
Swarm Intelligence manuscript No.
(will be inserted by the editor)

Learning Bayesian network classifiers using ant colony
optimization

Khalid M. Salama · Alex A. Freitas

01-06-2013

Abstract Bayesian networks are knowledge representation tools that model
the (in)dependency-relationships among variables for probabilistic reasoning.
Classification with Bayesian networks aims to compute the class with the high-
est probability given a case. This special kind is referred to as Bayesian network
classifiers. Since learning the Bayesian network structure from a dataset can
be viewed as an optimization problem, heuristic search algorithms may be
applied to build high-quality networks in medium- or large-scale problems, as
exhaustive search is often feasible only for small problems. In this paper, we
present our new algorithm, ABC-Miner, and propose several extensions to it.
ABC-Miner uses ant colony optimization for learning the structure of Bayesian
network classifiers. We report extended computational results comparing the
performance of our algorithm with 8 other classification algorithms, namely 6
variations of well-known Bayesian network classifiers, cAnt-Miner for discov-
ering classification rules, and a support vector machine algorithm.

Keywords: Ant Colony Optimization (ACO), Data Mining, Classification,
Bayesian Network Classifiers.

1 Introduction

Data mining is an active research area involving the development and analysis
of algorithms for extracting interesting knowledge (or patterns) from real-
world datasets. Classification is a central problem in the data mining field,
where the goal is to build, from labelled cases (also called instances), a model
(classifier) used to predict the class of unlabelled cases [23]. While the literature
includes several approaches for tackling this problem, such as decision tree

School of Computing, University of Kent,
Canterbury, CT2 7NF, UK
E-mail: kms39@kent.ac.uk, A.A.Freitas@kent.ac.uk

2 Khalid M. Salama, Alex A. Freitas

construction, artificial neural network training and classification rule induction
[23,43], in this paper we focus on a type of probabilistic graphical modeling,
namely Bayesian network classification.

Näıve-Bayes, as discussed in [28], is the simplest type of Bayesian classi-
fier used in the literature. Despite making a strong simplifying assumption
– namely, that the attributes are independent of each other given the class
label – Näıve-Bayes classifiers showed effective predictive performance [28].
Nonetheless, since the attribute-independency assumption is not realistic in
many datasets, there have been many attempts to improve the performance
of Näıve-Bayes by extending it to more sophisticated types of probabilistic
graphical models, such as Tree Augmented Näıve-Bayes (TANs), Bayesian
Networks Augmented Näıve-Bayes (BANs) and General Bayesian Networks
(GBNs) [5,18]. In general, the search methods used to build such types of
models are greedy and deterministic, and therefore prone to get stuck in local
optima. Since learning the optimal Bayesian network (BN) structure from a
dataset is NP-hard [6], stochastic heuristic search algorithms may be applied
on medium and large size problems where exhaustive search is not feasible.
Such stochastic algorithms perform a more global search that is less likely to
get stuck into local maxima to build high-quality Bayesian network classifiers
in an acceptable computational time.

Ant colony optimization (ACO) [15] is a meta-heuristic inspired by the
way real ants find the shortest route between two locations. ACO has been
successful in solving several types of optimization problems, in particular com-
binatorial optimization problems, including the induction of classification rules
in data mining [29,31–33,39] and the construction of general-purpose Bayesian
networks [3,11,36,44]. However, to the best of our knowledge, ACO has not
been used for learning Bayesian network classifiers before the introduction of
the ABC-Miner algorithm.

The present paper is an extended version of the ANTS 2012 conference
paper [41], where ABC-Miner, an ant-based Bayesian classification algorithm,
was introduced. We build on the work described in [41] in four ways. First,
a new flexible way of selecting the number of dependencies per variable is in-
troduced. Second, a different pheromone update strategy is applied to better
balance exploration and exploitation. Third, the number of datasets used in
the experimental evaluation is increased from 15 to 25. Fourth, several more
comparisons are performed between ABC-Miner and other algorithms to en-
rich the analysis of our results.

The rest of the paper is organized as follows. ACO is described in Section 2.
In Section 3, we give an overview on the basic concepts of Bayesian Networks,
then we describe various BN classifiers. Section 4 discusses the related work
on the use of ACO algorithms for building BNs in the literature. In Section 5,
we describe our novel ABC-Miner algorithm and how to tackle our learning
problem using the ACO meta-heuristic. Sections 6 and 7 explain our experi-
mental methodology and results, respectively. We conclude with some general
remarks and directions for future research in Section 8.

Learning Bayesian network classifiers using ant colony optimization 3

2 Ant colony optimization

Inspired by the behaviour of natural ant colonies, Dorigo et al. [12,13,15] have
defined Ant Colony Optimization (ACO) as a meta-heuristic for combinatorial
optimization problems. The basic principle of ACO is that a population of
artificial ants cooperates with each other to find the best path in a graph,
analogously to the way that natural ants cooperate to find the shortest path
between two points like their nest and a food source [1,7,14].

In ACO, each artificial ant constructs a candidate solution to the target
problem, represented by a combination of solution components in the search
space. Ants cooperate via indirect communication, by depositing pheromone
on the selected solution components for a candidate solution. The amount of
pheromone deposited is proportional to the quality of that solution, which
influences the probability with which other ants will use that solution’s com-
ponents when constructing their solution. This contributes to the global search
aspect of ACO algorithms. In addition, the probability of an ant choosing a
solution component also depends on the value of a heuristic function that
measures the desirability of that component.

The global search aspect is also induced by the fact that a population of
ants searches for the best solution in parallel, exploring, thus, possibly different
regions of the search space at each iteration of the algorithm. As a result of
this global search, ACO is less likely to get trapped into local optima than
conventional greedy algorithms, which increases the chances of finding a near-
optimal solution in the search space.

In order to design an ACO algorithm to solve a specific type of problem,
the following components of the algorithm should be carefully specified:

• Construction graph - This graph defines the search space to be explored
by the ACO algorithm. Each ant incrementally constructs a candidate
solution by visiting different components in the graph.

• Heuristic function - This is a function that uses some problem-specific
information to evaluate the quality of each solution component available in
the construction graph. The value of this function influences an ant’s choice
of which components will be used for constructing its candidate solution.

• State transition rule - This is a probabilistic transition rule that de-
termines how each ant decides which solution component will be visited
next. This rule is based on both the heuristic function value η and the
pheromone amount τ associated with the solution components.

• Quality evaluation measure - This is a problem-specific function used
to evaluate the quality of a solution constructed by an ant. The higher the
quality of a solution constructed by an ant, the more pheromone will be
deposited on the construction graph components used in that solution.

• Pheromone update strategy - This involves formulas for pheromone re-
inforcement and evaporation. Pheromone reinforcement is applied on com-
ponents used in the constructed solution, while pheromone evaporation is
applied on the whole construction graph to avoid stagnation and premature
convergence. The goal of the pheromone update strategy is to direct ants

4 Khalid M. Salama, Alex A. Freitas

in future iterations of the ACO algorithm to solution components found in
high quality solutions.

• Local search - An optional procedure to improve the quality of a con-
structed solution. This can be performed on each constructed candidate
solution, or less often (e.g. performed just on the best solution in the colony
at each iteration) in order to reduce computational time.

Section 4 discusses the related applications of the ACO meta-heuristic in
the field of learning Bayesian networks. But first, background on Bayesian
networks is given in the next section.

3 Bayesian networks

3.1 Overview on Bayesian networks

Bayesian networks (BNs) are powerful tools for knowledge representation and
inference that encode variables dependence and independence relationships.
More precisely, BNs represent a model of the joint probability distribution of n
random variables X = {X1, X2, X3, ..., Xn}. A BN is represented as a directed
acyclic graph (DAG), where nodes represent variables and edges represent
statistical dependencies between the variables. Moreover, a set of conditional
probability tables (CPTs), one for each variable, is computed to represent the
parameters Θ of the network. The graphical structure of the network along
with its parameters specifies a joint probability distribution over the set of
variables X, as shown in the following formula:

p(X1, X2, ..., Xn) =
n∏

i=1

p(Xi|Pa(Xi), Θ,G), (1)

where G is the DAG that represents the structure of the BN, and Pa(Xi) are
the parents of variable Xi in G.

The process of learning (or constructing) a Bayesian network from a dataset
D can be divided into two phases, namely learning the network structure, and
then learning the parameters of the network. The latter phase is, compared
to the former, a relatively easy phase, where a conditional probability table
(CPT) is computed for each variable with respect to its parent variables. The
CPT of variable Xi encodes the likelihood of each value of this variable given
each combination of values of Pa(Xi) in the graph G, and the marginal likeli-
hood of the dataset D given a structure G is denoted by P (D|G). The purpose
of the network structure-learning phase is to find G that maximizes P (D|G)
for a given D. A popular approach to that phase consists of using a scoring
function, f , that evaluates each candidate G with respect to D, searching for
the best network structure according to that score. Various scoring metrics for
learning a BN structure have been proposed in the literature [8,21,45].

A well-known greedy and deterministic algorithm for learning a BN struc-
ture is Algorithm B [2]. This algorithm is initialized with an empty DAG

Learning Bayesian network classifiers using ant colony optimization 5

(i.e., an edge-less graph structure) and iteratively adds, to the current net-
work structure, the edge that leads to the maximum increase in the scoring
function f , subject to the constraint that no directed cycles are included in the
graph. The algorithm stops when there are no more valid edges to be added, or
when adding any valid edge does not increase the value of the scoring function.

K2, a function based on uniform prior scoring, is one of the most used
scoring functions for learning and evaluating Bayesian networks [8], and has
been the basis of much subsequent work [45]. K2 measures the joint probability
of a Bayesian network G given a database D, using the following formula:

P (G,D) = P (G)
n∏

i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk!, (2)

where ri is the number of possible values of the variable xi, qi is the number
of possible configurations (instantiations) for the variables in Pa(xi), Nijk is
the number of cases in D in which variable xi has its kth value and Pa(xi) is
instantiated to its jth value, and Nij =

∑ri
k=1 Nijk.

For further information about Bayesian networks, the reader is referred to
[8,19,21], which provide detailed discussions of the subject.

3.2 Bayesian networks for classification

BN classifiers are a special kind of BNs where the class attribute is treated
as a special variable in the network. The purpose is to compute the posterior
probability of each value c in the class variable C given a case x (an instance
of the input attributes X) using network G, then label this case with the class
value having the highest posterior probability. This goal can be stated by the
following formulas:

C(x) = argmax
∀ c∈C

P (C = c|X = x,G) (3)

posterior probability︷ ︸︸ ︷
P (C = c|X = x,G) ∝

likelihood︷ ︸︸ ︷
P (X = x|C = c,G)×

prior probability︷ ︸︸ ︷
P (C = c) (4)

where ∝ is the mathematical symbol for the proportionality relationship. The
following are various types of BN classifiers studied in the literature, as illus-
trated in Figure 1.

• Näıve-Bayes - As mentioned earlier, this classifier has the simplest type
of BN structure where the class node is the only parent node of all other
nodes. Despite its simplicity, Näıve-Bayes has surprisingly outperformed
several other more elaborated classifiers in many experiments, especially
where the attributes are not strongly correlated – since in such cases the
attribute-independency assumption is not so problematic [18].

6 Khalid M. Salama, Alex A. Freitas

• Tree Augmented Näıve-Bayes (TAN) - This classifier is a simple and
natural extension of Näıve-Bayes. A TAN classifier allows a node in a BN to
have one parent, in addition the class variable [18]. This produces a BN with
a tree-like structure. One of the most used methods for learning a TAN is a
variation of the well-known Chow-Liu algorithm [4], which works as follows.
First, it computes the conditional mutual information I(X,Y |C) between
each pair of variablesX,Y given class variableC. Then it builds a complete
undirected graph (i.e., a graph where every pair of variables is connected
by an undirected edge) and finds the maximum weighted spanning tree for
that complete graph, where the weight of edge X → Y is annotated with
I(X,Y |C). Next, it chooses a root variable and sets the direction of all
edges to be outwards of it. Finally, it adds one edge from the class node to
each of the other variables.

• BN Augmented Näıve-Bayes (BAN) - This type of classifier is more
elaborated (and more computationally expensive to learn) than both Näıve-
Bayes and TAN. In a BAN, either there are no restrictions on the number
of parents of a node or, more commonly, there is a maximum number of k
parents (k-dependencies) that a node can have. In other words, while each
node in TAN can have only one parent besides the class node, each node in
BAN can have (up to) k parents besides the class node. Another variation
of the Chow-Liu algorithm is utilized to build BANs as well [5]. Note that
if k = 1 a BAN becomes a TAN.

• General Bayesian Network (GBN) - This type of BN classifier is quite
different from the others described earlier, since a GBN treats the class
variable node as an ordinary node (which can have both parent and child
nodes) during the process of network-structure construction [4]. In essence,
the system builds a general-purpose Bayesian network, finds the Markov
blanket of the class node, deletes all the other nodes outside that blanket
and uses the resulting network structure as a Bayesian classifier. A Markov
blanket of a node n is the union of n’s parents, n’s children, and the parents
of n’s children.

Friedman et al. [18] provided an excellent study of these algorithms. A
comprehensive investigation and comparisons of various Bayesian classifiers
was done by Cheng and Greiner [4,5]. A relatively recent survey on improving
Näıve-Bayes for classification is found in [24].

4 Related work on ant colony optimization

The use of the ACO meta-heuristic in the classification task in data mining is
not new. Since the Ant-Miner algorithm was proposed by Parpinelli et al. in
[33], many variations of that algorithm have been proposed, extending or im-
proving the original algorithm in several ways. Some examples are AntMiner+
[29], cAnt-Miner [32], and multi-pheromone Ant-Miner [37–40]. See also [31]
for a recent survey of Ant-Miner and its variations. The original Ant-Miner
and all of its extensions are based on the paradigm of rule induction, i.e., they

Learning Bayesian network classifiers using ant colony optimization 7

Fig. 1 Different types of Bayesian classifiers are presented: (a) Näıve-Bayes, where all the
input variables have only the class variable as a parent. (b) TAN, where a variable can have
one parent beside the class variable. (c) BAN, where a variable can have multiple parent
beside the class variable. (d) GBN, where the class variable is treated the same as any other
variable, and any dependencies between variables are possible.

learn a classification model that consists of a list or a set of classification rules,
where each rule has the form: IF < Antecedent > THEN < Class >. By
contrast, this paper introduces an ACO-based classifier based on the paradigm
of Bayesian network classifiers.

Several ACO algorithms have been proposed for learning the structure of
Bayesian networks, including ACO-B [3], MMACO [35,36], ACO-E [10,11] and
CHAINACO - K2ACO [44]. However, none of the above algorithms tackled the
problem of building BN classifiers. To the best of our knowledge, ABC-Miner
is the first ACO algorithm that was designed specifically for learning Bayesian
network classifiers, as opposed to standard Bayesian networks (BNs). Next,
we review the main characteristics of ACO algorithms for learning standard
BNs.

The first ACO for learning BNs, called ACO-B, was proposed by Campos
et al. [3]. In ACO-B, each ant adds one edge at a time to a candidate BN struc-
ture. After the BN construction, it deposits pheromone on the corresponding
part of the construction graph in proportion to the quality of the constructed
BN structure. The function used for measuring the quality of a candidate BN
structure is the K2 scoring function [8], which is also the scoring function used
as the heuristic function during the process of BN structure construction.

Pinto et al. proposed a hybrid method, called MMACO, which combines
ideas from the Max-Min Parents and Children (MMPC) algorithm and ACO
[35,36]. MMACO works in two phases. First, the MMPC algorithm is employed
to construct the skeleton of the network (which is a graph with undirected

8 Khalid M. Salama, Alex A. Freitas

edges). Second, ACO is used to orientate the edges in that skeleton. MMACO
uses the BDEu [21] scoring function both as the local heuristic function and
as the BN-quality measure used to deposit pheromone.

Daly et al. proposed an ACO-based algorithm for learning a BN by carrying
out a search in the space of BN equivalence classes. Their algorithm is called
ACO-E [10,11]. An equivalence class consists of all network structures where
changing the orientation (the direction of a dependency relationship) of one
or more edges in a BN leads to a network with the same value of the scoring
metric. Focusing on the equivalence classes of BNs has some advantages, as
described by the authors in [10,11], but the focus on equivalence classes also
makes the ACO algorithm more complex than a BN-learning ACO algorithm
that does not need to compute equivalence classes.

Yanghui et al. proposed two new ACO algorithms for learning BN struc-
tures, named CHAINACO and K2ACO [44]. In essence, these algorithms use
ACO to find the best node (variable) ordering, taking into account the depen-
dencies between the variables. Finding the best node ordering is important
because a variable can have, as parents, only variables that occur earlier in
the ordered variable list, so that different orderings produce different models,
with differerent degrees of predictive accuracy. The quality of node orderings
is also based on the aforementioned K2 scoring function.

Junzhong et al. recently proposed HACO-B; a hybrid method that com-
bines dependency analysis, ACO, and simulated annealing [25]. First, this
method uses order-zero independence tests with a self-adjusting threshold
value to reduce the size of the search space. Second, Bayesian network mod-
els are generated by using an ACO algorithm, where a new heuristic function
is proposed to improve the search efficiency. Moreover, simulated annealing is
used with HACO-B as a local search to optimize the BN structures constructed
by the ants.

It should be emphasized that the previously discussed ACO algorithms
were designed to build conventional, general-purpose BNs. In other words, the
major algorithmic components of such ACO algorithms, such as the heuris-
tic function and the network-quality scoring function, were designed to build
general-purpose BNs, rather than for building BN classifiers as addressed in
this paper.

5 A novel ACO algorithm for learning BN classifiers

5.1 The ABC-Miner algorithm

A major step in the design of an ACO algorithm is to specify the construc-
tion graph, consisting of candidate solution components. In the case of our
target problem, the nodes in the construction graph represent the variables
(attributes) of the underlying dataset, and an edge of the form X → Y in-
dicates that the value of variable Y depends (probabilistically) on the value
of variable X. Hence, the solution components are all the edges of the form

Learning Bayesian network classifiers using ant colony optimization 9

X → Y where X ̸= Y and X,Y belong to the set of attributes of the under-
lying dataset. A constructed candidate solution, consisting of a given set of
selected edges (including edges from the class variable to every other variable),
represents a BN classifier.

In the initialization step of ABC-Miner, the amount of pheromone assigned
to each solution component in the construction graph is initialized with the
value 1/|All Edges|, where All Edges is the set of all edges that are available
to be selected by the ants at the start of the search. More precisely AllEdges
is computed by assuming a fully connected graph for all the predictor vari-
ables (i.e., a graph with edges between every pair of predictor variables). Note
that edges connecting the class variable to other variables are not included
in AllEdges because these edges are not available for selection by the ants
– rather, edges pointing from the class variable to each other variable are
always already included in a candidate solution. Furthermore, the heuristic
value assigned to each edge X → Y is given by the following conditional
mutual information formula, which is also used as the heuristic function of
ABC-Miner:

I(X,Y |C) =
∑
c∈C

p(c)
∑
x∈X

∑
y∈Y

p(x, y|c) log2
p(x, y|c)

p(x|c)p(y|c)
, (5)

where C is the class variable. p(x, y|c) is the conditional probability of value
x ∈ X and y ∈ Y given class value c, p(x|c) is the conditional probability
of x given c, p(y|c) is the conditional probability of y given c and p(c) is
the prior probability of the value c of the class variable. Conditional mutual
information is essentially a non-linear measure of the correlation between two
variables given a third one. The value of this heuristic function is computed
for each edge only once in the initialization step of the algorithm, and remains
fixed throughout the execution of the algorithm.

The overall process of ABC-Miner is illustrated in Algorithm 1. At each it-
eration of the repeat-until loop (lines 5-22), first each anti creates a candidate
solution, i.e., a Bayesian network classifier (BNCi). Once all ants have con-
structed their candidate solutions (line 8), local search is applied to the best
solution BNCtbest produced by the ant colony at the current iteration t (line
15). The candidate solution produced by that local search operation is then
used to deposit pheromones in the construction graph (line 16). Next, the algo-
rithm compares the quality of the current iteration’s best solution BNCtbest

with the best-so-far solution BNCbsf and updates BNCbsf if BNCtbest is
better than it (the if statement in lines 17-20). This set of steps is repeated
until the same solution is generated for a number of consecutive trials spec-
ified by the conv iterations parameter (indicating convergence) or until
max iterations is reached. The values of conv iterations, max iterations

and colony size are user-specified parameters (see Section 5 for parameter
settings). Solution construction, solution quality evaluation and pheromone
updating are discussed in detail in the following subsections.

10 Khalid M. Salama, Alex A. Freitas

Algorithm 1 Pseudo-code of ABC-Miner.
1: Begin
2: BNCbsf = ϕ; t = 1;
3: InitializePheromones();
4: InitializeHeuristicV alues();
5: repeat
6: BNCtbest = ϕ; Qtbest = 0;
7: for i = 1 → colony size do
8: BNCi = CreateSolution(anti);
9: Qi = ComputeQuality(BNCi);
10: if Qi > Qtbest then
11: BNCtbest = BNCi;
12: Qtbest = Qi;
13: end if
14: end for
15: PerformLocalSearch(BNCtbest);
16: UpdatePheromone();
17: if Qtbest > Qbsf then
18: BNCbsf = BNCtbest;
19: Qbsf = Qtbest;
20: end if
21: t = t+ 1;
22: until t = max iterations or Convergence(conv iterations);
23: return BNCbsf ;
24: End

5.2 Variable k-dependencies value selection

In order to build the structure of a Bayesian network (classifier), the maximum
number of parents (dependencies) for the node (variable) should be specified.
Instead of asking the user to guess the optimal number of dependencies (at
most k parents for each node), the number of dependencies is determined by
the ants in ABC-Miner in a self-adaptive manner. We allow each variable to
have its own number of parents during the network construction.

Before creating each candidate solution, the ant selects the maximum num-
ber of dependencies ki for each variable i independently, for the candidate
network structure being constructed. That is, for n variables, the ant has n
values for the k parents limit.

The possible values for the number of dependencies for each node are in-
cluded as solution components in the construction graph. More precisely, the
user has to specify the value of the max parents parameter, and all integer
values from 1 to that number are included as solution components in the
construction graph. At each iteration, the iteration’s best anti updates the
pheromone on the value ki based on the quality of BNCtbest, which was con-
structed with the value ki for variable i. This kind of pheromone updating
tends to lead to the accumulation of pheromone in the best ki value for each
variable i.

Learning Bayesian network classifiers using ant colony optimization 11

5.3 Solution creation

The process of creating a new candidate solution is described in Algorithm
2. Each ant begins with a very simple network structure (line 2), where the
only existing edges are edges connecting the class node (parent node) to each
of the variables (child nodes). This is the network structure of a Näıve-Bayes
classifier. Next, each ant incrementally expands that structure into a Bayesian
Augmented Näıve-Bayes (BAN) structure, by adding one edge at a time to
the current network (lines 5-6). The selection of the edge to be added at each
step is based on the usual probabilistic state transition formula

pij =
[τij(t)]

α · [ηij]β∑I
a

∑J
b [τab(t)]

α · [ηab]β
, (6)

where pij is the probability of selecting the edge i → j, τij(t) is the amount
of pheromone associated with edge i → j at iteration t and ηij is the heuristic
information for edge i → j computed using conditional mutual information
(equation 5). The edge a → b represents a valid edge (see below) among the set
of available edges. The exponents α and β represent the relative importance
of the pheromone (τ) and heuristic information (η), respectively. Note that
edges available for selection are directed, i.e., i → j ̸= j → i.

In addition, ABC-Miner uses the “ants with personality” approach, where
each anti is allowed to have its own personality by allowing it to have its own
values of the parameters αi and βi, increasing the diversity in the ants’ search
strategies – see [38] for details.

Algorithm 2 Pseudo-code of Solution Creation Procedure by an Ant.
1: Begin CreateSolution(ant)
2: BNC ← Näıve-Bayes structure;
3: k list = ant.SelectMaxParentsForEachV ariable();
4: while GetV alidEdges() ̸= ϕ do
5: {i→ j} = ant.SelectEdgeProbablistically();
6: BNC = BNC ∪ {i→ j};
7: RemoveInvalidEdges(BNC, kj);
8: end while
9: BNC.LearnParameters();
10: return BNC;
11: End

An edge i → j is deemed valid to be added to the network structure
being constructed if the inclusion of that edge satisfies two criteria, namely:
it does not create a directed cycle, and it does not violate the upper limit of
kj parents (chosen by the current ant) for the child variable j. Once a valid
edge has been added to the BN classifier, all invalid edges are eliminated from
the construction graph (line 7). Invalid edges are the ones whose inclusion
would cause a direct cycle in the constructed BN classifier or would exceed
the pre-specified maximum number of ki parents for node i in the network.

12 Khalid M. Salama, Alex A. Freitas

The ant keeps adding edges to the current BN classifier until no valid
edges are available. After constructing the network structure associated with
BNCi, the parameters Θ of that classifier are learnt by calculating the CPT
for each variable (line 9), based on the network structure. This completes
the construction of a candidate solution. Next, the quality of the solution
is evaluated, and all the edges become available again for the next ant to
construct another candidate solution.

5.4 Quality evaluation

Recall that conventional, general-purpose BN algorithms normally are de-
signed to maximize the quality of a network structure in terms of representing
the probabilistic dependencies among all attributes of the underlying dataset.
That is, general-purpose BN algorithms do not recognize any special class at-
tribute. They treat attributes (both class and predictor attributes) in the same
way, and they are used to answer all types of inference queries about any set
of variables, which may or may not include the class variable.

By contrast, a BN classifier (BNC) is only concerned about the queries re-
garding the class variable, and so our algorithm was designed to build a BNC
that maximizes the predictive accuracy when predicting the target class vari-
able. In other words, BNC learning algorithms try to find a network structure
that can be used to calculate the probability of a class value given a case with
predictor variables, and then the system predicts, to the current case, the class
value with the highest calculated probability. Hence, the scoring functions of
conventional, general-purpose BNs are not consistent with the objective of
building a classifier [18].

Taking into account the aforementioned argument, ABC-Miner evaluates
the quality of a constructed network directly as a classifier, measuring the
predictive performance of that classifier. More precisely, we use the accuracy
measure, a simple and yet popular measure of predictive performance, to eval-
uate the constructed model. The accuracy measure is computed as:

Accuracy =
|Correctly Classified Cases|

|V alidation Set|
(7)

5.5 Local search

At each iteration, local search is applied to the best BN classifier (denoted
BNCtbest) constructed in that iteration to improve the predictive accuracy of
the classifier. In essence, the local search procedure works as follows. It tenta-
tively removes one edge at a time from the constructed BNC in a reverse order
(removing last the edge that was added to the network first). If that removal
improves the quality of the BN classifier, this edge is removed permanently
from the network, otherwise it is added once again. This process continues

Learning Bayesian network classifiers using ant colony optimization 13

until all the edges are tested to be removed from the BN classifier, and then
the BN classifier with the highest quality is returned.

5.6 Pheromone update

Once the current iteration’s best solution BNCtbest has been improved by the
local search procedure, pheromone is deposited on the solution components
(network edges) used by that ant. The solution components that have their
amount of pheromone increased include both the edges in the constructed
BNC structure and the values of the number of parents selected by that ant
during BNC construction.

Pheromone update is carried out to affect the probability of selecting the
solution components for building further candidate solutions according to the
quality of the previously constructed ones, and consists of pheromone deposit
and evaporation. In the pheromone deposit phase, an amount of pheromone
is deposited depending on the quality of two solutions: the iteration-best
BNCtbest and the best-so-far BNCbsf . The contribution of the two solutions
is weighted as follows:

τij(t+ 1) = τij(t) + ϕ1.Qtbest(t) + ϕ2.Qbsf (t), (8)

where ϕ1 and ϕ2 represent the intensity of the pheromone to be deposited
in iteration t according to the quality of the iteration-best and best-so-far
solutions respectively. They are calculated as

ϕ1 =
max iterations− t

max iterations
, ϕ2 =

t

max iterations
(9)

Hence, in the early iterations, more weight is given to the iteration-best rather
than to the best-so-far solutions. This is applied in order to introduce search
diversion. However, as the number of elapsed iterations increases, the quality
of the best-so-far increases, which gains more weight in directing the search,
leading to convergence. Note that ϕ1 + ϕ2 equals 1 at any iteration t.

Pheromone normalization (to simulate evaporation as in [33]) is then ap-
plied to all pheromone values τij in the construction graph by dividing each τij
by the total amount of pheromone on all the edges in the construction graph.
This normalization is also carried out for the solution components representing
the maximum number of dependencies.

5.7 ABC-Miner vs. ACO-B

As mentioned in Section 4, ACO-B is the first ant-based algorithm for learn-
ing the structure of general-purpose BNs. On the other hand, our proposed
ABC-Miner algorithm learns the structure of BN classifiers. Although both
use the ACO meta-heuristic, essential aspects of the algorithms are different
due to the different targets. First, ACO-B does not distinguish between the

14 Khalid M. Salama, Alex A. Freitas

predictor variables and the class variable in the construction graph. So, all the
edges (representing variable dependencies) between the variables including the
class variable are available for selection in constructing the BN structure. On
the other hand, ABC-Miner treats the class variable as a special class, that
is a cause variable to all other input variables, as the goal of the inference
mechanism for classification is to compute P (C|X). This restricts each vari-
able in the constructed BN classifier to have the class variable as its parent,
and makes the construction graph include the edges only between the input
variables (Section 4.1). Second, the initial candidate solution in ACO-B is an
edge-less network structure, while an ant starts with a Näıve-Bayes network
structure in ABC-Miner (Section 5.3). Third, the heuristic information func-
tion used in the ACO-B algorithm is K2, which does not consider the class
variable as a special node in the network. On the other hand, ABC-Miner uses
Conditional Mutual Information, which measures the correlation between two
variables given the class variable. Fourth, the use of the quality evaluation
measure differs (Section 5.3). ACO-B learns a general-purpose BN to answer
any probabilistic query about any single or group of variables, via maximiz-
ing K2. On the other hand, ABC-Miner learns a BN classifier that is only
concerned about the queries regarding the class variable; the probability of a
class value given a case with predictor variables. Thus, ABC-Miner evaluates
the quality of constructed candidate solutions directly as classifiers, using the
accuracy measure (Section 5.4). Moreover, ABC-Miner introduces a dynamic
and flexible way for selecting the k-dependencies in building the network struc-
ture, whereas in ACO-B the value of the parameter k-dependencies should be
specified by the user prior the algorithm’s execution (Section 5.2). The ABC-
Miner algorithm uses a state transition formula that employs the “ants with
personality” approach for increasing search diversity (Section 5.3). In addition,
a new pheromone update strategy is introduced to achieve a good trade-off be-
tween exploration and exploitation with the flow of the algorithm’s iterations
(Section 5.6).

6 Experimental methodology

6.1 Comparative evaluations

We compare the predictive accuracy of two variations of ABC-Miner (with and
without local search) with the predictive accuracies of eight other algorithms,
namely Näıve-Bayes, TAN, GBN, SP-TAN, GHC-K2, GHC-A, cAnt-Miner
and SVM. Näıve-Bayes, TAN and GBN are well-known and widely used for
learning BN classifiers. In our experiments, we used WEKA [43] implemen-
tations for these algorithms. We also included in our experiments another
well-known, more sophisticated variation of a TAN leaning algorithm: The
SuperParent (SP-TAN) algorithm [27]. SP-TAN is a greedy search algorithm
in which the edge associated with the highest accuracy improvement is se-
lected at each step. A recent empirical comparison showed that the SP-TAN

Learning Bayesian network classifiers using ant colony optimization 15

algorithm outperformed many other BN classification algorithms in the liter-
ature [24]. Moreover, we implemented a variation of Algorithm B that uses a
greedy hill-climbing (GHC) approach to learn BN classifiers. The algorithm
starts with a Näıve-Bayes BN, a network where all the input nodes have only
the class node as a parent. Then the algorithm iteratively adds the edge that
leads to the maximum increase of the quality of the BN classifier being con-
structed. Our proposed ABC-Miner is compared with two variations of this
implemented greedy hill-climbing algorithm. The first is GHC-K2, which em-
ploys the GHC approach to maximize the K2 scoring function (see equation
2) of the constructed network. The second is GHC-Acc, which employs the
hill-climbing approach to maximize the predictive accuracy (see equation 7).
Table 1 presents the main properties of the used algorithms.

Table 1 Summary of the BN classifier learning algorithms used in the experiments

Algorithm Type Search Strategy Optimization

Näıve-Bayes Deterministic - -

TAN Deterministic Finding Max. Spanning Tree Cond. Mutual Info.

GBN Deterministic Greedy Hill Climbing K2 Function

SP-TAN Deterministic Greedy Hill Climbing Predictive Accuracy

GHC-K2 Deterministic Greedy Hill Climbing K2 Function

GHC-Acc Deterministic Greedy Hill Climbing Predictive Accuracy

ABC-Miner Stochastic Ant Colony Optimization Predictive Accuracy

ABC-Miner− Stochastic ACO without local Search Predictive Accuracy

The reason behind the two different implementations of GHC is to examine
the effect of the choice of predictive accuracy or the K2 scoring function (as
an optimization objective) on the quality of the produced BN classifiers. Note
that both GBN and our implemented GHC-K2 are greedy algorithms that
optimize the K2 scoring function, yet GBN builds a general BN, and GHC-
K2 builds a BN where all the nodes have the class node as a parent. The
pseudocode of the GHC method is presented in Algorithm 3.

Besides, we run experiments using the ABC-Miner algorithm without the
local search procedure, in order to isolate its effect from the performance of the
algorithm. This algorithm is denoted in Table 1 by ABC-Miner−; it does not
apply the local search operation in any iteration of the algorithm execution.

In addition, we compare our proposed ABC-Miner with another ant-based
algorithm for classification, cAnt-Miner [32], which is a recent extension of
the original Ant-Miner algorithm that handles continuous attributes dynam-
ically (during the algorithm’s run), without discretizing attributes in a data
preprocessing step. Note that, as mentioned in Section 4, Ant-Miner (and also
cAnt-Miner) tackle the classification problem by constructing a list of “IF-
THEN” classification rules, while ABC-Miner builds Bayesian networks.

16 Khalid M. Salama, Alex A. Freitas

Algorithm 3 Pseudo-code of GHC.
1: Begin GHC
2: BNC ← Näıve-Bayes structure;
3: k ← input;
4: stop = false;
5: t = 1;
6: repeat
7: {i→ j} = SelectEdgeWithMaxIncreaseInQuality();
8: if {i→ j} ̸= ϕ then
9: BNC = BNC ∪ {i→ j};
10: RemoveInvalidEdgesFromSearchSpace();
11: else
12: Stop = true;
13: end if
14: t = t+ 1;
15: until t = max iterations or Stop
16: return BNC
17: End

Finally, we compare our ant-based Bayesian classification approach against
a state-of-the-art classification algorithm: Support Vector Machine (SVM) [9].
SVM uses a completely different approach for representing classifiers, com-
pared to the Bayesian network representation. An SVM maps the cases into a
higher-dimensional feature space and then finds the best hyperplane for sepa-
rating cases of different classes — best hyperplane is the one with the greatest
possible gap separating cases of different classes in the data space. Although
SVM often produces very good results in terms of predictive accuracy, it has
the disadvantage that the produced classification model can hardly be inter-
preted by users, that is, it produces a black-box model. This is in contrast
to the probabilistic graphic models produced by Bayesian network classifiers,
which, in principle, can be interpreted by users.

6.2 Experimental setup

The experiments were carried out using the stratified ten-fold cross validation
procedure. In essence, a dataset is divided into ten mutually exclusive parti-
tions (folds), with approximately the same number of cases in each partition.
Then each classification algorithm is run ten times, where each time a different
partition is used as the test set and the other nine partitions are used as the
training set. The results (accuracy rate on the test set) are then averaged and
reported as the accuracy rate of the classifier. Since ABC-Miner is a stochastic
algorithm, we run it ten times – using a different random seed to initialize the
search each time – for each of the ten iterations of the cross-validation proce-
dure (i.e., 100 runs in total, for each dataset). In the case of the deterministic
algorithms, each one is run just once for each iteration of the cross-validation
procedure. Results and analysis are presented in the next subsection.

Learning Bayesian network classifiers using ant colony optimization 17

The parameter configuration used in our experiments is shown in Table
2. Note that for the greedy (hill-climbing) algorithms (GBN, GHC-K2 and
GHC-Acc), we refer to max iterations as the maximum number of solution
evaluations that the algorithm performs during the hill-climbing search. It
is set to 500, which is equal to max iterations multiplied by colony size,
which is used for ABC-Miner. For the sake of fair comparison, we limit each
Bayesian classification algorithm to the same fixed number of solution evalu-
ations to construct the BN classifier. However, the maximum number might
not be utilized completely. Note that the ACO-based algorithms might use a
smaller number of iterations if they converge earlier and the greedy algorithms
might also stop earlier if they get stuck in a local optimum.

Table 2 Parameter settings used in experiments

Parameter Value

ABC-Miner max iterations 100

colony size 5

conv iterations 10

max parents 3

Hill Climbing max iterations 500

number of parents 3

Unlike ABC-Miner, the number of parents (k-dependencies) for the vari-
ables must be specified for the hill-climbing Bayesian classification algorithms.
We set it to 3, which is the maximum number of parents used in our ABC-
Miner algorithm, where the number of parents is selected dynamically at each
iteration. Note that for SP-TAN (as for any TAN learning algorithm), besides
the class node being a parent for all the input variables, the number of parents
for each node in the network is at most one.

Concerning the cAnt-Miner algorithm, the parameter configuration used in
our experiments is the same as the original implementation shown in [32]. The
type of SVM algorithm used in the experiments was SMO, as implemented
in the WEKA data mining tool, with polynomial function kernel and default
parameters [43].

6.3 Datasets

The performance of ABC-Miner was evaluated using 25 public-domain datasets
from the well-known UCI (University of California at Irvine) dataset reposi-
tory [42]. The main characteristics of the datasets are shown in Table 3.

Datasets having continuous attributes were discretized in a pre-processing
step, applying the C4.5-Disc algorithm [26] on the training set (i.e., without
using the test set). Briefly, C4.5-Disc works as follows. For each continuous

18 Khalid M. Salama, Alex A. Freitas

Table 3 Description of datasets used in experimental results

Dataset Cases Attributes Classes

balance scale 625 4 3

breast cancer (wisconsin) 286 9 2

car evaluation 1,728 6 4

chess (rook vs. pawn) 3,196 36 2

contraceptive method choice 1,473 9 3

statlog credit (australian) 690 14 2

statlog credit (german) 1,000 20 2

dermatology 366 33 6

glass 214 10 7

hayes-roth 160 4 3

heart (cleveland) 303 12 3

hepatitis 155 19 2

ionosphere 351 34 2

iris 150 4 3

monks 432 6 2

mushrooms 8,124 22 2

nursery 12,960 8 5

parkinsons 197 23 2

pima diabetes 768 8 2

post-operative patient 90 8 3

soybean 307 35 19

tic-tac-to 958 9 2

voting records 435 16 2

wine 178 13 3

zoo 101 17 7

attribute, a two-attribute dataset is constructed. The first attribute of the con-
structed dataset contains the values of the numeric attribute to be discretized,
and the second is the class attribute. The C4.5 decision tree generation algo-
rithm is then applied to this reduced dataset. Thus, C4.5 constructs a decision
tree in which all internal nodes refer to the attribute being discretized. Each
path from the root to a leaf node in the tree corresponds to the definition of
a categorical interval.

Learning Bayesian network classifiers using ant colony optimization 19

7 Results and analysis

7.1 Predictive accuracy

Tables 4 reports the mean and the standard error (mean ± standard error)
of predictive accuracy values obtained by ten-fold cross validation for the 25
datasets, for the deterministic algorithms and for the (stochastic) ACO al-
gorithms. The highest accuracy for each dataset (across all the algorithms)
is shown in bold face. The predictive accuracy results comparing ABC-Miner
and SVM are discussed separately later in this section, where we also briefly
illustrate the potential for Bayesian network classifiers to be interpreted by
users.

20 Khalid M. Salama, Alex A. Freitas
T
a
b
le

4
P
re
d
ic
ti
v
e
a
cc
u
ra
cy

%
(m

ea
n
±

st
a
n
d
a
r
d
er

r
o
r
).

T
h
e
h
ig
h
es
t
a
cc
u
ra
cy

fo
r
ea

ch
d
a
ta
se
t
is

sh
o
w
n
in

b
o
ld

fa
ce
.

D
a
ta
se
t

N
ä
ıv
e-
B
a
y
es

T
A
N

G
B
N

G
H
C
-K

2
S
P
-T

A
N

G
H
C
-A

cc
A
B
C
-M

in
er

A
B
C
-M

in
er

−
c
A
n
t-
M
in
er

b
a
l

9
1
.2
±

0
.8

8
4
.4
±

0
.9

8
5
.6
±

0
.6

8
3
.7
±

0
.8

7
8
.7
±

0
.8

8
5
.2
±

0
.9

8
5
.6
±

0
.9

8
5
.6
±

0
.9

8
6
.5
±

0
.9

b
c
w

9
2
.1
±

0
.9

9
5
.4
±

0
.9

9
3
.8
±

0
.9

9
4
.2
±

0
.9

9
4
.4
±

0
.9

9
4
.2
±

0
.9

9
5
.4
±

0
.9

9
5
.4
±

0
.9

9
2
.5
±

0
.9

c
a
r

8
5
.3
±

0
.9

9
3
.6
±

0
.6

8
6
.2
±

0
.9

9
5
.6
±

0
.6

9
5
.6
±

1
.2

9
6
.8
±

0
.5

9
7
.2
±

0
.3

9
7
.2
±

0
.3

8
7
.8
±

0
.3

c
h
e
s
s

8
8
.2
±

1
.2

9
2
.5
±

1
.2

8
9
.8
±

0
.9

9
1
.8
±

0
.9

9
4
.6
±

0
.9

9
5
.6
±

1
.2

9
7
.6
±

0
.9

9
5
.9
±

0
.6

9
6
.5
±

0
.6

c
m
c

5
2
.2
±

1
.2

4
9
.8
±

1
.2

4
9
.8
±

1
.2

6
7
.1
±

0
.6

5
8
.3
±

1
.2

6
8
.5
±

0
.8

6
8
.0
±

0
.6

6
7
.5
±

0
.4

5
4
.1
±

0
.4

c
r
d
-
a

7
7
.5
±

1
.2

8
5
.1
±

0
.9

8
5
.7
±

0
.9

8
5
.1
±

0
.6

8
4
.2
±

0
.9

8
6
.5
±

0
.6

8
7
.8
±

0
.9

8
7
.8
±

0
.9

8
3
.3
±

1
.2

c
r
d
-
g

7
5
.6
±

0
.9

7
3
.7
±

1
.2

7
5
.6
±

1
.2

7
5
.6
±

0
.9

7
3
.5
±

0
.9

7
2
.1
±

0
.9

7
3
.7
±

0
.9

7
3
.7
±

0
.9

6
9
.8
±

1
.2

d
r
m

9
6
.2
±

0
.6

9
7
.8
±

0
.9

9
7
.2
±

0
.9

9
8
.6
±

0
.6

9
8
.6
±

3
.5

9
8
.1
±

0
.6

9
9
.1
±

0
.9

9
8
.6
±

1
.2

9
8
.1
±

3
.1

g
l
a
s
s

7
4
.2
±

1
.2

7
8
.4
±

0
.9

8
0
.7
±

0
.9

9
0
.4
±

0
.9

7
2
.9
±

0
.9

9
4
.6
±

0
.9

9
3
.4
±

1
.2

9
3
.4
±

1
.2

8
3
.2
±

2
.8

h
a
y

8
0
.0
±

2
.8

7
7
.9
±

3
.1

8
3
.1
±

3
.5

8
0
.0
±

2
.8

8
0
.4
±

2
.8

8
2
.1
±

2
.8

8
0
.0
±

3
.1

8
0
.0
±

3
.1

8
2
.1
±

1
.6

h
r
t
-
c

6
2
.7
±

2
.2

6
8
.8
±

2
.5

6
6
.7
±

2
.2

8
3
.1
±

2
.2

6
9
.2
±

3
.1

8
3
.8
±

3
.1

8
3
.8
±

3
.1

8
3
.1
±

2
.8

7
9
.7
±

0
.3

h
e
p

8
1
.9
±

1
.6

7
8
.0
±

1
.6

8
3
.2
±

2
.1

7
8
.0
±

1
.6

7
7
.3
±

2
.5

7
7
.3
±

2
.5

7
8
.0
±

1
.6

7
8
.0
±

1
.6

7
8
.2
±

0
.6

i
o
n
o

8
2
.6
±

0
.6

9
0
.5
±

0
.9

9
0
.5
±

0
.6

9
1
.7
±

0
.6

9
1
.2
±

0
.3

9
1
.7
±

0
.3

9
4
.5
±

0
.3

9
4
.5
±

0
.3

9
3
.2
±

1
.2

i
r
i
s

9
6
.2
±

1
.5

9
4
.2
±

1
.8

9
2
.9
±

0
.8

9
6
.2
±

0
.8

9
2
.1
±

0
.8

9
4
.2
±

0
.8

9
6
.2
±

0
.6

9
6
.2
±

0
.6

9
4
.1
±

0
.3

m
o
n
k

6
1
.6
±

0
.6

5
8
.8
±

0
.6

6
1
.6
±

0
.9

4
9
.5
±

0
.9

5
9
.3
±

0
.6

5
8
.8
±

0
.6

5
3
.8
±

0
.9

5
2
.0
±

1
.2

6
0
.6
±

0
.9

m
u
s
h

9
5
.8
±

0
.9

9
8
.2
±

0
.6

9
6
.1
±

1
.2

9
6
.9
±

0
.9

9
8
.2
±

0
.9

9
7
.5
±

0
.9

9
8
.8
±

0
.6

9
8
.0
±

0
.3

9
7
.1
±

2
.2

n
u
r
s

9
0
.1
±

0
.9

9
4
.3
±

0
.9

9
0
.1
±

0
.9

9
6
.5
±

0
.6

9
6
.5
±

0
.6

9
7
.0
±

0
.6

9
8
.2
±

0
.9

9
8
.0
±

0
.9

9
7
.0
±

1
.5

p
a
r
k

8
4
.5
±

2
.5

9
1
.7
±

2
.2

8
4
.5
±

2
.5

8
4
.5
±

2
.2

9
2
.1
±

2
.5

8
3
.4
±

2
.5

9
4
.2
±

2
.5

9
2
.3
±

2
.2

9
4
.2
±

1
.9

p
i
m
a

7
5
.4
±

1
.2

7
7
.8
±

1
.5

7
6
.2
±

1
.5

7
6
.2
±

1
.5

7
7
.8
±

1
.5

7
7
.8
±

1
.5

7
7
.8
±

1
.5

7
7
.8
±

1
.5

7
8
.9
±

0
.9

p
o
p

6
8
.2
±

0
.6

6
4
.1
±

0
.6

6
6
.6
±

0
.6

7
1
.6
±

0
.9

7
5
.5
±

0
.9

7
8
.3
±

0
.6

7
6
.8
±

0
.9

7
6
.8
±

0
.9

7
1
.7
±

0
.9

s
o
y

9
1
.4
±

1
.2

9
5
.6
±

1
.2

9
3
.2
±

0
.9

9
4
±

1
.2

9
4
.4
±

1
.2

9
4
.2
±

1
.2

9
5
.6
±

1
.2

9
5
.3
±

0
.9

9
3
.8
±

0
.9

t
t
t

7
0
.3
±

0
.3

7
6
.6
±

0
.3

7
0
.3
±

0
.6

7
1
.2
±

0
.6

8
0
.6
±

0
.6

7
2
.5
±

0
.6

8
6
.4
±

0
.3

8
4
.9
±

0
.3

7
9
.7
±

0
.3

v
o
t

9
0
.3
±

0
.9

9
2
.1
±

0
.9

9
0
.3
±

0
.6

9
1
.7
±

1
.2

9
3
.1
±

1
.2

9
0
.0
±

1
.2

9
4
.6
±

1
.2

9
3
.7
±

1
.1

9
2
.6
±

1
.1

w
i
n
e

9
5
.6
±

1
.2

9
7
.3
±

0
.9

9
7
.3
±

0
.9

9
8
.5
±

0
.9

9
8
.5
±

0
.9

9
8
.1
±

0
.9

9
8
.5
±

1
.5

9
8
.5
±

1
.5

9
8
.1
±

1
.5

z
o
o

9
4
.2
±

0
.6

9
7
.3
±

0
.3

9
5
.1
±

0
.9

9
7
.3
±

0
.3

9
8
.0
±

0
.3

9
8
.0
±

0
.3

9
8
.0
±

0
.1

9
8
.0
±

0
.1

9
8
.0
±

0
.1

Learning Bayesian network classifiers using ant colony optimization 21

As can be observed in Table 4, ABC-Miner achieved the highest predic-
tive accuracy amongst all algorithms in 16 datasets; followed by ABC-Miner−,
which achieved the best predictive accuracy in seven datasets. cAnt-Miner, the
ACO algorithm for classification rule discovery, achieved the highest predictive
accuracy in four datasets. Näıve-Bayes achieved the highest predictive accu-
racy in four datasets, while TAN in three datasets and GBN in three datasets.
SP-TAN, the extended TAN learning algorithm, achieved the best predictive
accuracy in 1 dataset. GHC-K2 and GHC-Acc, which were customized for the
experiments, achieved the best predictive accuracy amongst all the algorithms
in two and five datasets, respectively.

Table 5 shows the results of the statistical significance tests according to
the non-parametric Friedman test with Holm’s post-hoc test [16,20], where
α = 0.05, with respect to the average rank. The average rank for a given
algorithm g is obtained by first computing the rank of g on each dataset
individually. The individual ranks are then averaged across all datasets to
obtain the overall average rank. Note that the lower the value of the rank, the
better the algorithm. ABC-Miner obtained the best overall ranking: 2.6.

For each algorithm, the first column in Table 5 after the algorithms’ names
shows its average rank, the second column shows the p-value (adjusted on the
Holm critical value) of the statistical test when its average rank is compared
to the average rank of ABC-Miner (the control algorithm with the best rank).
An entry where the p-value is less than 0.05 indicates that the control algo-
rithm, ABC-Miner, is better than its corresponding algorithm at the statistical
significance level of 0.05.

Table 5 The non-parametric Friedman statistical test results with Holm’s post-hoc test.

Algorithm Average Rank Adjusted p-value

ABC-Miner (control) 2.6 –

ABC-Miner− 3.2 0.3801

GHC-Acc 4.6 0.0782

cAnt-Miner 4.7 0.0048

SP-TAN 5.0 0.0016

GHC-K2 5.4 2.1E-4

TAN 5.9 1.8E-5

GBN 6.4 5.4E-7

Näıve-Bayes 7.1 5.3E-9

Employing ACO with local search for learning a Bayesian network classifier
structure, along with the use of predictive accuracy as the objective function
to be optimized, produced the best results. To analyze the effects of different
components of ABC-Miner on the effectiveness of the algorithm, we carry out
the following comparisons:

22 Khalid M. Salama, Alex A. Freitas

• GHC-Acc vs. GHC-K2: To isolate the effect of the objective function,
we compare the same search strategy (GHC) with two different objective
functions. The use of predicative accuracy performs better than the use
of K2 when learning a BN classifier, even without using ACO as a search
strategy. GHC-Acc reached higher accuracy than GHC-K2 in 16 datasets
and obtained a better overall accuracy ranking that is statistically signifi-
cant at the 5% level.

• ABC-Miner vs. GHC-Acc: The results show that the use of an ACO
meta-heuristic performs better than the use of a greedy hill-climbing search
in building BN classifiers, even when both have the same objective function:
predictive accuracy. ABC-Miner reached higher accuracy than GHC-Acc
in 17 datasets and obtained a better overall accuracy ranking. However,
the statistical test shows that the ranking of the ACO-based algorithm is
not significant at the level of 5%.

• ABC-Miner vs. GHC-K2: Combining ACO with accuracy as an objec-
tive function obtained much better results than the greedy search with K2
as objective function. ABC-Miner reached higher predictive accuracy re-
sults than GHC-K2 in 21 datasets. The overall accuracy ranking obtained
by ABC-Miner is statistically better than the result obtained by GHC-K2
at the significance level of 5%.

• TAN vs. SP-TAN: Using predictive accuracy to select the edge to add
as a parent in the TAN learning procedure makes the SP-TAN algorithm
perform better than the conventional TAN learning algorithm, which se-
lects edges using the conditional mutual information between variables.
SP-TAN reached higher accuracy than TAN in 15 datasets, and a higher
accuracy ranking than TAN that is statistically significant at the 5% level.

• GHC-Acc vs. SP-TAN: Although GHC-Acc obtained a slightly better
overall ranking than SP-TAN, this difference is not statistically significant
at the 5% level. GHC-Acc builds a BN classifier in which a node can have
up to 3 parents, and it reached higher accuracy than SP-TAN in only 13
datasets out of 25, while in a TAN a node can have only 1 parent.

• ABC-Miner vs. ABC-Miner−: Using local search has improved the ef-
fectiveness of the algorithm, since ABC-Miner obtained a better accuracy
ranking compared to ABC-Miner−. However, this difference is not statisti-
cally significant, since the use of the local search improved the performance
of ABC-Miner compared to ABC-Miner− only in 10 datasets.

• ABC-Miner vs. cAnt-Miner: The ACO algorithm for learning BN clas-
sifiers performs better than its corresponding ACO algorithm for learning
classification rules in 17 datasets, obtaining a better overall accuracy rank-
ing that is statistically significant at the 5% level.

According to the aforementioned comparisons, we conclude that the use of
the ACO-meta heuristics outperformed GHC in learning BN classifiers. This
result is statistically significant as shown in the results’ comparisons of ABC-
Miner and ABC-Miner− against GHC-K2, SP-TAN, GBN and TAN. The use
of predictive accuracy has the highest impact in increasing the effectiveness

Learning Bayesian network classifiers using ant colony optimization 23

of the algorithm, whether it is used with ACO or GHC. This claim is statis-
tically supported by the comparisons of ABC-Miner vs. GHC-K2, GHC-Acc
vs. GHC-K2 and SP-TAN vs. TAN, since the use of predictive accuracy as
an objective function with any search algorithm outperforms its correspond-
ing search algorithm using another conventional scoring function (such as K2
and conditional mutual information) with statistical significance. On the other
hand, using local search has a relatively low impact on the predictive perfor-
mance, which is seen in the comparison of ABC-Miner against ABC-Miner−,
which shows no statistically significant difference. Combining ACO as a search
strategy while utilizing local search, along with the predictive accuracy as an
objective function, produced the best results.

Finally, we compare the predictive performance of ABC-Miner to SVM
as follows. The results for the two algorithms were obtained using 20-fold
cross-validation using the same fold partitioning. Consequently, for a given
dataset, the results for each fold, for the two algorithms, can be considered
a matched pair. Therefore, for each individual dataset, we apply a two-tailed
Wilcoxon matched-pairs statistical test to the results of the 20 folds for the
two algorithms to determine if there is a statistically significant difference for
that dataset. Although the use of 10-fold cross validation is more common,
we performed the statistical evaluation using the results of the 20-fold cross
validation to increase the power of the test.

Table 6 shows the results of these Wilcoxon tests for each of the 25 datasets.
The result shown in bold-face is the highest one between the two algorithms
for a given dataset. A result shown with underline indicates a statistically
significant difference at the 5% level. Accordingly, ABC-Miner reached higher
predictive accuracy results than SVM in 12 datasets; in 10 of which the results
were significantly better at the 5% level. On the other hand, SVM performed
better than ABC-Miner in 13 datasets; in 6 of which the results were signifi-
cantly better at the 5% level.

Broadly speaking, Support Vector Machines (SVMs) often obtain some-
what higher predictive accuracies than other types of classification algorithms,
although this is not true for all types of datasets (as shown in Table 6). How-
ever, the classifier built by an SVM is in general a “black box” from the
perspective of users — i.e., the output of an SVM algorithm can hardly be
interpreted by users. By contrast, BN classifiers produce a graphical model of
the dependencies between variables that can be directly interpreted by users,
which is an advantage in many application domains. For a review of the im-
portance of comprehensible classification models, see [17,22,30,34].

A sample of the graphical models produced by ABC-Miner from two datasets
used in our experiments is shown in Figure 2. As shown, ABC-Miner produces
BAN classifiers, where the class variable is the parent of all other input vari-
ables (the predictor variables), and each predictor variable usually has more
than one parent node besides the class node.

In general, parent variables with a high number of children can be consid-
ered to be important variables; the values of those parent variables influence
the values of several other related variables. For instance, in the Car Evalua-

24 Khalid M. Salama, Alex A. Freitas

Table 6 ABC-Miner vs. SVM predictive accuracy % (mean± standard error). The result
shown in bold-face is the higher one between the two algorithms for a given dataset. The
underlined result indicates a statistically significant difference at α = 0.05, according to a
two-tailed Wilcoxon matched-pairs statistical test.

Dataset ABC-Miner SVM

bal 84.7 ± 0.7 88.4 ± 0.9

bcw 95.1 ± 0.6 97.8 ± 1.1

car 97.4 ± 0.2 94.4 ± 0.6

chess 95.8 ± 0.5 95.2 ± 0.7

cmc 66.7 ± 0.4 51.3 ± 0.9

crd-a 87.6 ± 0.6 84.9 ± 0.8

crd-g 73.5 ± 0.8 75.4 ± 0.7

drm 98.4 ± 0.9 97.4 ± 1.2

glass 93.6 ± 0.8 82.4 ± 0.7

hay 80.8 ± 1.8 81.9 ± 1.2

hrt-c 83.5 ± 2.1 73.2 ± 1.6

hep 77.8 ± 1.2 74.2 ± 1.6

iono 94.8 ± 0.2 92.1 ± 0.4

iris 96.1 ± 0.4 96.4 ± 0.3

monk 52.3 ± 0.8 63.6 ± 1.2

mush 97.8 ± 0.2 100 ± 0.0

nurs 97.9 ± 0.6 93.4 ± 0.9

park 92.4 ± 1.8 94.7 ± 1.6

pima 77.6 ± 0.8 74.7 ± 1.2

pop 76.6 ± 0.6 72.4 ± 0.9

soy 95.6 ± 0.6 97.2 ± 0.8

ttt 84.8 ± 0.2 96.1 ± 1.1

vot 94.3 ± 1.1 95.6 ± 1.2

wine 98.3 ± 1.2 98.8 ± 0.6

zoo 98.1 ± 0.4 98.5 ± 0.6

tion dataset, the value of the “safety” variable directly influence the values of
its three child variables; and in the Nursery dataset, the “housing” variable is
a parent of four variables. The effect of a parent variable on the state of its
child variables is quantified by the CPT computed for each of those children.

Note that in general the value of the class variable for a given case is more
dependent on the values of the case’s input variables that have several children
in the BN classifier than on the values of the case’s variables with no children
in the BN classifier – like the “persons” and the “social” variables in the Car
Evaluation and the Nursery datasets, respectively. Changing the value of an
input variable with several children can have a relatively large effect on the

Learning Bayesian network classifiers using ant colony optimization 25

class posterior probability of the case, compared to the relatively small effect
caused by changing the value of an input variable with no children, according
to Equations 1 and 4.

Fig. 2 Bayesian network classifiers output from running ABC-Miner on two datasets (a)
Car Evaluation and (b) Nursery.

26 Khalid M. Salama, Alex A. Freitas

7.2 Computational time

The running time (in seconds) of each algorithm (averaged over the 10 cross-
validation folds) is reported in Table 7 for all datasets. The ratio between each
algorithm’s running time and ABC-Miner’s running time is reported in the
column with “Ratio” header.

According to the running times, the use of the predictive accuracy function
leads to a longer execution time than the use of K2 as an objective function.
This is expected, since K2 is a decomposable measure [8]. This is shown when
comparing GHC-K2’s and GBN’s running time to GHC-Acc and ABC-Miner.
Comparing GHC-Acc to ABC-Miner, the ratio of GHC-Acc’s time to ABC-
Miner’s is 1.39, although both were given the same computational budget
(i.e., both evaluate the same maximum number of candidate solutions). The
fact that GHC-Acc takes more time than ABC-Miner can be explained by
the possibility that ACO converges before reaching the maximum number of
iterations. On the other hand, the use of the local search procedure increases
the running time by about 40%. In addition, overall, ABC-Miner is slightly
faster than cAnt-Miner.

As expected, TAN is by far the fastest algorithm in Table 7, but its pre-
dictive performance is much worse than ABC-Miner (Section 7.1). TAN does
not offer a good trade-off between accuracy and speed, since predictive ac-
curacy is usually considered much more important than the running time in
the classification task of data mining. SP-TAN, the second best in terms of
computational time, provides a good trade-off between the predictive accuracy
and the running time of the algorithm.

Learning Bayesian network classifiers using ant colony optimization 27
T
a
b
le

7
R
u
n
n
in
g
ti
m
e
(i
n
se
co

n
d
s)
.

D
a
ta
se
t

T
A
N

G
B
N

G
H
C
-K

2
S
P
-T

A
N

G
H
C
-A

cc
c
A
n
t-
M
in
er

A
B
C
-M

in
er

−
A
B
C
-M

in
er

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

ti
m
e

ra
ti
o

b
a
l

2
1

0
.0
1

1
5
0
0

0
.5
8

1
0
0
0

0
.3
8

1
2
0
0

0
.4
6

2
0
0
0

0
.7
7

3
2
0
0

1
.2
3

2
0
0
0

0
.7
7

2
6
0
0

b
c
w

3
4

0
.0
2

1
2
0
0

0
.6

9
0
0

0
.4
5

1
1
0
0

0
.5
5

2
5
0
0

1
.2
5

3
0
0
0

1
.5

1
5
0
0

0
.7
5

2
0
0
0

c
a
r

2
7

0
.0
3

7
0
0

0
.7

1
3
0
0

1
.3

6
5
0

0
.6
5

5
7
0
0

5
.7

4
0
0

0
.4

9
0
0

0
.9

1
0
0
0

c
h
e
s
s

5
9
0

0
.0
2

6
8
0
0

0
.1
8

7
0
0
0

0
.1
9

4
4
0
0

0
.1
2

6
7
0
0
0

1
.8
1

3
0
0
0

0
.0
8

2
5
0
0
0

0
.6
8

3
7
0
0
0

c
m
c

7
8

0
.0
1

2
1
0
0

0
.3
9

8
0
0

0
.1
5

1
2
0
0

0
.2
2

5
2
0
0

0
.9
6

6
6
0
0

1
.2
2

5
0
0
0

0
.9
3

5
4
0
0

c
r
d
-
a

2
1

0
.0
1

2
2
0
0

1
8
0
0

0
.3
6

2
0
0
0

0
.9
1

1
1
0
0

0
.5

4
5
0
0

2
.0
5

1
1
0
0

0
.5

2
2
0
0

c
r
d
-
g

3
6

0
.0
1

1
4
0
0

0
.3
1

9
0
0

0
.2

4
0
0

0
.0
9

1
3
0
0

0
.2
9

6
1
0
0

1
.3
6

4
3
0
0

0
.9
6

4
5
0
0

d
r
m

2
6

0
.0
1

5
0
0

0
.1
8

7
0
0

0
.2
5

5
5
0

0
.2

4
6
0
0

1
.6
4

2
0
0
0

0
.7
1

2
5
0
0

0
.8
9

2
8
0
0

g
l
a
s
s

8
0

4
0
0

0
.0
8

3
0
0

0
.0
6

1
0
0

0
.0
2

7
0
0

0
.1
4

7
2
0
0

1
.4
4

4
0
0
0

0
.8

5
0
0
0

h
a
y

6
0
.0
2

1
5

0
.0
5

1
0

0
.0
3

1
0

0
.0
3

2
0
0

0
.6
7

2
5
0

0
.8
3

1
0
0

0
.3
3

3
0
0

h
r
t
-
c

2
1

0
.0
1

4
0
0

0
.1

1
0
0

0
.0
2

1
5
0

0
.0
4

2
2
0
0

0
.5
2

4
8
0
0

1
.1
4

3
2
0
0

0
.7
6

4
2
0
0

h
e
p

1
0
.0
1

5
0

0
.2
5

7
0

0
.3
5

2
0

0
.1

1
0
0

0
.5

1
5
0

0
.7
5

1
0
0

0
.5

2
0
0

i
o
n
o

1
3

0
4
5
0

0
.1
7

3
8
0

0
.1
4

2
5
0

0
.0
9

2
2
0
0

0
.8
1

4
2
0
0

1
.5
6

2
4
0
0

0
.8
9

2
7
0
0

i
r
i
s

1
0
.0
1

1
0

0
.1

1
0

0
.1

1
0

0
.1

1
0
0

1
8
0

0
.8

1
0

0
.1

1
0
0

m
o
n
k

7
0

0
.0
2

4
7
0

0
.1
1

3
8
0

0
.0
9

2
2
0

0
.0
5

3
0
0
0

0
.7

4
0
0
0

0
.9
3

6
0
0

0
.1
4

4
3
0
0

m
u
s
h

1
8
0

0
.0
1

6
0
0
0

0
.4

8
0
0
0

0
.5
3

2
0
0
0

0
.1
3

1
8
0
0
0

1
.2

1
2
0
0
0

0
.8

1
0
0
0
0

0
.6
7

1
5
0
0
0

n
u
r
s

9
0

0
.0
1

6
5
0
0

0
.7
6

4
0
0
0

0
.4
7

6
5
0
0

0
.7
6

9
0
0
0

1
.0
6

9
0
0
0

1
.0
6

5
0
0
0

0
.5
9

8
5
0
0

p
a
r
k

2
6

0
.0
1

4
0
0

0
.1
9

3
0
0

0
.1
4

1
6
0

0
.0
8

6
0
0
0

2
.8
6

3
8
0
0

1
.8
1

2
0
0

0
.1

2
1
0
0

p
i
m
a

3
6

0
.0
1

1
2
0

0
.0
4

2
8
0

0
.0
8

1
2
0

0
.0
4

3
0
0
0

0
.8
8

3
6
0
0

1
.0
6

1
8
0
0

0
.5
3

3
4
0
0

p
o
p

1
0

1
4

0
.0
2

1
0

0
.0
1

1
0

0
.0
1

1
0
0

0
.1
4

8
0
0

1
.1
4

4
0
0

0
.5
7

7
0
0

s
o
y

2
4

0
.0
2

3
2
0

0
.2
5

1
9
0

0
.1
5

1
2
0

0
.0
9

4
2
0
0

3
.2
3

1
5
0
0

1
.1
5

5
0
0

0
.3
8

1
3
0
0

t
t
t

2
4

0
.0
1

3
8
0
0

1
.4
6

1
9
0
0

0
.7
3

2
3
0
0

0
.8
8

2
3
0
0

0
.8
8

1
8
0
0

0
.6
9

1
8
0
0

0
.6
9

2
6
0
0

v
o
t

3
5

0
.0
1

5
0
0

0
.1
2

7
0
0

0
.1
7

2
0
0

0
.0
5

1
8
0
0

0
.4
4

4
0
0
0

0
.9
8

1
6
0
0

0
.3
9

4
1
0
0

w
i
n
e

2
7

0
.1
1

2
0
0

0
.8

3
0
0

1
.2

1
0
0

0
.4

7
0
0

2
.8

4
5
0

1
.8

1
0
0

0
.4

2
5
0

z
o
o

1
2

0
.0
6

1
1
0

0
.5
5

7
0

0
.3
5

1
1
0

0
.5
5

8
0
0

4
2
0
0

1
1
0

0
.0
5

2
0
0

a
v
g
.
ra
ti
o

0
.0
2

0
.3
7

0
.3
1

0
.2
6

1
.3
9

1
.1
2

0
.5
7

28 Khalid M. Salama, Alex A. Freitas

8 Concluding remarks

In this paper, we presented and extended ABC-Miner, an ant-based algorithm
for learning Bayesian network classifiers. Empirical results showed that ABC-
Miner significantly outperforms the well-known Näıve-Bayes, TAN, SP-TAN
and GBN algorithms in terms of predictive accuracy. The results also show
that the use of predictive accuracy as an optimization objective function for
building a BN classifier leads to higher predictive performance than the K2
scoring function that is used to build general BNs. The ACO meta-heuristic
was shown to be better than greedy hill-climbing in the search process even
if both used predictive accuracy as a quality measure for the constructed BN
classifier. However, using predictive accuracy as an objective function caused
the highest impact in improving the results. On the other hand, the automatic
selection of the maximum number of k-parents value for each node makes
ABC-Miner more adaptive and autonomous than conventional algorithms for
learning BN classifiers, where the k-dependencies value is set by the user and
fixed for all nodes of the BN during the entire run of the algorithm.

As future work, we would like to explore the effect of using different scoring
functions for computing the heuristic value used by ABC-Miner, as well as
exploring other measures to evaluate the quality of a constructed BN classifier
during the search process. Another research direction is to use ant colony
optimization to construct Bayesian multi-nets for classification.

References

1. Bonabeau, E., Dorigo, M., Theraulaz., G. : Swarm Intelligence: From natural to artificial
systems. Oxford University Press, New York, NY, USA, (1999).

2. Buntine, W. : Theory refinement on Bayesian networks. 17th Conference on Uncertainty
in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, USA, pp. 52–60 (1991).

3. Campos, L.M. , Gámez, J.A. , Puerta, J.M. : Ant Colony Optimization for Learning
Bayesian Networks. Journal of Approximate Reasoning, Vol. 31, pp. 291-311 (2002).

4. Cheng, J. and Greiner, R. : Comparing Bayesian Network Classifiers. 15th Annual Con-
ference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA,
USA, pp. 101–108 (1999).

5. Cheng, J. and Greiner, R. : Learning Bayesian Belief Network Classifiers: Algorithms
and System. 14th Biennial Conference of the Canadian Society on Computational Stud-
ies of Intelligence: Advances in Artificial Intelligence, Springer, London, UK, pp. 141–
151 (2001).

6. Chickering, D., Geiger, M., Heckerman, D. : Learning Bayesian Networks is NP-Hard.
Advanced Technologies Division, Microsoft Corporation, Redmond, WA, Technical Re-
port, (1994).

7. Colorni, A., Dorigo, M., Maniezzo, V. : Distributed Optimization by Ant Colonies.
1st European Conference on Artificial Life, MIT Press, Cambridge, MA, pp. 134–142
(1992).

8. Cooper, G.F. and Herskovits, E. : A Bayesian Method for the Induction of Probabilistic
Networks from Data. Machine Learning, Vol. 9, pp. 309–348 (1992).

9. Cristianini, N., and Shawe-Taylor, J. : An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge,
UK (2000).

10. Daly, R., Shen, Q., Aitken, S. : Using Ant Colony Optimization in Learning Bayesian
Network Equivalence Classes. UK Workshop on Computational Intelligence (UKCI),
AAAI Press, Palo Alto, CA, USA, pp. 111–118 (2006).

Learning Bayesian network classifiers using ant colony optimization 29

11. Daly, R. and Shen, Q. : Learning Bayesian Network Equivalence Classes with Ant Colony
Optimization. Journal of Artificial Intelligence Research, Vol. 35, pp. 391–447 (2009).

12. Dorigo, M. Di Caro, G. : The Ant Colony Optimization Meta-Heuristic. New Ideas in
Optimization, McGraw-Hill, Vol. 2 pp. 11–32 (1999).

13. Dorigo, M., Di Caro, G., Gambardella, L. M. : Ant Algorithms for Discrete Optimiza-
tion. Artificial Life, Vol. 5(2), pp. 137–172. (1999)

14. Dorigo, M., Maniezzo, V., Colorni, A. : Ant System: Optimization by a colony of coop-
erating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 26,
pp. 29–41 (1996).

15. Dorigo, M. and Stützle, T. : Ant Colony Optimization. MIT Press, Cambridge, MA,
USA, (2004).

16. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Datasets. Journal of
Machine Learning Research, Vol. 7, pp. 1–30 (2006).

17. Freitas, A.A., Wieser, D.C. and Apweiler, R. : On the Importance of Comprehensible
Classification Models for Protein Function Prediction. ACM/IEEE Transactions on
Computational Biology and Bioinformatics Vol. 7, pp. 172–182 (2010).

18. Friedman, N., Geiger, D., Goldszmidt, M. : Bayesian Network Classifiers. Machine
Learning, Vol. 29, pp. 131–161 (1997).

19. Friedman, N., and Goldszmidt, M. : Learning Bayesian Networks with Local Structure.
Learning in Graphical Models, Norwell, MA: Kluwer, pp. 421–460 (1998).

20. Garćıa, S. and Herrera, F. : An Extension on Statistical Comparisons of Classifiers over
Multiple Datasets for all Pairwise Comparisons. Journal of Machine Learning Research,
Vol. 9, pp. 2677–2694 (2008).

21. Heckerman, D., Geiger, D., Chickering, D.M. : Learning Bayesian Networks: the Com-
bination of Knowledge and Statistical Data. Machine Learning, Vol. 20, pp. 197–244
(1995).

22. Huysmans, J., Dejaeger, K., Mues, C., Vanthienen, J., and Baesens, B. : An empirical
evaluation of the comprehensibility of decision table, tree and rule based predictive
models. Decision Support Systems Vol. 51, pp. 141–154. (2011).

23. Jaiwei, H., & Kamber, M. : Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco, CA, USA, (2006)

24. Jiang, L., Wang, D., Cai, Z., Yan., X. : Survey of Improving Naive Bayes for Classifi-
cation. International Conference on Advanced Data Mining and Applications, Springer
Heidelberg, LNCS 4632, pp. 134–145 (2007).

25. Ji, J., Hu, R., Zhang, H., Liu, C. : A Hybrid Method for Learning Bayesian Networks
based on Ant Colony Optimization. Applied Soft Computing, Vol. 11, pp. 3373–3384
(2011).

26. Kohavi, R. and Sahami, M. : Error-based and Entropy-based Discretization of Contin-
uous Features. International ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, AAAI Press, Palo Alto, CA, USA, pp. 114–119. (1996).

27. Keogh, E., Pazzani, M.: Learning Augmented Bayesian Classifiers: A Comparison of
Distribution-based and Classification-based Approaches. International Workshop on
Artificial Intelligence and Statistics, Morgan Kaufmann, San Francisco, CA, USA pp.
225–230 (1999).

28. Langley, P., Iba, W. and Thompson, K. : An Analysis of Bayesian Classifiers. 10th
National Conference on Artificial Intelligence (AAAI-92), AAAI Press, Palo Alto, CA,
USA, pp. 223–228 (1992).

29. Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B. : Clas-
sification with Ant Colony Optimization. IEEE Transactions on Evolutionary Compu-
tation, Vol. 11, pp. 651–665 (2007).

30. Marteens, D., Vanthienen, J., Verbeke, W., and Baesens, B. : Performance of Classifi-
cation Models from a User Perspective. Decision Support Systems Vol. 51, pp. 782–793
(2011)

31. Martens, D. , Baesens, B., Fawcett T. : Editorial Survey: Swarm Intelligence for Data
Mining. Machine Learning, Vol. 82, pp. 1–42 (2011).

32. Otero, F., Freitas, A.A., Johnson, C.G. : cAnt-Miner: an Ant Colony Classification
Algorithm to Cope with Continuous Attributes. Sixth International Conference on Ant
Colony Optimization and Swarm Intelligence, Springer Heidelberg, Germany, LNCS
5217, pp. 48–59 (2008).

30 Khalid M. Salama, Alex A. Freitas

33. Parpinelli, R.S., Lopes, H.S., Freitas, A.A. : Data Mining with an Ant Colony Opti-
mization Algorithm. IEEE Transactions on Evolutionary Computation, Vol. 6(4), pp.
321–332 (2002).

34. Pazzani, M.J., Mani, S., and Shankle, W.R. : Acceptance of Rules Generated by Machine
Learning among Medical Experts. Methods of Information in Medicine, Vol. 40, pp.
380–385 (2001).

35. Pinto, P.C., Ngele, A., Dejori, M., Runkler, T.A., Costa, J.M. : Learning of Bayesian
networks by a local discovery ant colony algorithm. IEEE World Congress on Compu-
tational Intelligence, IEEE Press, Piscataway, NJ, USA, pp. 2741–2748 (2008).

36. Pinto, P.C., Ngele, A., Dejori, M., Runkler, T.A., Costa, J.M. : Using a Local Discov-
ery Ant Algorithm for Bayesian Network Structure Learning. IEEE Transactions on
Evolutionary Computation, Vol. 13, pp. 767–779 (2009).

37. Salama, K. M., and Abdelbar, A. M. : Extensions to the Ant-Miner Classification
Rule Discovery Algorithm. 7th International Conference on Swarm Intelligence (ANTS
2010), Springer Heidelberg, LNCS 6234, pp. 43–50 (2010),

38. Salama, K.M., Abdelbar, A.M., Freitas A.A. : Multiple Pheromone Types and Other
Extensions to the Ant-Miner Classification Rule Discovery Algorithm. Swarm Intelli-
gence, Vol. 5, pp. 149–182 (2011).

39. Salama, K. M. and Abdelbar, A. M. Exploring Different Rule Quality Evaluation Func-
tions in ACO-based Classification Algorithms. IEEE Symposium on Swarm Intelligence
(SIS), IEEE Press, Piscataway, NJ, USA, pp. 1–8 (2011).

40. Salama, K.M., Abdelbar, A. M., Otero, F.E, Freitas, A.A. : Utilizing Multiple
Pheromones in an Ant-based Algorithm for Continuous-Attribute Classification Rule
Discovery. Applied Soft Computing, Vol. 13, pp. 667–675 (2013),

41. Salama, K.M. and Freitas A.A. : ABC-Miner: an Ant-based Bayesian Classification
Algorithm. 8th International Conference on Swarm Intelligence (ANTS 2012), Springer
Heidelberg, LNCS 7461, pp. 13–24 (2012).

42. UCI Repository of Machine Learning Databases. Retrieved Oct 2011 from,
URL:http://www.ics.uci.edu/ mlearn/MLRepository.html

43. Witten, H., and Frank, E. Data Mining: Practical Machine Learning Tools and Tech-
niques, Second Edition. Morgan Kauffman, San Francisco, CA, USA (2005).

44. Yanghui, Wu., McCall, J., Corne, D. : Two Novel Ant Colony Optimization Approaches
for Bayesian Network Structure Learning. IEEE World Congress on Evolutionary Com-
putation (CEC 2010), IEEE Press, Piscataway, NJ, USA, pp. 1–7 (2010).

45. Yang, S. : Comparison of Score Metrics for Bayesian Network Learning. IEEE Trans-
actions on Systems, Man and Cybernetics, Part A: Systems and Humans, Vol. 32, pp.
419–428 (2002).

