
3-Jul-01 Copyright P.H.Welch 1

Process Oriented
Design for Java -

Concurrency for All

Process Oriented
Design for Java -

Concurrency for All
Peter Welch

Computing Laboratory
University of Kent at Canterbury

(P.H.Welch@ukc.ac.uk)

PDPTA 2001, Las Vegas, Nevada (24th. June, 2001)

3-Jul-01 Copyright P.H.Welch 2

Nature is not organised as a
single thread of control:

Nature is not organised as a
single thread of control:

joe.eatBreakfast ();
sue.washUp ();
joe.driveToWork ();
sue.phone (sally);
US.government.sue (bill);
sun.zap (office);

???

???

3-Jul-01 Copyright P.H.Welch 3

Nature is not bulk synchronous:Nature is not bulk synchronous:

bill.support (this);
bill.invade (serbia);
bill.win (worldCup);
bill.phone (monica);
bill.blow (saxaphone);
UNIVERSE.SYNC ();

???

3-Jul-01 Copyright P.H.Welch 4

… nuclear … human … astronomic ...

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

3-Jul-01 Copyright P.H.Welch 5

Computer systems - to be of use in this world - need to
model that part of the world for which it is to be used.

If that modeling can reflect the natural concurrency in
the system … it should be simpler.

Yet concurrency is thought to be an advanced topic,
harder than serial computing (which therefore needs
to be mastered first).

The Real(-Time) World and ConcurrencyThe Real(-Time) World and ConcurrencyThe Real(-Time) World and Concurrency

3-Jul-01 Copyright P.H.Welch 6

This tradition is WRONG!This tradition is WRONG!

… which has (radical) implications on how we
should educate people for computer science …

… and on how we apply what we have learnt …

3-Jul-01 Copyright P.H.Welch 7

What we want from ParallelismWhat we want from Parallelism
� A powerful tool for simplifying the description of

systems.

� Performance that spins out from the above, but is not
the primary focus.

� A model of concurrency that is mathematically clean,
yields no engineering surprises and scales well with
system complexity.

3-Jul-01 Copyright P.H.Welch 8

Multi-PongMulti-Pong

3-Jul-01 Copyright P.H.Welch 9

control

...

scorer

left right

keycontrol

mouse

flasher

new game freeze

canvas

Multi-
Pong
Multi-
Pong

3-Jul-01 Copyright P.H.Welch 10

Good News!Good News!
The good news is that we can worry about
each process on its own. A process interacts
with its environment through its channels. It
does not interact directly with other processes.

Some processes have serial implementations -
these are just like traditional serial programs.

Our skills for serial logic sit happily alongside
our new skills for concurrency - there is no
conflict. This will scale!

Some processes have parallel implementations -
i.e. networks of sub-processes.

3-Jul-01 Copyright P.H.Welch 11

What we want from ParallelismWhat we want from Parallelism
� A powerful tool for simplifying the description of

systems.

� Performance that spins out from the above, but is not
the primary focus.

� A model of concurrency that is mathematically clean,
yields no engineering surprises and scales well with
system complexity.

3-Jul-01 Copyright P.H.Welch 12

� Easy to learn - but very difficult to apply … safely …

� Monitor methods are tightly interdependent - their semantics
compose in complex ways … the whole skill lies in setting
up and staying in control of these complex interactions …

� Threads have no structure … there are no threads within
threads …

� Big problems when it comes to scaling up complexity …

Java Monitors - CONCERNSJava Monitors - CONCERNS

3-Jul-01 Copyright P.H.Welch 13

count

state

ready

Most objects are
dead - they have
no life of their own.

All methods have to
be invoked by an
external thread of
control - they have to
be caller oriented …

Objects Considered HarmfulObjects Considered Harmful

… a somewhat curious
property of so-called
object oriented design.

3-Jul-01 Copyright P.H.Welch 14

count

state

ready

The object is at the
mercy of any thread
that sees it.

Objects Considered HarmfulObjects Considered Harmful

Nothing can be done
to prevent method
invocation ...

… even if the object is
not in a fit state to service
it. The object is not in
control of its life.

3-Jul-01 Copyright P.H.Welch 15

Objects Considered HarmfulObjects Considered Harmful
Each single thread of
control snakes around
objects in the system,
bringing them to life
transiently as their
methods are executed.

Threads cut across object
boundaries leaving
spaghetti-like trails,
paying no regard to the
underlying structure.

3-Jul-01 Copyright P.H.Welch 16

� Almost all multi-threaded codes making direct use of the
Java monitor primitives that we have seen (including our
own) contained race or deadlock hazards.

� Sun’s Swing classes are not thread-safe … why not?

� One of our codes contained a race hazard that did not trip
for two years. This had been in daily use, its sources
published on the web and its algorithms presented without
demur to several Java literate audiences.

Java Monitors - CONCERNSJava Monitors - CONCERNS

3-Jul-01 Copyright P.H.Welch 17

� ‘‘ If you can get away with it, avoid using threads. Threads
can be difficult to use, and they make programs harder to
debug. ’’

� ‘‘ Component developers do not have to have an in-depth
understanding of threads programming: toolkits in which
all components must fully support multithreaded access,
can be difficult to extend, particularly for developers who
are not expert at threads programming. ’’

Java Monitors - CONCERNSJava Monitors - CONCERNS
<java.sun.com/products/jfc/tsc/articles/threads/threads1.html>

3-Jul-01 Copyright P.H.Welch 18

� ‘‘ It is our basic belief that extreme caution is warranted
when designing and building multi-threaded applications
… use of threads can be very deceptive … in almost all
cases they make debugging, testing, and maintenance
vastly more difficult and sometimes impossible. Neither
the training, experience, or actual practices of most
programmers, nor the tools we have to help us, are
designed to cope with the non-determinism … this is
particularly true in Java … we urge you to think twice
about using threads in cases where they are not
absolutely necessary …’’

Java Monitors - CONCERNSJava Monitors - CONCERNS
<java.sun.com/products/jfc/tsc/articles/threads/threads1.html>

3-Jul-01 Copyright P.H.Welch 19

� No guarantee that any synchronized method will ever be
executed … (e.g. stacking JVMs)

� Even if we had above promise (e.g. queueing JVMs),
standard design patterns for wait / notify fail to
guarantee liveness (“Wot, no chickens?”)

Java Monitors - CONCERNSJava Monitors - CONCERNS

See:
 http://www.hensa.ac.uk/parallel/groups/wotug/java/discussion/3.html

 http://www.nist.gov/itl/div896/emaildir/rt-j/msg00385.html

 http://www. nist.gov/itl/div896/emaildir/rt-j/msg00363.html

3-Jul-01 Copyright P.H.Welch 20

� Threads yield non-determinacy (and, therefore, scheduling
sensitivity) straight away ...

� No help provided to guard against race hazards ...
� Overheads too high (> 30 times ???)
� Tyranny of Magic Names (e.g for listener callbacks)
� Learning curve is long …
� Scalability (both in logic and performance) ???
� Theoretical foundations ???

� (deadlock / livelock / starvation analysis ???)
� (rules / tools ???)

Java Monitors - CONCERNSJava Monitors - CONCERNS

3-Jul-01 Copyright P.H.Welch 21

� So, Java monitors are not something with which we want to
think - certainly not on a daily basis.

� But concurrency should be a powerful tool for simplifying
the description of systems …

� So, it needs to be something I want to use - and am
comfortable with - on a daily basis!

Java Monitors - CONCERNSJava Monitors - CONCERNS

3-Jul-01 Copyright P.H.Welch 22

Claim

Communicating Sequential
Processes (CSP)

Communicating Sequential
Processes (CSP)

A mathematical theory for specifying and verifying
complex patterns of behaviour arising from
interactions between concurrent objects.

CSP has a formal, and compositional, semantics
that is in line with our informal intuition about the
way things work.

3-Jul-01 Copyright P.H.Welch 23

Why CSP?Why CSP?
� Encapsulates fundamental principles of communication.

� Semantically defined in terms of structured mathematical
model.

� Sufficiently expressive to enable reasoning about deadlock
and livelock.

� Abstraction and refinement central to underlying theory.

� Robust and commercially supported software
engineering tools exist for formal verification.

3-Jul-01 Copyright P.H.Welch 24

� CSP libraries available for Java (JCSP, CTJ).

� Ultra-lightweight kernels have been developed yielding
sub-microsecond overheads for context switching,
process startup/shutdown, synchronized channel
communication and high-level shared-memory locks.

� Easy to learn and easy to apply …

Why CSP?Why CSP?

* not yet available for JVMs (or Core JVMs!)

*

3-Jul-01 Copyright P.H.Welch 25

� After 5 hours teaching
� exercises with 20-30 threads of control
� regular and irregular interactions
� appreciating and eliminating race hazards, deadlock, etc.

� CSP is (parallel) architecture neutral
� message-passing
� shared-memory

Why CSP?Why CSP?

3-Jul-01 Copyright P.H.Welch 26

So, what is CSP?So, what is CSP?

We do not need to be mathematically sophisticated to
work with CSP. That sophistication is pre-engineered
into the model. We benefit from this simply by using it.

CSP deals with processes, networks of processes and
various forms of synchronisation / communication
between processes.

A network of processes is also a process - so CSP
naturally accommodates layered network structures
(networks of networks).

3-Jul-01 Copyright P.H.Welch 27

ProcessesProcesses
� A process is a component that encapsulates some data

structures and algorithms for manipulating that data.

� Both its data and algorithms are private. The outside
world can neither see that data nor execute those
algorithms! [They are not objects.]

� The algorithms are executed by the process in its own
thread (or threads) of control.

� So, how does one process interact with another?

myProcess

3-Jul-01 Copyright P.H.Welch 28

� The simplest form of interaction is synchronised message-
passing along channels.

� The simplest forms of channel are zero-buffered and
point-to-point (i.e. wires).

� But, we can have buffered channels (blocking/overwriting).

� And any-1, 1-any and any-any channels.

� And structured multi-way synchronisation (e.g. barriers) …

� And high-level (e.g. CREW) shared-memory locks …

ProcessesProcesses myProcess

3-Jul-01 Copyright P.H.Welch 29

A (c) || B (c)

cAA BB

Synchronised CommunicationSynchronised Communication

B may read from c at any time, but has to wait for a write.

c ? x

A may write on c at any time, but has to wait for a read.

c ! 42

3-Jul-01 Copyright P.H.Welch 30

A (c) || B (c)

cAA BB

Synchronised CommunicationSynchronised Communication

c ? x

Only when both A and B are ready can the communication
proceed over the channel c.

c ! 42

3-Jul-01 Copyright P.H.Welch 31

‘Legoland’ Catalog‘Legoland’ Catalog

IdInt (in, out)

in out
IdIntIdInt

SuccInt (in, out)

in out
SuccIntSuccInt

PlusInt (in0, in1, out)

in1

outin0
++

PrefixInt (n, in, out)

outin nn

TailInt (in, out)

in out
TailIntTailInt

Delta2Int (in, out0, out1)

out1

out0
in

3-Jul-01 Copyright P.H.Welch 32

‘Legoland’ Catalog‘Legoland’ Catalog
�� This is a catalog of fine-grained processes -This is a catalog of fine-grained processes -

think of them as pieces of hardware (e.g.think of them as pieces of hardware (e.g.
chips). They process data (chips). They process data (intintss) flowing) flowing
through them.through them.

� They are presented not because we suggest
working at such fine levels of granularity …

� They are presented in order to build up
fluency in working with parallel logic.

3-Jul-01 Copyright P.H.Welch 33

‘Legoland’ Catalog‘Legoland’ Catalog
�� Parallel logic should become just as easy toParallel logic should become just as easy to

manage as serial logic.manage as serial logic.

� This is not the traditionally held view …

� But that tradition is wrong.

� CSP/occam people have always known this.

Let’s look at some CSP pseudo-code for these
processes …

3-Jul-01 Copyright P.H.Welch 34

outin IdIntIdInt
IdInt (in, out) = in?x --> out!x --> IdInt (in, out)

SuccIntin out

SuccInt (in, out) = in?x --> out!(x + 1) --> SuccInt (in, out)

in1
outin0

++

PlusInt (in0, in1, out) =
(in0?x0 --> SKIP || inl?x1 --> SKIP);
out!(x0 + x1) --> Plus (in0, in1, out)

Note the parallel input

3-Jul-01 Copyright P.H.Welch 35

Delta2Int (in, out0, out1) =
in?x --> (out0!x --> SKIP || out1!x --> SKIP);
Delta2Int (in, out0, out1)

out1

out0
in

outin
nn

PrefixInt (n, in, out) = out!n --> Id (in, out)

TailInt (in, out) = in?x --> Id (in, out)

in out
TailIntTailInt

Note the parallel output

3-Jul-01 Copyright P.H.Welch 36

A Blocking FIFO BufferA Blocking FIFO Buffer

Fifo (n, in, out) =
IdInt (in, c[0]) ||
([||i = 0 FOR n-2] IdInt (c[i], c[i+1])) ||
IdInt (c[n-2], c[n-1])

outin IdIntIdInt IdIntIdInt IdIntIdIntc[0] c[1]
c[n-1]

Fifo (n)

Note: this is such a common idiom that it
is provided as a (channel) primitive in JCSP.

3-Jul-01 Copyright P.H.Welch 37

The outside world can see no difference between
these two 2-place FIFOs …

A Simple EquivalenceA Simple Equivalence

(IdInt (in, c) || IdInt (c, out)) \ {c}

cin outIdIntIdIntIdIntIdInt

(PrefixInt (n, in, c) || TailInt (c, out)) \ {c}

cin nn out
TailIntTailInt

3-Jul-01 Copyright P.H.Welch 38

The proof that they are equivalent is a two-liner from
the definitions of !, ?, -->, \ and ||.

A Simple EquivalenceA Simple Equivalence

(IdInt (in, c) || IdInt (c, out)) \ {c}

cin outIdIntIdIntIdIntIdInt

(PrefixInt (n, in, c) || TailInt (c, out)) \ {c}

cin nn out
TailIntTailInt

3-Jul-01 Copyright P.H.Welch 39

Good News!Good News!
The good news is that we can ‘see’ this
semantic equivalence with just one glance.

[CLAIM] CSP semantics cleanly reflects
our intuitive feel for interacting systems.

This quickly builds up confidence …

Wot - no chickens?!!

3-Jul-01 Copyright P.H.Welch 40

SuccIntSuccInt

00

NumbersIntNumbersInt

out

NumbersIntNumbersInt (out) =(out) = PrefixIntPrefixInt (0, c, a) ||(0, c, a) ||
Delta2Int (a, out, b) ||Delta2Int (a, out, b) ||
SuccIntSuccInt (b, c)(b, c)

a

bc

0

1

2

3

4

.

.

.

Some Simple NetworksSome Simple Networks

Note: this pushes numbers out so long as the receiver is willing to take it.

3-Jul-01 Copyright P.H.Welch 41

x

x + y

x + y + z

.

.

.

IntegrateIntIntegrateInt

out
++

00

inx

y

z

.

.

.

IntegrateIntIntegrateInt (out) =(out) = PlusIntPlusInt (in, c, a) ||(in, c, a) ||
Delta2Int (a, out, b) ||Delta2Int (a, out, b) ||
PrefixIntPrefixInt (0, b, c)(0, b, c)

a

bc

Some Simple NetworksSome Simple Networks

Note: this outputs one number for every input it gets.

3-Jul-01 Copyright P.H.Welch 42

PairsIntPairsInt

out
TailIntTailInt

++
in

PairsInt (in, out) = Delta2Int (in, a, c) ||
TailInt (a, b) ||
PlusInt (b, c, out)

a b

c
y + x

z + y

.

.

.

x

y

z

.

.

Some Simple NetworksSome Simple Networks

Note: this needs two inputs before producing one output. Thereafter, it
produces one number for every input it gets.

3-Jul-01 Copyright P.H.Welch 43

0

1

1

2

3

5

8

13

21

34

.

.

Some Layered NetworksSome Layered Networks

FibonacciIntFibonacciInt

out

PairsIntPairsInt

0011

FibonacciIntFibonacciInt (out) =(out) = PrefixIntPrefixInt (1, d, a) ||(1, d, a) ||
PrefixIntPrefixInt (0, a, b) ||(0, a, b) ||
Delta2Int (b, out, c) ||Delta2Int (b, out, c) ||
PairsIntPairsInt (b, c)(b, c)

a

cd

b

Note: the two numbers needed by PairsInt to get started are provided
by the two PrefixInts. Thereafter, only one number circulates on the
feedback loop. If only one PrefixInt had been in the circuit, deadlock
would have happened (with each process waiting trying to input).

3-Jul-01 Copyright P.H.Welch 44

SquaresIntSquaresInt

outIntegrateIntIntegrateIntNumbersIntNumbersInt PairsIntPairsInt 1

4

9

16

25

36

49

64

81

.

.

SquaresIntSquaresInt (out) =(out) = NumbersIntNumbersInt (a) ||(a) ||
IntegrateIntIntegrateInt (a, b) ||(a, b) ||
PairsIntPairsInt (b, out)(b, out)

a b

Some Layered NetworksSome Layered Networks

Note: the traffic on individual channels:
<a> = [0, 1, 2, 3, 4, 5, 6, 7, 8, ...]
 = [0, 1, 3, 6, 10, 15, 21, 28, 36, ...]
<out> = [1, 4, 9, 16, 25, 36, 49, 64, 81, ...]

3-Jul-01 Copyright P.H.Welch 45

Quite a Lot of ProcessesQuite a Lot of Processes

SquaresInt

NumbersInt

FibonacciInt

TabulateInt

ParaPlexInt

a[1]

a[0]

a[2]

b

NumbersIntNumbersInt (a[0]) ||(a[0]) ||
SquaresIntSquaresInt (a[1]) ||(a[1]) ||
FibonacciIntFibonacciInt (a[2]) ||(a[2]) ||
ParaPlexIntParaPlexInt (a, b) ||(a, b) ||
TabulateIntTabulateInt (b)(b)

3-Jul-01 Copyright P.H.Welch 46

SquaresInt

NumbersInt

FibonacciInt

TabulateInt

ParaPlexInt

At this level, we have a network
of 5 communicating processes.

In fact, 28 processes are involved:
18 non-terminating ones and 10
low-level transients repeatedly
starting up and shutting down for
parallel input and output.

Quite a Lot of ProcessesQuite a Lot of Processes

3-Jul-01 Copyright P.H.Welch 47

SquaresInt

NumbersInt

FibonacciInt

TabulateInt

ParaPlexInt

Fortunately, CSP semantics
are compositional - which
means that we only have to
reason at each layer of the
network in order to design,
understand, code, and
maintain it.

Quite a Lot of ProcessesQuite a Lot of Processes

3-Jul-01 Copyright P.H.Welch 48

� the values in the output streams depend only on
the values in the input streams;

� the semantics is scheduling independent;
� no race hazards are possible.

So far, our parallel systems have been determistic:

CSP parallelism, on its own, does not introduce
non-determinism.

This gives a firm foundation for exploring real-world
models which cannot always behave so simply.

Deterministic ProcessesDeterministic Processes

3-Jul-01 Copyright P.H.Welch 49

� what happened in the past;
� when (or, at least, in what order) things happened.

In the real world, it is sometimes the case that
things happen as a result of:

In this world, things are scheduling dependent.

CSP (JCSP) addresses these issues explicitly.

Non-Deterministic ProcessesNon-Deterministic Processes

Non-determinism does not arise by default.

3-Jul-01 Copyright P.H.Welch 50

A Control ProcessA Control Process

Coping with the real world - making choices …

In ReplaceInt, data normally flows from in to out
unchanged.

However, if something arrives on inject, it is
output on out - instead of the next input from in.

ReplaceInt (in, out, inject)

in out

inject?

?

3-Jul-01 Copyright P.H.Welch 51

A Control ProcessA Control Process

The out stream depends upon:

ReplaceInt (in, out, inject)

in out

inject?

?

� The values contained in the in and inject streams;
� the order in which those values arrive.

a
b
c
d
e
.
.

x
b
c
d
e
.
.

x
a
x
c
d
e
.
.

a
b
x
d
e
.
.

a
b
c
x
e
.
.

a
b
c
d
x
.
.

The out stream is not determined just by the in and
inject streams - it is non-deterministic.

3-Jul-01 Copyright P.H.Welch 52

A Control ProcessA Control Process

ReplaceInt (in, out, inject) =
(inject?x --> ((in?a --> SKIP) || (out!x --> SKIP))
[PRI]
in?a --> out!a --> SKIP
);

ReplaceInt (in, out, inject)

ReplaceInt (in, out, inject)

in out

inject?

?

a
b
c
d
e
.
.

x
b
c
d
e
.
.

x
a
x
c
d
e
.
.

a
b
x
d
e
.
.

a
b
c
x
e
.
.

a
b
c
d
x
.
.

Note:[] is the (external) choice operator of CSP.
 [PRI] is a prioritised version - giving priority to the event on its left.

3-Jul-01 Copyright P.H.Welch 53

Another Control ProcessAnother Control Process

Coping with the real world - making choices …

In ScaleInt, data flows from in to out, getting
scaled by a factor of s as it passes.

Values arriving on inject, reset that s factor.

ScaleInt (s, in, out, inject)

in out

inject?

?
*s

3-Jul-01 Copyright P.H.Welch 54

The out stream depends upon:
� The values contained in the in and inject streams;
� the order in which those values arrive.

a
b
c
d
e
.
.

n*a
n*b
n*c
n*d
n*e
.
.

n

The out stream is not determined just by the in and
inject streams - it is non-deterministic.

Another Control ProcessAnother Control Process
s*a
n*b
n*c
n*d
n*e
.
.

s*a
s*b
n*c
n*d
n*e
.
.

ScaleInt (s, in, out, inject)

in out

inject?

?
*s

3-Jul-01 Copyright P.H.Welch 55

ScaleInt (s, in, out, inject) =
(inject?s --> SKIP
[PRI]
in?a --> out!s*a --> SKIP
);

ScaleInt (s, in, out, inject)

Another Control ProcessAnother Control Process
a
b
c
d
e
.
.

n

ScaleInt (s, in, out, inject)

in out

inject?

?
*s

Note:[] is the (external) choice operator of CSP.
 [PRI] is a prioritised version - giving priority to the event on its left.

n*a
n*b
n*c
n*d
n*e
.
.

s*a
n*b
n*c
n*d
n*e
.
.

s*a
s*b
n*c
n*d
n*e
.
.

3-Jul-01 Copyright P.H.Welch 56

Some Resettable NetworksSome Resettable Networks
inject

ReNumbersIntReNumbersInt

out

SuccIntSuccInt

00

This is a resettable version of the NumbersInt
process.

If nothing is sent down inject, it behaves as before.

But it may be reset to count from any number
at any time.

3-Jul-01 Copyright P.H.Welch 57

Some Resettable NetworksSome Resettable Networks

This is a resettable version of the IntegrateInt
process.

If nothing is sent down inject, it behaves as before.

But its running sum may be reset to any number
at any time.

in

inject

ReIntegrateIntReIntegrateInt

out
++

00

3-Jul-01 Copyright P.H.Welch 58

Some Resettable NetworksSome Resettable Networks

This is a resettable version of the PairsInt process.

By sending -1 or +1 down inject, we can toggle its
behaviour between PairsInt and DiffentiateInt
(a device that cancels the effect of IntegrateInt
if pipelined on to its output).

RePairsIntRePairsInt

outin

inject

TailIntTailInt

++*1

3-Jul-01 Copyright P.H.Welch 59

A Controllable MachineA Controllable Machine

0 0 -1+1

Reset Nos Reset Int Toggle Pairs

Plug-n-Play

TabulateInt

ParaPlexInt

ReIntegrateIntReNumbersInt RePairsInt

3-Jul-01 Copyright P.H.Welch 60

An Inertial Navigation ComponentAn Inertial Navigation Component

ReIntegrateInt ReIntegrateInt

NavComp

accIn

accOut

velOut

posOut

posResetvelReset

� accIn: carries regular accelerometer samples;
� velReset: velocity initialisation and corrections;
� posReset: position initialisation and corrections;
� posOut/velOut/accOut: regular outputs.

3-Jul-01 Copyright P.H.Welch 61

Final Stage ActuatorFinal Stage Actuator

� Sample(t): every t time units, output the latest
input (or null if none); the value of t may be reset;

� Monitor(m): copy input to output counting nulls
- if m in a row, send panic message and terminate;

� Decide(n): copy non-null input to output and
remember last n outputs - convert nulls to a best
guess depending on those last n outputs.

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

3-Jul-01 Copyright P.H.Welch 62

Putting CSP into practice …Putting CSP into practice …

http://www.cs.ukc.ac.uk/projects/ofa/jcsp/

3-Jul-01 Copyright P.H.Welch 63

3-Jul-01 Copyright P.H.Welch 64

CSP for Java (JCSP)CSP for Java (JCSP)
� A process is an object of a class

implementing the CSProcess interface:

interface CSProcess {
public void run();

}

� The behaviour of the process is determined
by the body given to the run() method in
the implementing class.

3-Jul-01 Copyright P.H.Welch 65

... private support methods (part of a run)

... public void run() (process starts here)

JCSP Process StructureJCSP Process Structure
class Example implements CSProcess {

}

... private shared synchronisation objects
(channels etc.)

... private state information

... public constructors

... public accessors(gets)/mutators(sets)
(only to be used when not running)

3-Jul-01 Copyright P.H.Welch 66

Object channels
 - carrying (references to)
 arbitrary Java objects

int channels
- carrying Java ints

Two Sets of Channel
Classes (and Interfaces)

Two Sets of Channel
Classes (and Interfaces)

3-Jul-01 Copyright P.H.Welch 67

Channel Interfaces
and Classes

Channel Interfaces
and Classes

� Channel interfaces are what the processes
see. Processes only need to care what kind of
data they carry (ints or Objects) and
whether the channels are for output, input or
ALTing (i.e. choice) input.

� It will be the network builder’s concern to
choose the actual channel classes to use
when connecting processes together.

3-Jul-01 Copyright P.H.Welch 68

int Channelsint Channels
� The int channels are convenient and secure.

� As with occam, it’s difficult to introduce race
hazards.

� For completeness, JCSP should provide
channels for carrying all of the Java primitive
data-types. These would be trivial to add.
So far, there has been no pressing need.

3-Jul-01 Copyright P.H.Welch 69

Object Aliasing - Danger !!Object Aliasing - Danger !!
Thing a = ..., b = ...;

a = b;a and b are now aliases
for the same object!

Java objects are
referenced through
variable names.

a b

a b

3-Jul-01 Copyright P.H.Welch 70

� Object channels
expose a danger not
present in occam.

Object Channels - Danger !!Object Channels - Danger !!

� Channel communication
only communicates the
Object reference.

Thing t;
t = (Thing) c.read(); // c?t
... use t

Thing t = …
c.write (t); // c!t
... use t

c

3-Jul-01 Copyright P.H.Welch 71

� After the communication,
each process has a
reference (in its variable
t) to the same object.

Object Channels - Danger !!Object Channels - Danger !!

� If one of these processes
modifies that object (in its
… use t), the other one
had better forget about it! Thing t;

t = (Thing) c.read(); // c?t
... use t

Thing t = …
c.write (t); // c!t
... use t

c

3-Jul-01 Copyright P.H.Welch 72

� Otherwise, occam’s
parallel usage rule is
violated and we will be at
the mercy of when the
processes get scheduled
for execution - a RACE
HAZARD!

� We have design
patterns to prevent
this.

Object Channels - Danger !!Object Channels - Danger !!

Thing t;
t = (Thing) c.read(); // c?t
... use t

Thing t = …
c.write (t); // c!t
... use t

c

3-Jul-01 Copyright P.H.Welch 73

cAA BB
x y

c ! x c ? y

Reference SemanticsReference Semantics

z

HEAP

before

3-Jul-01 Copyright P.H.Welch 74

cAA BB
x y

c ! x c ? y

Reference SemanticsReference Semantics

z

HEAP

after

Red and brown objects are parallel compromised!

3-Jul-01 Copyright P.H.Welch 75

cAA BB
x y

c ! x c ? y

Reference SemanticsReference Semantics

z

HEAP

after

Even if the source variable is nulled, brown is done for!!

3-Jul-01 Copyright P.H.Welch 76

Classical occamClassical occam
Different in-scope variables implies different pieces of data
(zero aliasing).

Overheads for large data communications:

 - space (needed at both ends for both copies);

 - time (for copying).

Automatic guarantees against parallel race hazards on
data access … and against serial aliasing accidents.

3-Jul-01 Copyright P.H.Welch 77

Java / JCSPJava / JCSP
Hey … it’s Java … so aliasing is endemic.

Overheads for large data communications:

 - space (shared by both ends);

 - time is O(1).

No guarantees against parallel race hazards on data
access … or against serial aliasing accidents. We must
look after ourselves.

3-Jul-01 Copyright P.H.Welch 78

interface ChannelOutput {
public void write (Object o);

}

interface ChannelInput {
public Object read ();

}

interface ChannelOutputInt {
public void write (int o);

}

interface ChannelInputInt {
public int read ();

}

abstract class
AltingChannelInput
extends Guard
implements ChannelInput {

}

abstract class
AltingChannelInputInt
extends Guard
implements ChannelInputInt {

}

Object and Int ChannelsObject and Int Channels
(interfaces)(interfaces)

3-Jul-01 Copyright P.H.Welch 79

Channel InterfacesChannel Interfaces
� These are what the processes see - they only

care what kind of data they carry (ints or
Objects) and whether the channels are for
output, input or ALTing (i.e. choice) input.

� It will be the network builder’s concern to
choose the actual channel classes to use
when connecting processes together.

� Let’s review some of the Legoland processes -
this time in JCSP.

3-Jul-01 Copyright P.H.Welch 80

... private support methods (part of a run)

... public void run() (process starts here)

JCSP Process StructureJCSP Process Structure
class Example implements CSProcess {

}

... private shared synchronisation objects
(channels etc.)

... private state information

... public constructors

... public accessors(gets)/mutators(sets)
(only to be used when not running)

reminder

3-Jul-01 Copyright P.H.Welch 81

public SuccInt (ChannelInputInt in,
ChannelOutputInt out) {

this.in = in;
this.out = out;

}

public void run () {
while (true) {
int n = in.read ();
out.write (n + 1);

}
}

private final ChannelInputInt in;
private final ChannelOutputInt out;

class SuccInt implements CSProcess {

}

SuccIntSuccIntin out

3-Jul-01 Copyright P.H.Welch 82

public PlusInt (ChannelInputInt in0,
ChannelInputInt in1,
ChannelOutputInt out) {

this.in0 = in0;
this.in1 = in1;
this.out = out;

}

... public void run ()

private final ChannelInputInt in0;
private final ChannelInputInt in1;
private final ChannelOutputInt out;

class PlusInt implements CSProcess {

}

in1

outin0
++

3-Jul-01 Copyright P.H.Welch 83

... public PlusInt (ChannelInputInt in0, ...)

public void run () {
while (true) {
int n0 = in0.read ();
int n1 = in1.read ();
out.write (n0 + n1);

}
}

... private final channels (in0, in1, out)

class PlusInt implements CSProcess {

}

Note: the inputs really need to be done in parallel - later!Note: the inputs really need to be done in parallel - later!

in1

outin0
++

3-Jul-01 Copyright P.H.Welch 84

public PrefixInt (int n, ChannelInputInt in,
ChannelOutputInt out) {

this.n = n;
this.in = in;
this.out = out;

}

public void run () {
out.write (n);
new IdInt (in, out).run ();

}

private final int n;
private final ChannelInputInt in;
private final ChannelOutputInt out;

class PrefixInt implements CSProcess {

}

outin
nn

3-Jul-01 Copyright P.H.Welch 85

Process NetworksProcess Networks
� We now want to be able to take instances of

these processes (or components) and connect
them together to form a network.

� The resulting network will itself be a process.

� To do this, we need to construct some real wires -
these are instances of the channel classes.

� We also need a way to compose everything
together - the Parallel constructor.

3-Jul-01 Copyright P.H.Welch 86

ParallelParallel
� Parallel is a CSProcess whose constructor

takes an array of CSProcesses.

� Its run() method is the parallel composition of
its given CSProcesses.

� The semantics is the same as for the occam
PAR (or CSP ||).

� The run() terminates when and only when all of
its component processes have terminated.

3-Jul-01 Copyright P.H.Welch 87

public NumbersIntNumbersInt (ChannelOutputInt out) {
this.out = out;

}

... public void run ()

private final ChannelOutputInt out;

class NumbersIntNumbersInt implements CSProcess {

}

SuccIntSuccInt

00

NumbersIntNumbersInt

out

3-Jul-01 Copyright P.H.Welch 88

new Parallel (
new CSProcess[] {
new PrefixInt (0, c, a),
new Delta2Int (a, out, b),
new SuccInt (b, c)

}
).run ();

SuccIntSuccInt

00

NumbersIntNumbersInt

out

public void run () {

}

One2OneChannelInt a = new One2OneChannelInt ();
One2OneChannelInt b = new One2OneChannelInt ();
One2OneChannelInt c = new One2OneChannelInt ();

a

bc

3-Jul-01 Copyright P.H.Welch 89

public IntegrateIntIntegrateInt (ChannelInputInt in,
ChannelOutputInt out) {

this.in = in;
this.out = out;

}

... public void run ()

private final ChannelInputInt in;
private final ChannelOutputInt out;

class IntegrateIntIntegrateInt implements CSProcess {

}

IntegrateIntIntegrateInt

out
++

00

in

3-Jul-01 Copyright P.H.Welch 90

IntegrateIntIntegrateInt

out
++

00

in

new Parallel (
new CSProcess[] {
new PlusInt (in, c, a),
new Delta2Int (a, out, b),
new PrefixInt (0, b, c)

}
).run ();

public void run () {

}

One2OneChannelInt a = new One2OneChannelInt ();
One2OneChannelInt b = new One2OneChannelInt ();
One2OneChannelInt c = new One2OneChannelInt ();

a

bc

3-Jul-01 Copyright P.H.Welch 91

SquaresIntSquaresInt

outIntegrateIntIntegrateIntNumbersIntNumbersInt PairsIntPairsInt 1

4

9

16

25

36

49

64

81

.

.

public PairsIntPairsInt (ChannelOutputInt out) {
this.out = out;

}

... public void run ()

private final ChannelOutputInt out;

class SquaresIntSquaresInt implements CSProcess {

}

3-Jul-01 Copyright P.H.Welch 92

new Parallel (
new CSProcess[] {
new NumbersInt (a),
new IntegrateInt (a, b),
new PairsInt (b, out)

}
).run ();

SquaresIntSquaresInt

outIntegrateIntIntegrateIntNumbersIntNumbersInt PairsIntPairsInt 1

4

9

16

25

36

49

64

81

.

.

public void run () {

}

One2OneChannelInt a = new One2OneChannelInt ();
One2OneChannelInt b = new One2OneChannelInt ();

a b

3-Jul-01 Copyright P.H.Welch 93

Quite a Lot of ProcessesQuite a Lot of Processes

SquaresInt

NumbersInt

FibonacciInt

TabulateInt

ParaPlexInt

a[1]

a[0]

a[2]

b

One2OneChannelInt[] a =One2OneChannelInt[] a =
One2OneChannelInt.create (3);One2OneChannelInt.create (3);
One2OneChannel b =One2OneChannel b =
new One2OneChannel ();new One2OneChannel ();

new Parallel (new Parallel (
newnew CSProcessCSProcess[] {[] {
newnew NumbersIntNumbersInt (a[0]),(a[0]),
newnew SquaresIntSquaresInt (a[1]),(a[1]),
newnew FibonacciIntFibonacciInt (a[2]),(a[2]),
newnew ParaPlexIntParaPlexInt (a, b),(a, b),
newnew TabulateIntTabulateInt (b)(b)

}}
).run ();).run ();

3-Jul-01 Copyright P.H.Welch 94

... public PlusInt (ChannelInputInt in0, ...)

public void run () {
while (true) {
int n0 = in0.read ();
int n1 = in1.read ();
out.write (n0 + n1);

}
}

... private final channels (in0, in1, out)

class PlusInt implements CSProcess {

}

Note: the inputs really need to be done in parallel - now!Note: the inputs really need to be done in parallel - now!

in1

outin0
++

Change this!Change this!

3-Jul-01 Copyright P.H.Welch 95

public void run () {

}

in1

outin0
++

while (true) {
parRead.run ();
out.write (readIn0.value + readIn1.value);

}

ProcessReadInt readIn0 = new ProcessReadInt (in0);
ProcessReadInt readIn1 = new ProcessReadInt (in1);

CSProcess parRead =
new Parallel (new CSProcess[] {readIn0, readIn1});

This processThis process
does one inputdoes one input
and terminates.and terminates.

3-Jul-01 Copyright P.H.Welch 96

Implementation NoteImplementation Note
� As in the transputer (and KRoC occam etc.), a JCSP
Parallel object runs its first (n-1) components in
separate Java threads and its last component in its own
thread of control.

� When a Parallel.run() terminates, the Parallel
object parks all its threads for reuse in case the
Parallel is run again.

� So processes like PlusInt incur the overhead of Java
thread creation only during its first cycle.

� That’s why we named the parRead process before loop
entry, rather than constructing it anonymously each time
within the loop.

3-Jul-01 Copyright P.H.Welch 97

� the values in the output streams depend only on
the values in the input streams;

� the semantics is scheduling independent;
� no race hazards are possible.

So far, our JCSP systems have been determistic:

CSP parallelism, on its own, does not introduce
non-determinism.

This gives a firm foundation for exploring real-world
models which cannot always behave so simply.

Deterministic ProcessesDeterministic Processes

3-Jul-01 Copyright P.H.Welch 98

� what happened in the past;
� when (or, at least, in what order) things happened.

In the real world, it is sometimes the case that
things happen as a result of:

In this world, things are scheduling dependent.

CSP (JCSP) addresses these issues explicitly.

Non-Deterministic ProcessesNon-Deterministic Processes

Non-determinism does not arise by default.

3-Jul-01 Copyright P.H.Welch 99

Alternation - the CSP ChoiceAlternation - the CSP Choice
public abstract class Guard {
... package-only abstract methods (enable/disable)

}

Five JCSP classes are (i.e. extend) Guards:
AltingChannelInput (Objects)

AltingChannelInputInt (ints)
AltingChannelAccept (CALLs)
Timer (timeouts)
Skip (polling)

**Alternation is named after the Alternation is named after the occamoccam ALT … ALT …

**

Only the 1-1 and any-1 channels extend the above
(i.e. are ALTable).

3-Jul-01 Copyright P.H.Welch 100

Ready/Unready GuardsReady/Unready Guards
� A channel guard is ready iff data is

pending - i.e. a process at the other end
has output to (or called) the channel and
this has not yet been input (or accepted).

� A timer guard is ready iff its timeout has
expired.

� A skip guard is always ready.

3-Jul-01 Copyright P.H.Welch 101

AlternationAlternation
For ALTing, a JCSP process must have a Guard[]
array - this can be any mix of channel inputs, call
channel accepts, timeouts or skips:
final Guard[] guards = {...};

It must construct an Alternative object for each such
guard array:
final Alternative alt =
new Alternative (guards);

The ALT is carried out by invoking one of the three
varieties of select methods on the alternative.

3-Jul-01 Copyright P.H.Welch 102

alt.select()alt.select()

Same as above - except that if there is more than
one ready guard, it chooses the one with the lowest
index.

This blocks passively until one or more of the guards
are ready. Then, it makes an ARBITRARY choice
of one of these ready guards and returns the index
of that chosen one. If that guard is a channel, the
ALTing process must then read from (or accept) it.

alt.priSelect()alt.priSelect()

3-Jul-01 Copyright P.H.Welch 103

alt.fairSelect()alt.fairSelect()

Fair alternation is possible because an Alternative
object is tied to one set of guards.

Same as above - except that if there are more
than one ready guards, it makes a FAIR choice.

This means that, in successive invocations of
alt.fairSelect, no ready guard will be chosen twice
if another ready guard is available. At worst, no
ready guard will miss out on n successive
selections (where n is the number of guards).

3-Jul-01 Copyright P.H.Welch 104

ScaleInt (s, in, out, inject) =
(inject?s --> SKIP
[PRI]
in?a --> out!s*a --> SKIP
);

ScaleInt (s, in, out, inject)

Another Control ProcessAnother Control Process
a
b
c
d
e
.
.

n*a
n*b
n*c
n*d
n*e
.
.

n
s*a
n*b
n*c
n*d
n*e
.
.

s*a
s*b
n*c
n*d
n*e
.
.

ScaleInt (s, in, out, inject)

in out

inject?

?
*s

Note:[] is the (external) choice operator of CSP.
 [PRI] is a prioritised version - giving priority to the event on its left.

3-Jul-01 Copyright P.H.Welch 105

class ScaleInt implements CSProcess {

}

in out

inject?

?
*s

private int s;
private final ChannelInputInt in, inject;
private final ChannelOutputInt out;

public ScaleInt (int s, ChannelInputInt in,
ChannelInputInt inject,
ChannelOutputInt out) {

this.s = s;
this.in = in;
this.inject = inject;
this.out = out;

}

... public void run ()

3-Jul-01 Copyright P.H.Welch 106

final Alternative alt =
new Alternative (new Guard[] {inject, in});

final int INJECT = 0, IN = 1; // guard indices

while (true) {
switch (alt.priSelect ()) {
case INJECT:

break;
case IN:

break;
}

}

in out

inject?

?
*s

public void run () {

}

Note theseNote these
are in priorityare in priority

order.order.

s = inject.read ();

final int a = in.read ();
out.write (s*a);

3-Jul-01 Copyright P.H.Welch 107

Real-Time SamplerReal-Time Sampler

� This process services any of 3 events (2 inputs and
1 timeout) that may occur.

� Its t parameter represents a time interval. Every t
time units, it must output the last object that arrived
on its in channel during the previous time slice. If
nothing arrived, it must output a null.

� The length of the timeslice, t, may be reset at any
time by a new value arriving on its reset channel.

outin

reset

Sample (t)

3-Jul-01 Copyright P.H.Welch 108

class Sample implements CSProcess {

}

private final long t;
private final AltingChannelInput in;
private final AltingChannelInputInt reset;
private final ChannelOutput out;

public Sample (long t,
AltingChannelInput in,
AltingChannelInputInt reset,
ChannelOutput out) {

this.t = t;
this.in = in;
this.reset = reset;
this.out = out;

}

... public void run ()

in out

reset

Sample (t)

3-Jul-01 Copyright P.H.Welch 109

Object sample = null;
long timeout = tim.read () + t;
tim.setAlarm (timeout);

final Timer tim = new Timer ();

final Alternative alt =
new Alternative (new Guard[] {reset, tim, in});

final int RESET = 0, TIM = 1, IN = 2; // indices

Note theseNote these
are in priorityare in priority

order.order.
public void run () {

}

... main loop

in out

reset

Sample (t)

3-Jul-01 Copyright P.H.Welch 110

out.write (sample);
sample = null;
timeout += t;
tim.setAlarm (timeout);

switch (alt.priSelect ()) {
case RESET:

break;
case TIM:

break;
case IN:

break;
}

sample = in.read ();

t = reset.read ();

while (true) {

}

in out

reset

Sample (t)

3-Jul-01 Copyright P.H.Welch 111

while (true) {
switch (alt.priSelect ()) {
case RESET:

case TIM:

break;
case IN:

break;
}

}

out.write (sample);
sample = null;
timeout += t;
tim.setAlarm (timeout);

t = reset.read ();
timeout = tim.read ();

sample = in.read ();

in out

reset

Sample (t)

3-Jul-01 Copyright P.H.Welch 112

Final Stage ActuatorFinal Stage Actuator

� Sample(t): every t time units, output the latest
input (or null if none); the value of t may be reset;

� Monitor(m): copy input to output counting nulls
- if m in a row, send panic message and terminate;

� Decide(n): copy non-null input to output and
remember last n outputs - convert nulls to a best
guess depending on those last n outputs.

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

3-Jul-01 Copyright P.H.Welch 113

class Actuator implements CSProcess {

}

... private state (t, m and n)

... public void run ()

... private interface channels
(in, reset, panic and out)

... public constructor
(assign parameters t, m, n, in, reset,
panic and out to the above fields)

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

3-Jul-01 Copyright P.H.Welch 114

public void run ()

}

new Parallel (

).run ();

new CSProcess[] {

}

new Sample (t, in, reset, a),
new Monitor (m, a, panic, b),
new Decide (n, b, out)

final One2OneChannel a = new One2OneChannel ();
final One2OneChannel b = new One2OneChannel ();

a b

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

3-Jul-01 Copyright P.H.Welch 115

Shared ChannelsShared Channels
� So far, all our channels have been point-to-point,

zero-buffered and synchronised (i.e. standard CSP
primitives);

� JCSP also offers multi-way shared channels (in the
style of occam3 and the KRoC shared channel
library);

� JCSP also offers buffered channels of various well-
defined forms.

3-Jul-01 Copyright P.H.Welch 116

One2OneChannelOne2OneChannel

Any2OneChannelAny2OneChannel

3-Jul-01 Copyright P.H.Welch 117

One2AnyChannelOne2AnyChannel

No ALTing!

Any2AnyChannelAny2AnyChannel

3-Jul-01 Copyright P.H.Welch 118

Object Channel classesObject Channel classes

class One2OneChannel
extends AltingChannelInput
implements ChannelOutput;

class One2AnyChannel
implements ChannelInput,

ChannelOutput;

class Any2OneChannel
extends AltingChannelInput
implements ChannelOutput;

class Any2AnyChannel
implements ChannelInput,

ChannelOutput;

3-Jul-01 Copyright P.H.Welch 119

int Channel classesint Channel classes

class One2OneChanneInt
extends AltingChannelInputInt
implements ChannelOutputInt;

class One2AnyChannelInt
implements ChannelInputInt,

ChannelOutputInt;

class Any2OneChannelInt
extends AltingChannelInputInt
implements ChannelOutputInt;

class Any2AnyChannelInt
implements ChannelInputInt,

ChannelOutputInt;

3-Jul-01 Copyright P.H.Welch 120

Graphics and GUIsGraphics and GUIs

jcsp.awt = java.awt + channels

 GUI events channel communications

 Widget configuration channel communications

 Graphics commands channel communications

(String)
event

configure
(String)

(Boolean)
(Poison)

(Configure)

keyEvent
(KeyEvent)

focusEvent
(FocusEvent)

mouseEvent
(MouseEvent)

mouseMotionEvent
(MouseEvent)

componentEvent
(ComponentEvent)

ActiveButtonActiveButton

java.awt.events

shortcuts

general
purpose

displayList

(GraphicsCommand)

toGraphics
(GraphicsProtocol)

fromGraphics
(Object)

keyEvent
(KeyEvent)

focusEvent
(FocusEvent)

mouseEvent
(MouseEvent)

mouseMotionEvent
(MouseEvent)

componentEvent
(ComponentEvent)

ActiveCanvasActiveCanvas

java.awt.events

general
drawing

house-keeping
(e.g. size?)

3-Jul-01 Copyright P.H.Welch 123

InfectionInfection

3-Jul-01 Copyright P.H.Welch 124

idid

pseudoButton

InfectionInfection

?
?

infection canvas

infectionControl

randomcentre reset freeze

rateinfo

3-Jul-01 Copyright P.H.Welch 125

MandelbrotMandelbrot

3-Jul-01 Copyright P.H.Welch 126

MandelbrotMandelbrot

3-Jul-01 Copyright P.H.Welch 127

MandelbrotMandelbrot

...

farmer

harvester

graphics

mouseMovement

key
mouse

displayList

control

cancel

>>>

<<<

top

scale

left

canvas

scrolling

iterations

target

colours

3-Jul-01 Copyright P.H.Welch 128

… nuclear … human … astronomic ...

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

R
E
C
A
L
L

3-Jul-01 Copyright P.H.Welch 129

Good News!Good News!
The good news is that we can worry about
each process on its own. A process interacts
with its environment through its channels. It
does not interact directly with other processes.

Some processes have serial implementations -
these are just like traditional serial programs.

Our skills for serial logic sit happily alongside
our new skills for concurrency - there is no
conflict. This will scale!

Some processes have parallel implementations -
i.e. networks of sub-processes.

R
E
C
A
L
L

3-Jul-01 Copyright P.H.Welch 130

Other WorkOther Work
� A CSP model for the Java monitor mechanisms

(synchronized, wait, notify, notifyAll)
has been built.

� This enables any Java threaded system to be
analysed in CSP terms - e.g. for formal verification
of freedom from deadlock/livelock.

� Confidence gained through the formal proof of
correctness of the JCSP channel implementation:
� a JCSP channel is a non-trivial monitor - the CSP model for

monitors transforms this into an even more complex system
of CSP processes and channels;

� using FDR, that system has been proven to be a refinement
of a single CSP channel and vice versa - Q.E.D.

3-Jul-01 Copyright P.H.Welch 131

Other WorkOther Work
� Higher level synchronisation primitives (e.g. JCSP

CALL channels, barriers, buckets, …) that capture
good patterns of working with low level CSP events.

� Proof rules and design tool support for the above.
� CSP kernels and their binding into JVMs to support

JCSP (or CoreJCSP … ?).
� Communicating Threads for Java (CTJ):

� this is another Java class library based on CSP principles;
� developed at the University of Twente (Netherlands) with

special emphasis on real-time applications - it’s excellent;
� CTJ and JCSP share a common heritage and reinforce each

other’s on-going development - we do talk to each other!

3-Jul-01 Copyright P.H.Welch 132

Distributed JCSP (soon)Distributed JCSP (soon)
� Network channels + plus simple brokerage service

for letting JCSP systems find and connect to each
other transparently (from anywhere on the Internet).

� Virtual channel infrastructure to support this. All
application channels auto-multiplexed over single
(auto-generated) TCP/IP link between any two JVMs.

� Channel Name Server (CNS) provided. Participating
JCSP systems just need to know where this is. More
sophisticated brokers are easily bootstrapped on top
of the CNS (using JCSP).

� Killer Application Challenge:
� second generation Napster (no central control or database) …

3-Jul-01 Copyright P.H.Welch 133

SummarySummary
WYSIWYGWYSIWYG Plug-n-PlayPlug-n-Play

� CSP has a compositional semantics.

� CSP concurrency can simplify design:
� data encapsulation within processes does not break down

(unlike the case for objects);
� channel interfaces impose clean decoupling between

processes (unlike method interfaces between objects)

� JCSP enables direct Java implementation of CSP
design.

3-Jul-01 Copyright P.H.Welch 134

SummarySummary
� CSP kernel overheads are sub-100-nanosecond

(KRoC/CCSP). Currently, JCSP depends on the
underlying Java threads/monitor implementation.

� Rich mathematical foundation:
� 20 years mature - recent extensions include simple priority

semantics;
� higher level design rules (e.g. client-server, resource

allocation priority, IO-par) with formally proven guarantees
(e.g. freedom from deadlock, livelock, process starvation);

� commercially supported tools (e.g. FDR).

� We don’t need to be mathematically sophisticated
to take advantage of CSP. It’s built-in. Just use it!

3-Jul-01 Copyright P.H.Welch 135

SummarySummary
� Process Oriented Design (processes, syncs, alts,

parallel, layered networks).
� WYSIWYG:

� each process considered individually (own data, own control
threads, external synchronisation);

� leaf processes in network hierarchy are ordinary serial
programs - all our past skills and intuition still apply;

� concurrency skills sit happily alongside the old serial ones.

� Race hazards, deadlock, livelock, starvation
problems: we have a rich set of design patterns,
theory, intuition and tools to apply.

3-Jul-01 Copyright P.H.Welch 136

ConclusionsConclusions
� We are not saying that Java’s threading

mechanisms need changing.
� Java is sufficiently flexible to allow many

concurrency paradigms to be captured.
� JCSP is just a library - Java needs no language

change to support CSP.
� CSP rates serious consideration as a basis for any

real-time specialisation of Java:
� quality (robustness, ease of use, scalability, management of

complexity, formalism);
� lightness (overheads do not invalidate the above benefits -

they encourage them).

3-Jul-01 Copyright P.H.Welch 137

AcknowledgementsAcknowledgements
� Paul Austin - the original developer of JCSP

(p_d_austin@hotmail.com).

� Andy Bakkers and Gerald Hilderink - the CTJ library
(bks@el.utwente.nl, G.H.Hilderink@el.utwente.nl).

� Jeremy Martin - for the formal proof of correctness of the
JCSP channel (Jeremy.Martin@comlab.ox.ac.uk)

� Nan Schaller (ncs@cs.rit.edu), Chris Nevison
(chris@cs.colgate.edu) and Dyke Stiles
(dyke.stiles@ece.usu.edu) - for pioneering the teaching.

� The WoTUG community - its workshops, conferences and
people.

3-Jul-01 Copyright P.H.Welch 138

URLsURLs

www.cs.ukc.ac.uk/projects/ofa/jcsp/

www.rt.el.utwente.nl/javapp/

www.cs.ukc.ac.uk/projects/ofa/java-threads/

www.comlab.ox.ac.uk/archive/csp.html

www.cs.ukc.ac.uk/projects/ofa/kroc/

wotug.ukc.ac.uk/

CSP

JCSP

CTJ

KRoC

java-threads@ukc.ac.uk

WoTUG

