proach. We would like to extend the ABC-Miner+ algorithms to tackle the
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hierarchical classification in a global-classifier approach. It would be also in-
teresting to try our proposed ACO-based algorithm – in the context of flat
classification – with new real-world classification datasets from domains such
as fraud detection, churn prediction, targeted marketing, and social media
analysis, rather than the typical UCI datasets.
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14. Marco Dorigo and Thomas Stützle. Ant Colony Optimization. MIT Press, Cambridge,
MA, USA, 2004.

15. Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. John
Wiley & Sons Inc, 1973.

16. A.A. Freitas. Comprehensible classification models: a position paper. ACM SIGKDD
Explorations, 15(1):1–10, 2013.

17. A.A. Freitas, D.C. Wieser, and R. Apweiler. On the importance of comprehensible clas-
sification models for protein function prediction. IEEE/ACM Trans. on Computational
Biology and Bioinformatics, 7(1):172–182, 2010.

18. Nir Friedman, Dan Geiger, Moises Goldszmidt, G. Provan, P. Langley, and P. Smyth.
Bayesian Network Classifiers. Machine Learning, 29:131–163, 1997.

19. Nir Friedman and Moises Goldszmidt. Learning Bayesian networks with local structure.
Learning in Graphical Models, Norwell, MA: Kluwer, pages 252–262, 1998.



Title Suppressed Due to Excessive Length 39

20. Salvador Garca and Francisco Herrera. An Extension on ”Statistical Comparisons of
Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine
Learning Research, 9:2677–2694, 2008.

21. Yaniv Gurwicz and Boaz Lerner. Bayesian Class-Matched Multinet Classifier. In In-
ternational Conference on Structural, Syntactic, and Statistical Pattern Recognition
(IAPR’6), pages 145–153, Berlin, Heidelberg, 2006. Springer.

22. Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, CA, USA, 2nd edition, 2000.

23. David Heckerman. A Tutorial on Learning with Bayesian Networks. Studies in Com-
putational Intelligence: Innovations in Bayesian Networks, 156:33–82, 2008.

24. David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data. Machine Learning, 20(3):197–243,
1995.

25. Kaizhu Huang, I. King, and M.R. Lyu. Discriminative Training of Bayesian Chow-Liu
Multinet Classifiers. In International Joint Conference on Networks, volume 1, pages
484–488, New York, NY, USA, 2003. IEEE Press.

26. Nathalie Japkowicz and Mohak Shah. Evaluating Learning Algorithms: A Classification
Perspective. Cambridge University Press, 2011.

27. L. Jiang, H. Zhang, and Z. Cai J. Su. Evolutional Naive Bayes. In 1st International
Symposium on Intelligent Computation and its Applications, pages 344–350. China
University of Geosciences Press, 2005.

28. Liangxiao Jiang, Dianhong Wang, Zhihua Cai, and Xuesong Yan. Survey of Improving
Naive Bayes for Classification. In 3rd International Conference on Advanced Data
Mining and Applications (ADMA’07), number 4632 in LNCS, pages 134–145, Berlin,
Heidelberg, 2007. Springer.

29. C.N. Silla Jr. and A.A. Freitas. A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery, 22(1-2):31–72, 2011.

30. Eugene Santos Jr. and Ahmed Hussein. Case-Based Bayesian Network Classifiers. In
17th International FLAIRS Conference, AAAI, volume 5, pages 598–605, Stanford,
USA, 2004. AAAI Press.

31. Josef Kittler. Handbook of Pattern Recognition and Image Processing. Academic Press,
New York, 1986.

32. Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. CRC Press, San
Francisco, CA, USA, 2nd edition, 2011.

33. Pat Langley. Induction of Recursive Bayesian Classifiers. In European Conference on
Machine Learning (ECML), pages 153–164, Berlin, Heidelberg, 1993. Springer.

34. Pat Langley and Stephanie Sage. Induction of Selective Bayesian Classifiers. In 10th
Conference on Uncertainty in Artificial Intelligence, pages 399–406, San Francisco, CA,
USA, 1994. Morgan Kaufmann.

35. Huan Liu and Hiroshi Motoda. Feature Extraction, Construction and Selection: A Data
Mining Perspective. Springer, Berlin, Heidelberg, 1st edition, 1998.

36. D. Marteens, J. Vanthienen, W. Verbeke, , and B. Baesens. Performance of Classification
Models from a User Perspective. Decision Support Systems, 51(4):782–793, 2011.

37. D. Martens, M. De Backer, R. Haesen, J. Vanthienen, M. Snoeck, and B. Baesens.
Classification with ant colony optimization. IEEE Transactions on Evolutionary Com-
putation, 11:651–665, 2007.

38. T.M. Mitchell. The need for biases in learning generalizations. Readings in Machine
Learning, 10:184–191, 1980.

39. F.E. Otero, A.A. Freitas, and C.G Johnson. Handling continuous attributes in ant
colony classification algorithms. In IEEE Symposium on Computational Intelligence in
Data Mining (CIDM 2009), pages 225–231, New York, NY, USA, 2009. IEEE Press.

40. R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an ant colony
optimization algorithm. IEEE Transactions on Evolutionary Computation, 6(4):321–
332, 2002.

41. J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press,
2000.
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