
An Architectural Approach to
Fault Treatment in Critical Infrastructures

José Luiz Fiadeiro

ATX Software S.A. and LabMOL–University of Lisbon
Alameda António Sérgio 7 – 1 C, 2795-023 Linda-a-Velha, Portugal

jose@fiadeiro.org

1. On the challenges raised by critical infrastructures
Critical infrastructures, as information-intensive systems that support vital functions
of our modern society (telecommunications, financial services, transports, energy
supplies, etc). are becoming particularly vulnerable to failure. They are often built
over unreliable networks of heterogeneous, fragile platforms. They perform critical
missions that make them vulnerable to attacks. These are also systems that,
individually, are becoming ever more complex and, globally, ever more
interdependent.

Fault treatment for this kind of systems requires new levels of flexibility and
responsiveness. Due to the critical nature of the services that they support, such
infrastructures cannot stop their operation when a fault arises. They can tolerate a
certain degree of downgraded service for a certain period, but they need to ensure a
minimal set of properties while the original services are not fully restored. For this
purpose, they need to be able to react automatically to the occurrence of faults and
reconfigure themselves to adapt to the new situation in which they need to operate,
making use of the available resources.

2. Separating computation, coordination and configuration
The need to operate, in “real-time”, with “surgical” precision for limiting the impact
of the treatment, in contexts of increasing interdependency, requires a clear separation
of concerns to be enforced in the way we model and manage such systems. We
propose a three-layered architecture that separates what we consider to be the key
concerns involved in this problem: computation, coordination and configuration.

The first separation, that between computation and coordination, is enforced by
modelling explicitly the interactions that exist in the system as first-class entities –
architectural connectors that we call coordination contracts. These connectors
coordinate the way the components that reside in the computation layer interact. The
latter correspond to “core” entities of the domain that provide basic services that,
usually, cannot be “repaired” because they are performed by “black-boxes”. By
externalising all interactions as connectors, it becomes possible to circumscribe
treatment of faults occurring at the level of a component to the connectors through
which it interacts with the rest of the system. Basically, because it is often impossible
to find a component that performs “equivalent” services, we see fault treatment as

 José Luiz Fiadeiro

consisting of searching, within the available resources, components that offer
alternative services, even if in a downgraded mode, and establishing the connectors
that can adapt them to the expectations of the components with which they are
required to interact.

This model supports the means for fault treatment to be performed through
dynamic reconfiguration, in run-time, without interruption of service. For this
process of reconfiguration to be able to be programmed, leading to self-adaptive and
self-healing, we propose a third architectural layer consisting of entities that can react
to events and act on the configuration, which are treated, again, as first-class citizens.

Computation
 Resources

Coordination
 ResourcesConfiguration Layer

A B

Units controlling the
interactions and behavior of
basic components

Services and rules for
controlling the evolution of
the system

Components that perform the
computations that ensure core
services

3. Agent and objects have been promising the same…
Interaction in most agent-based models is, like for object-oriented systems, based

on identities in the sense that, through clientship, objects interact by invoking specific
methods of specific objects (instances) to get something specific done. As a result,
systems become too rigid to support the levels of agility that are required for fault
treatment in critical infrastructures: any change on the collaborations that an object
maintains with other objects needs to be performed at the level of the code that
implements that object and, possibly, of the objects with which the new collaborations
are established. On the contrary, being based on external connectors, our proposal
models interactions in a service-oriented approach, i.e. interconnections are
established on the basis of the description of what is required, thus decoupling the
“what one wants to be done” from the “who does it”. This is why faults can be
treated in ways that are not intrusive on the rest of the system, thus ensuring increased
levels of agility and responsiveness.

This does not mean that our architectural approach cannot be deployed over object-
oriented platforms: it can, and we have even provided a proof of concept over Java.
What is important is that the methodological approach and corresponding conceptual
model is based on a service-oriented architecture as described. More information on
this architectural approach can be found in www.atxsoftware.com.

