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Abstract. A new visual notation is proposed for precisely express-
ing constraints on object-oriented models, as an alternative to
mathematical logic notation used in methods such as Syntropy and
Catalysis. The notation is potentially intuitive, expressive, inte-
grates well with existing visual notations, and has a clear and
unambiguous semantics. It is reminiscent of informal diagrams
used by mathematicians for illustrating relations, and borrows
much from Venn diagrams. It may be viewed as a generalization of
instance diagrams.
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1 Introduction

This paper proposes a new diagrammatic notation for precisely
expressing invariant constraints on object-oriented (OO) models.

In essence, all OO modelling notations may be viewed as docu-
menting constraints either on the set of allowable system states,
i.e., the instance diagrams which one is allowed to draw, or on the
allowable execution paths through those states.

Current graphical notations are inadequate in the constraints they
are able to impose, so need to be supplemented by mathematical
assertions describing the more intricate constraints, as is done in
methods such as Syntropy (Cook and Daniels, 1994), Catalysis
(D’Souza and Wills, 1995, 1997) and BON (Walden and Nerson,
1995). So far this has been the only way of achieving a level of
detail necessary for a comprehensive behavioral description, at a
level of abstraction that avoids irrelevant implementation or design
detail. Unfortunately it is also unintuitive and off-putting to many
working software engineers. Parnas (1996) characterizes the prob-
lem as follows:

“Mathematical methods offered to the working software engi-
neer are not very practical [...]. Most, but not all, are theoreti-
cally sound but much more difficult to use than the mathematics 
that has been developed for use in other areas of engineering. 
[...] We need a lot more work on notation. The notation that is 
purveyed by most formal methods researchers is cumbersome 
and hard to read. Even the best notation I know (mine of course) 
is inadequate.” 

The diagrammatic notation proposed here, called constraint dia-
grams, replaces the need to write many assertions mathematically
and is potentially more intuitive to, hence more likely to be used
by, the practising software engineer. The notation has similarities
with informal diagrams used by mathematicians for illustrating

properties of functions and relations (e.g., Gerstein 1987) and b
rows much from Venn diagrams. It may be viewed as a way
describing sets of instance diagrams, and is a natural developm
of instance (object) diagrams in UML (UML 1997).

Whilst we have some clear ideas of how the notation might be u
to improve the lot of the software modeler/designer, it is inevitab
that the focus of this first paper on the subject is on describing
notation. This is best done by relating it to something that is m
familiar. Therefore a careful characterization of an object-orient
model is given in Section 2, using diagrammatic notation fro
UML, supplemented with invariants expressed mathematica
where UML diagrams are unable to express the desired constra
This section also serves to demonstrate the claim made above
there are some constraints that can not be expressed using
grammatic notations currently proposed for object-oriented mod
ling.

Section 3 introduces the notation by using it to express the inv
ants identified in section 2. This demonstrates that it is inde
more expressive than current diagrammatic notations.

Section 4 is a discussion focussing on:

• use of the notation to visualize action contracts (pre/post 
specifications),

• relationships with other diagrammatic notations,

• limitations, possible extensions, semantic issues and usab
of the notation,

• impact on automated tool support for modelling.

The latter gives a sketch of how the notation could be used a
basis for automated tool support to the construction of prec
specifications of constraints from instance diagrams, and vi
versa. It is proposed that similar techniques could be used 
semantic checking of models.

A summary of the notation is given in an appendix.

2 Library System in UML and Catalysis

This section sets the context for the constraint diagram nota
introduced in this paper, by specifying a small case study 
library system - using the diagrammatic notation of UML suppl
mented with mathematical notation from Catalysis to express th
constraints that can not be expressed using diagrams from U
(or, indeed, other OO modelling notations). UML has been cho
as it incorporates and unifies many of the notations of its predec
sors, so may be viewed as representative of them, and is 
becoming the de facto standard in OO modelling.

The approach taken is to express as much as possible diagram
ically, resorting to mathematical assertions only where strictly n
essary. This serves three purposes: it proves the point that ther
some constraints that can not be expressed diagrammatically u
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existing notations; it provides the examples (those constraints) for
the section following which introduces the constraint diagram
notation; it illustrates the pattern of specification required (mixing
of type and state diagrams) to express as much as possible using
diagrams from existing notations.

2.1 Informal Requirements

The general requirements are to produce a computerized system to
support the management of loans in a university library. A library
maintains a catalog of publications which are available for lending
to users. There may be many copies of the same publication. Publi-
cations and copies may be added to and removed from the library.
Copies available for lending may be borrowed by active users reg-
istered with the library. When a publication (or more specifically a
particular copy) has been borrowed it is on loan, and is not avail-
able for lending to other users. However, it still belongs to the
library and so is still part of its collection. Users are able to reserve
publications, when none of the copies are available for loan. A user
may not place more than one reservation for the same publication.
When a copy is returned after it has been out on loan, it may be put
back on the shelf or, alternatively, held for a user who has reserved
the publication of which it is a copy. This may be done immedi-
ately on return, or delayed, and done as part of a batch of returned
copies.

2.2 Type Diagram

The main type diagram for the library is given in Figure 1. This is
UML notation. ���������	
, ��� and �	�� are types of object
we expect to find in a library. A publication is a record of all the
details of a book: title, authors, ISBN, etc. A publication may have
many copies (or none), which correspond to the physical books. A
copy only has one set of publication details. A copy may be ������
����	 loan to many users, and a user may have many copies
which are �������� for loan to her. All the publications known to

the library are in the �����	�, all the copies form the library’s �	��
����	
, and all the users known to the library must be �����
���.

�	�
 and �������	
 characterize objects used to record loa
and reservations, respectively. A loan records which copy is 
loan to which user, and a reservation records which publication 
been reserved by which user. A copy may be put 	
�	���	� a res-
ervation, which means that it is waiting to be collected by the u
who made the reservation. After the copy has been collected
reservation will have been fulfilled.

Some associations in the diagram have been given rolename
one or both ends. Following Catalysis (D’Souza and Wills, 199
we adopt a convention for constructing default rolenames wh
they have been omitted.

• If the association is unlabeled the name of the type at eithe
end is used, with the first letter in lowercase and pluralized
this makes sense: for example we can refer to the �	�
� of a 
user or the ��� associated with a loan.

• If the association is labelled at one end only, then the name
used at the reverse end will be that label prefixed with �: for 
example ��	�����	
, ������	�, �������� will always 
take us back to the library object(s) from an object of the co
responding types.

2.3 States

The type diagram on its own can not express all the constraints
we would wish to express for the library system. In particular, m
tiplicity restrictions do not allow relationships between assoc
tions to be expressed. For example, it should be a constraint 
the publication of a copy 	
�	���	� a reservation is the one tha
has been reserved. Figure 2 shows an instance diagram which
isfies the type model, but which does not satisfy this constraint
satisfies the type model because it satisfies all the multiplic

Figure 1: Type diagram for library
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restrictions. It does not satisfy the constraint because the held copy
is not associated with the same publication as the reservation it is
held for.

However, we have not yet made any use of states. Often further
constraints can be imposed by introducing states for particular
types of object, and then adding further multiplicity conditions on
associations, which will depend on the state chosen. In this section

we show that for this system (and by extrapolation probably 
most systems) this is still not enough. In particular the constra
above can not be expressed in this way.

Figure 3 shows four diagrams defining the states of particu
types. The notation used is similar to that used in OMT (Ru
baugh et al. 1991), Syntropy and Catalysis, transformed to UM
which strangely says nothing about defining states outside s
diagrams. The filled in subtype arrow indicates partitioning: t
type �	�� is partitioned between those objects in the state ������
��� and those in the state �
��������. Subtyping is used to
bring states into type diagrams, based on the semantic intui
that every �������� object is a �	�� object, but not vice-versa.

In an attempt to unify notation, we have chosen to use a box w
rounded corners to represent a state, i.e. the same shape of bo
is used in state diagrams. The aforementioned methods gene
use .

In the true spirit of subtyping states can be further constrain
they can have associations that objects not in that state do not 
and may further constraint multiplicities on associations obtain
from the supertype/superstate.

The diagrams in Figure 4 place additional constraints on states
this example. The left hand diagram indicates that when the cop
in the �
�	�� state it is 	
�	���	� exactly one reservation in the
�	��	����� state, but is not 	
�	���	� any reservation when
in a different state. Similarly, a reservation in the �	��	�����
state has exactly one ����	��, but no held copies when in a dif-
ferent state. Clearly this diagram does place some constraint on
nature of the copy held, that it is in the state �
�	��, but this is
not enough; in particular it does not state that the publication as
ciated with the held copy is the same as that reserved.

Figure 2: Instance diagram not satisfying constraint, but satisfying 
type diagram
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Figure 3: Type diagrams showing states
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Similarly the right hand diagram places constraints on the number
and state of users to which a copy is available, depending on the
state of the copy. However, again it is not sufficient; specifically it
does not state that the single user to whom a copy �
�	�� is avail-
able for loan is the one who made the reservation, or that a copy
�
 ��! is available to all active users.

Figure 5 is attempting to capture the idea that a copy may have
only one 	
"	�
� loan at any point in time (it can only be out on
loan to one user). This it does by introducing the ����
� associa-
tion. This nearly achieves the desired effect, but again is not quite
enough. It is necessary to say how the loan identified through this
link is related to the association indicated between �	�� and �	�
,
which is taken from the type model. Is it included in this associa-
tion, in which case it must always be explicitly excluded when the
loan history of a copy (i.e. all completed loans for that copy) is
retrieved, or is it always excluded?1 

2.4 Invariants

The previous section identified the following constraints that can
not be expressed using existing diagrammatic notations:

1. The publication associated with the held copy is the same as 
that reserved.

2. The user to whom a copy �
�	�� is available for loan is the 
one who made the reservation.

1. To maintain a consistency in design decisions we would probably 
wish to say it is included: no distinction has been made between 
ongoing and completed loans for a user, so why should we be forced 
by a lack of expressiveness in the notation to make a similar distinc-
tion here.

Figure 4: Multi plicities on associations between states
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Figure 5: Associations between states of �	�� and �	�
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3. A copy �
 ��! is available to all active users.

4. A copy may be associated with only one ongoing loan.

In addition there are some additional constraints which have not
been touched upon:

5. The collection is equivalent to all the copies of all publica-
tions in the catalog.

6. The reservations known to the library are exactly all the reser-
vations made by users or all the reservations there are for the 
publications in the catalog.

7. The loans known to the library are exactly those associated 
with copies in the collection and these are exactly those asso-
ciated with registered users.

These seven constraints can not be expressed even if one is pre-
pared to fully exploit the inclusion of states on type diagrams.
More naive designs which e.g. use associations to model states will
come up with many more constraints relating associations which
can not be expressed using current diagrammatic notations. It
seems that naive designs are likely to be par for the course, consid-
ering, for example, that the latest UML documentation (UML
1997) makes no mention of including states on type diagrams.

Methods such as Catalysis and Syntropy solve this problem by the
use of mathematical assertions to write invariants. The invariants
stated are written in mathematical notation using Catalysis syntax,
as follows:

1. The publication associated with a copy �
�	�� is the same 
as that which has been reserved.

 has been included as really this constraint 
only applies to copies in the collection; it can not be guaran-
teed e.g. for copies passed into the library via a parameter 
which have yet to be placed in the collection. Of course multi-
plicity constraints in type diagrams don’t make this distinc-
tion.

2. The user to whom a copy �
�	�� is available for loan is the 
one who made the reservation.

3. A copy �
 ��! is available to all active users.

where  is the set of registered users in 
the active state.

4. A copy may be associated with only one ongoing loan.

This will work whether the ����
� association suggested in 
Figure 5 on page 4 is included or not. If this association is 
included, then the above constraint is not necessary; instead 
the constraint 

 is 
required. 

5. The collection is equivalent to all the copies of all publica-
tions in the catalog.

The meaning of navigation in this instance originated in Sy
tropy (Cook and Daniels 1994, p57) and is used in Catalys
�����	� is a set. �����	�#�	��� is then the union of the sets
arrived at by navigating the copies link from each publicatio
in �����	�. That is  is equivalent to writing

 

The Syntropy/Catalysis interpretation of navigation is fully 
exploited in the constraint diagram notation introduced here

6. The reservations made by users are exactly all the reserva
tions there are for the publications in the catalog.

7. The loans associated with copies in the collection and thes
are exactly those associated with registered users.

3 Constraint diagrams: visualizing 
invariants

This section introduces the constraint diagram notation, by giv
a constraint diagram for the invariants written mathematically 
§2.4, p.4. Thus it demonstrates how constraint diagrams 
express invariants that can not be expressed diagrammatical
current notations. A summary of the notation can be found in 
Appendix.

Perhaps the easiest invariants to show diagrammatically are 
and 7. The corresponding constraint diagram is given in Figure
The basic notation can be summarized as follows:

• Associations are depicted as relations between sets of objects. 

• Venn diagrams can be used to express relationships betwe
associations. In this case the relationships are simply equiv
lences, i.e. a number of arrows target on the same set. In g
eral, relationships such as intersection and containment ca
be depicted. Examples of such relationships appear throug
out this section.

• There are four ways of depicting a set depending on the nu
ber of elements in the set:

 has 1 element,

 has 0..1 elements,

 has 0 or more elements,

 has 
 elements.

• Types are depicted as (universal) sets.

• Navigation always begins at an object or set with no incomin
arrows. In this diagram the only such item is the ��! object. 
Enclosing the types within the object has no semantic rele-
vance. It is an aid to drawing the diagram, and gives a sens
where navigation begins.

Links are directed for the following reason. Consider the top d
gram in Figure 7. The association �������� indicates, for any
user, which set of copies is available for loan to that user. If 
arrow was omitted then we would not know in which direction 
read the diagram. Reading the link in the other direction wou
mean that any set of copies are always available only to a sin
user which is the same for all copies in that set. This is clearly 

�$�	��∀ �#�
�	�� � �	�����	
∈∧( )
�#	
�	���	�#���������	
 �#���������	
=⇒

,

� �	�����	
∈

�$�	��∀ �#�
�	�� � �	�����	
∈∧( )
�#���������	 �#	
�	���	�#���=⇒

,

�$�	��∀ �#�
 ��! � �	�����	
∈∧( )
�#���������	 ������� �����[ ]=⇒

,

������� �����[ ]

�$�	��∀ �#��� � �	�����	
∈∧( )
�#�	�
� �
�	�
�[ ] 1=⇒

(
)

�#���¬ � �	�����	
∈∧( )
�#�	�
� �
�	�
�[ ] 0=⇒

(
)

∧

,

�$�	��∀ � �	�����	
∈ �#����
� �#�	�
�∈⇒,

�	�����	
 �����	�#�	���=

�����	�#�	���

%$�	�� ' �$���������	
 � �����	� �#�	��∧∈,∃
%=

{
}

�������#�������	
�
�����	�#�������	
�=

�	�����	
#�	�
� �������#�	�
�=
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the case. Instead we could draw the bottom diagram, which s
that for any user there is a set of copies available to that user (
sibly empty), and for any copy in that set, that user is one of the
users to which the copy is available for loan.

The constraint diagram, Figure 8, for invariant

1. The publication associated with a copy �
�	�� is the same 
as that which has been reserved.

introduces a new piece of notation: a shorthand for represen
those objects in a particular set (in this case �	�����	
), which are
in a particular state (in this case �
�	��). It is probably worth
highlighting how a constraint can be placed on an arbitrary obj
chosen from a particular set: by showing a set (if a singleton t
this corresponds to an object) with no arrows targeted on it. In 
case, � represents any object in the state �
�	�� and in the �	��
����	
. The label � is not strictly necessary; it has been include
so to clarify the mapping from the diagram to the mathemati
form of the invariant.

Equivalently one could draw Figure 9, where, as in §2.3, p.2, a b
with rounded corners is used to represent the set of objects in
named state.

The short hand notation is especially useful when objects in two
more different states need to be referred to.

Figure 6: Constraint diagram for invariants 5-7
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��	�����	
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�	����
��

Represents  the
ob jec t  wh ich
is ���

A box l ike th is  indicates
the set of  objects of  the
named type

Indicates the set  of  objects (at  the target)  obtained by navigat ing
the named associat ion f rom the set  a t  the source.  The ro lename
used is the same as that  at  the target  of  the associat ion,
navigated in the d i rect ion of  the arrow, in  the type d iagram.

Indicates a set
of  objects of
the  named
type.

Figure 7: The ���������	 link

���������������� ��������	

A set ( in th is case a s ingleton)
wi th no l inks targeted on i t .  This
means any ( i .e .  universal
quant i f icat ion) arbi t rary set  l ike
th is wi th in the smal lest
conta in ing set  depicted.

����������������
��������	

��������	��

�$�	��∀ �#�
�	�� � �	�����	
∈∧( )
�#	
�	���	�#���������	
 �#���������	
=⇒

,
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It is natural to combine invariants

2. The user to whom a copy �
�	�� is available for loan is the 
one who made the reservation.

3. A copy �
 ��! is available to all active users.

into the same diagram, Figure 10, as they both concern the s
association. There is little that requires comment here.

Finally, Figure 11 is the diagram for the invariant

4. A copy may be associated with only one ongoing loan.

This diagram introduces one new piece of notation, which
explained on the diagram in one place that it is used. In the sec
place it is used, it indicates that, apart from the single obj
depicted, there are no other �
�	�
� loans in the set of loans for a
copy that is ���, i.e. a copy which is ��� is associated with
exactly one �
�	�
� loan.

Figure 9: States on constraint diagrams

Figure 8: Constraint diagram for invariant 1
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�	���	�#���=⇒

,

�$�	��∀ �#�
 ��! � �	�����	
∈∧( )
�#���������	 ������� �����[ ]=⇒

,

Figure 10: Constraint diagram for invariants 2, 3
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�[ ] 1=⇒

(
)

�#���¬ � �	�����	
∈∧( )
�#�	�
� �
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For drawing by hand or in a tool where shading the desired region
may be difficult, a cross may be placed in the affected area as an
alternative.

4 Discussion

This section discusses:

• use of the notation to visualize action contracts (pre/post 
specifications),

• relationships with other diagrammatic notations,

• limitations, possible extensions, semantic issues and usability 
of the notation,

• impact on automated tool support for modelling.

4.1 Visualizing action contracts

Some preliminary work (Kent 1997) has been done on using con-
straint diagrams to visualize behavioral specifications for actions,
expressed in terms of pre and post conditions. A pre/post specifica-
tion is sometimes called a contract. In UML and its precursors,
state diagrams (based on Harel’s statecharts – Harel, 1987) are
used to specify dynamic behavior, and as is the case with invari-
ants, they are limited in the constraints they are able to express.
Methods such as Catalysis and Syntropy therefore supplement
state diagrams with pre and post conditions which must be
expressed using mathematical notation if precision is required.

Constraint diagrams can be used unchanged to express pre-condi-
tions. However, a post-condition is predicated over two states, and
this causes further complications. The idea proposed to solve this
is to borrow from the Catalysis idea of a filmstrip (a sequence of
instance diagrams), replacing instance with constraint diagrams.
An example is given in Figure 12. This is the filmstrip characteriz-
ing the post-condition of the action �	��	()�$���*�$�	��+.
Items appear on the first constraint diagram if they are subject to
change by the action. Three new pieces of notation have been

introduced, and these are explained on the diagram. It may be 
sidered that the notation for 
��� is redundant: couldn’t the associa
tion just be omitted from the diagram? Omission doesn’t work
constraint diagrams are, by their very nature, partial: if an asso
tion is omitted, it just means that the diagram imposes no c
straints on it. The symbol chosen for 
��� is used in many standard
books on data structures (e.g., Thomas et al., 1988) to repres
null pointer. It also has the appearance of an arrow, suggesting
direction in which the association should be read.

For further clarification of the diagrams, the post-condition writte
in mathematical notation is given next.

�	��	()�$���* �$�	��+
��

...
�	��
� is out and no longer available for lending.

The loan of � to � is recorded and marked as ongoing.

Although presented as two separate diagrams here, a case
could show the change dynamically e.g. by “running” the filmstr
with changes shown in different colors.

Further work is required to reduce the complexity of these film
strips for post-conditions more sophisticated than this.

4.2 Relationships with other diagrammatic notations

States in state and type diagrams. In constraint diagrams a
state is viewed as the set of objects in that state. We have alr
argued for the use of the same shape of box (one with rounded
ners) to represent a state wherever it appears. However, const

Figure 11: Constraint diagram for invariant 4
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Grey f i l l  indicates that  there are no elements
in this area of the set.  I .e. there are no
objects ������� in  the enclosing set .
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diagrams also provide a natural way of expressing constraints on
state partitioning and substating that are expressed in different
ways on type diagrams and state diagrams.

Consider the states for the type �	��, as defined by Figure 3 on
page 3. Figure 13 gives the same definition as a constraint dia-
gram, remembering that a state on these diagrams represents the
set of objects in that state. This is like a state diagram with the tran-
sitions omitted. The area around the states has also been grayed out
to indicate that the type is partitioned by the two top-level states.
This is required because, as stated in Section 4.1, constraint dia-
grams are partial; without explicitly indicating that the states parti-
tion, there is the possibility that there may be other states defined
on a different diagram.

A second constraint diagram (Figure 14), which is consistent w
Figure 13, may be drawn. It defines a different grouping of nes

states for �	��. This can be expressed using states on one or m
type diagrams, though this seems more cumbersome (Figure 15
can not be expressed using a state diagram, as there may on
one state diagram per type, and a state diagram enforces a s
grouping of nested states. The closest approximation is given
Figure 16, where transitions have been omitted as they are irr
vant to this discussion. Unfortunately, the usual interpretation
state diagrams treats, e.g., the two �
 ��! states as different.

Subtyping in type diagrams. A similar notation could be used
for showing relationships (partitions, disjointedness, etc.) betwe
static subtypes. This accords with explanations of subtyping ba
on Venn diagrams, in e.g. Wirfs-Brock et al. (1990).

Object (instance) diagrams in UML. Object diagrams in
UML already include a notation for showing sets of objects - pla
ing a * in an object. However they do not allow sets to overlap, a
they have no representation for navigation expressions (in 
notation, arrows from sets targeted on other sets), which is fun
mental to the expressiveness of constraint diagrams. Thus c
straint diagrams could be regarded as the natural developmen
what has already been started in UML.

Figure 12: Visual specification of borrow
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a temporary
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act ion parameter

��������������

�

��������

��������

�������

��������

��������	��

���	����

���



Indicates that
associat ion
has value
����.

Indicates a newly
created object.

Figure 13: A grouping of states for Copy

Figure 14: Another grouping of states for Copy
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4.3 Limitations, Extensions, Semantics, Usability

Limitations and extensions. The assertions expressed using
the notation in this paper have not involved all kinds of logical
operators and connectives. Notable omissions are existential quan-
tification and disjunction. Notation is given in the appendix for
existential quantification over sets. With regard to disjunction, the
two disjuncts could be represented as different constraint diagrams
and composed disjunctively (see below).

Another limitation is the difficulty of showing constraints on
attributes which hold values, e.g. of type ,
���, rather than
identify objects. It is expected that this could be cured by showing
values like objects on instance diagrams, sets of values like sets of
objects on constraint diagrams, and relationships between them as
associations.

The notation also suffers from the same limitations as Venn dia-
grams - it is hard to show the intersection of more than three sets.
We have a (rather cumbersome) notation that will get round this
problem, but do not believe it will occur very often. There is inevi-
tably other published research on this problem, but we have yet to
find it.

Semantics. Work has begun on describing the semantics of the
notation in terms of logical theories in Larch (Guttag and Horning,
1993). This builds upon recent work in interpreting existing mod-
eling notations (Bourdeau and Cheng, 1995; Hamie and Howse,
1997). The aim of this work is to check the consistency and expres-
siveness of the notation - basically to ensure that no stone has been
left unturned. A particular area of interest is to look at diagram
composition, both disjunction and conjunction. This may open up

new avenues of investigation into the expression of frame con
tions (see e.g. Borgida et al., 1995). As hinted above, the nota
looks as if it could be used to give the semantics of existing d
grammatic notations. With its own formal semantics, we wou
then be in a position to provide formal, yet intuitive, seman
underpinnings to other OO modeling notations, such as thos
UML. A more detailed proposal to this effect is given in (Kent 
al., 1997).

Use of the notation. Further investigation is required into (a
whether the notation would be useful in practice and whether i
any more intuitive and easier to use than mathematical asserti
and (b) what are the most appropriate ways to use it, e.g. in c
junction with other notations such as state and type diagrams
would also be interesting to compare its use with other approac
to making assertions easier to write and understand such as A
(ADL, 1997).

4.4 Impact on automated tools

The paper has limited the use of constraint diagrams to expres
diagrammatically what otherwise has to be expressed mathem
cally in existing notations. It is hoped that practising engineers w
find constraint diagrams more palatable than writing the m
though we have no evidence to support this claim. However, th
not, we believe, the only or even main contribution of the notatio
More importantly, it could open the way to providing automate
support for the construction of sophisticated constraints in CA
tools, as well as semantic cross checking between different vi
of a model (e.g. between instance diagrams and type diagra
type diagrams and state diagrams, etc.).

Figure 15: Grouping states on a type diagram
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Figure 16: A possible state diagram for Copy (transitions omitted)
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First notice the correspondence between constraint diagrams and
instance diagrams; constraint diagrams are essentially character-
izations of sets of instance diagrams. We can imagine a tool that
could assist with constructing constraint diagrams from instance
diagrams and vice versa.

Suppose, for example, that a tool was presented with the instance
diagrams in Figure 17, where the first should be accepted by the
model but the second not. The goal is to construct the constraint

diagram which ensures that this is the case. Assuming that a type
diagram has been drawn, a constraint diagram can be derived
which represents the multiplicity constraints for associations men-
tioned in the instance diagrams, composed with the part of
Figure 6 relevant to these associations. This is given in Figure 18.

Focussing on the ���������	

type, Figure 19 (a) admits two
possibilities, (b) and (c). Pattern
matching with the instance dia-
grams indicates that (b) should
be accepted but (c) rejected.
This gives rise to the final con-
straint diagram in Figure 20.

This is a very simple example
and some details of the various
steps have been omitted. How-
ever, it is hoped that the example
is convincing enough to warrant
that the approach is worthy of
further investigation.

As this paper has illustrated, the
mapping from constraint dia-
grams to mathematical notation
is quite systematic. Once a con-
straint diagram had been con-
structed a tool could
automatically generate an equiv-
alent mathematical form, if
desired.

Constraint diagrams could also
assist with cross-checking
between different views of a
model. Constraints imposed by
existing diagrammatic notations may be expressed using constr
diagrams instead (for example, an indication of how multiplici
constraints may be characterized has just been given). This 
gests that a systematic hence automated conversion could be
formed. Cross-checking is then a matter of “overlaying” constra
diagrams and looking for conflicts. It may be possible to autom
this process, in which case any conflict could be shown visua
using an appropriate constraint diagram.

By a similar process instance diagrams could be checked aga
constraints by converting an instance diagram into a constraint 
gram1 and overlaying as above.

Finally, as constraint diagrams characterize sets of instance 
grams, they could be used for animating models where acti
have under-determined specifications: that is, given a start
instance, there may be a set a of possible instances which cou
reached and that satisfy the specification. This goal will be m
achievable once the extensions of the notation for visualiz
action specifications have been fully worked out.
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1. A constraint diagram characterizes a set of instance diagrams, inc
ing singletons!

�

�

Figure 17: Instance diagrams: input to tool

Figure 18: Constraint diagram: derived by tool from existing diagrams
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Figure 19: Fixing the key 
constraint
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Figure 20: Constraint diagram: output from tool
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Appendix – Summary of Notation

Normal Sets

A set with one element.

A set with 0..1 elements.

A set with 0, 1 or more elements.

A set with n elements; n may be any numerical expression.

Optionally sets can be explicitly labeled. This can be useful for 
referring to them in accompanying explanations, or when map-
ping a constraint diagram to a math expression.

Venn Diagrams Standard Venn diagram notation may be used to show relation-
ships between sets.

Types and States

 or The set of objects of the named type ���.

 or The set of objects in state  ���.

 or The region labeled � is the set of objects in state  ���, which 
are also in the set labeled �.

Navigation

The set at the target of the arrow is the union of the sets reached 
by navigating the association labeled �	� from each element 
in the set at the source.

The value of the association to ��� and labeled �	�, when 
navigated from the source set, is the empty set or 
���.

Areas with no elements

Grey fill indicates that there are no elements in that area of the 
set. In this case this means that the two subsets partition the 
containing set.

In those cases where grey fill is difficult to achieve (e.g., by 
hand or with some drawing tools), a simple cross in the area 
may be used as an alternative. In this case, the cross means that 
the set contained in the intersection is the intersection – partic-
ularly useful for sourcing/targeting arrows from/to an intersec-
tion.
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e

Typical (quantified) sets

A normal set with no arrows targeted on it is assumed to be a typical subset of the set in which it is contained. When convertd 
to a math expression this translates to universal quantification: “for any subset of the containing set, ...”.

This notation is often used with singleton sets, with effect “for any object in the containing set, ...”.

Existential quantification is achieved by introducing a temporary, unlabeled association.

As usual specific labels for sets are optional.

�

�

��

�  � �( ):∀ � �⊆ …⇒,

�

�

��

% �:∀ % �∈ …⇒,

�

�

�

��

�  � �( ):∀ � �⊆ …⇒,

�

�

�

��

�  � �( ):∀ � � -–( )⊆ …⇒,

�

��

� �  � �( ):∃ � �⊆ …∧,
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d 
New objects (filmstrips only)

The following symbols only appear in the second or subsequent frame of a filmstrip. Each represents a set of objects that di
not exist in the previous frame. The symbol differs, depending on the cardinality of the set.

A set containing exactly one new object (i.e., a new object).

A set containing 0..1 new objects.

A set containing 0, 1 or more new objects.

A set containing n new objects; n may be any numerical 
expression.�
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