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Abstract

Experience has shown that prototyping is a valuable technique
in the validation of designs. However, the prototype(s) can be
too far semantically removed from the design. Animation is
a technique where a design itself can be ‘executed’ without
the need to translate to a high-level language to build a pro-
totype. While animation has been implemented with formal
specification languages such as VDM, Z and B and used with
some success, we feel that its application to a more graphical
specification language/notation would introduce animation to
a wider range of software designers. This paper discusses the
basis of a technique for the animation of rigorously specified
object-oriented models written using the Unified Modelling
Language and the Object Constraint Language.

1. Introduction

When validating designs, techniques such as prototyping have
been used to ensure that the model being constructed is “what
the customer wants.” A prototype for demonstration is con-
structed by translating the model into a high-level program-
ming language - the success of this depends on the accuracy
of that translation.

Studies such as those described in [18] have shown that proto-
typing reduces the number of problems encountered during the
course of the design of a software system. However prototyp-
ing has the disadvantage that a prototypical piece of software
may bear very little or no resemblance to the model on ‘paper’
and so changes to the prototype, suggested by the ‘customer’
may be difficult to transfer in reverse back to the model.

Animation [4] is a technique where the model, specified us-

ing a formal specification language, can be made executable in
some sense without translating it to a high-level language. It
has been shown to be a valuable technique in assisting the val-
idation process [2, 6, 20] and has been implemented in a num-
ber of tools [5, 7, 8, 10] supporting traditional formal methods
[1, 9, 12, 19].

In this paper we port the ideas of animation to models written
using a subset of the UML/OCL. A carefully chosen subset of
the UML and the OCL [15, 16] provides a suitable level of for-
mality while being accessible enough for widespread use. In-
troduced in x2 are the UML and OCL notations, x3 describes
an example animation and discusses the issues and problems
presented by such an animation. Finally in x4 we discuss fu-
ture work being undertaken.

2. Notation

In the following library system example, we use a sub-set of
the UML/OCL to represent: class diagrams, snapshots, film-
strips, invariants and actions. A fuller explanation of the no-
tation and its semantics can be found in [17].

As part of this work we have written an abstract syntax of the
subset of UML/OCL described here and a set of axioms that
ensure well-formedness and consistency of the models - see
[14] for details.

2.1. Class Diagrams, Invariants and Snap-
shots

Figure 1 presents the class diagram for our example library
system. The class diagram fixes the basic structure of a model.
It states what classes of object may appear in an instance of the
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model, which classes of object may be linked to one another,
and how many links to objects there may be from any one ob-
ject.

An instance of the model is represented by a snapshot, which
is a collection of objects with links between them. Instances
must conform to the class diagram. For example, figure 2 has
a Library object, two user objects, two loans (one current, one
returned), a publication and two copies of that publication.
Thus it only has objects of classes shown on the class diagram.
In contrast, figure 3 is invalid because it has an object of class
Giraffe, which does not appear in the class diagram.
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Figure 1. Library System Class Diagram

Invariants - written using OCL - impose further constraints
that can not be expressed on the class diagram - four invari-
ants are given below:

context Copy

inv: - - a copy may be out, on the shelf or on hold

out xor onShelf xor onHold

context Loan

inv: - - a loan can be onGoing or returned, not both

onGoing xor returned

context Reservation

inv: - - a reservation can be pending or waiting, not both

pending xor waiting

context Copy

inv: - - one reservation may be `held' at any time per copy

self:onHoldFor ! notEmpty
implies self:onHoldFor ! size = 1

An invariant is a constraint in the context of a particular class.
The invariant reads; “for any object in the context Class, the
following constraint holds...” Close inspection of figure 2 will
reveal that it does satisfy the invariants given above. However,
figure 3 does not, for example: l1 breaks the loan invariant by

having both attributes returned and onGoing set to true.
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Figure 2. Example Snapshot
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Figure 3. Example Invalid Snapshot

2.2. Filmstrips and Actions

While a snapshot describes a specific instance of a model, a
filmstrip is the instance of an action. Descriptions of the action
for the filmstrip in figure 4 are given below.

name=Arwen name=Arwen name=Arwen

onShelf=true onShelf=trueout=true

returned=true

lib:Library

c1:Copy
u1:User

lib:Library

c1:Copy

l1:Loan

u1:User
c1:Copy

u1:User

lib:Library

l1:Loan

onGoing=true

lib::loanCopy(u1,c1) lib::returnCopy(c1)

Figure 4. Example Filmstrip

context Library::loanCopy(u:User,c:Copy)

pre: c:onShelf = true

post: c:out = true and c:loan! existsNew (lj
l:onGoing = true and l:user = u)



context Library::returnCopy(c:Copy)

pre: c:out = true

post: c:loan! select (onGoing = true ):returned = true
and
c:publication:reservation ! select (pending = true )@pre

! notEmpty implies (
c:publication:reservation !

select (pending = true )@pre !
exists (rjr:waiting = true and r:held = c)

and
c:onHold = true )

and
c:publication:reservation !

select (pending = true )@pre !
isEmpty implies c:onShelf = true

An action description indicates what kind of object can per-
form the action and with what arguments. For example, the
first description indicates that Library objects may perform the
loanCopy action, with a user and a copy as arguments. It also
provides a constraint on the state of the system that must hold
when the action is performed (pre-condition) and what the re-
sult of performing that action will be (post-condition) [11].

On the filmstrip, an instance of this action appears. It is an
instance, because represents the action being performed on a
particular object (lib) with particular arguments (u1, c1) from
a particular starting state (the first snapshot in the sequence).
That snapshot must satisfy the pre-condition for the action,
i.e. c1 must be on the shelf, and the second snapshot in the
sequence must satisfy the post-condition: a new loan object
linked to u1 and c1 must have been created.

The example shown here is deterministic. Provided one fol-
lows the principle that nothing else changes (the so-called
frame rule [3]), the only snapshot that can be reached by per-
forming lib:loanCopy(u1; c1) is the second snapshot in the
sequence. However, this is not always the case: the post-
condition of returnCopy actions is such that a range of dif-
ferent snapshots could be generated from any instance of the
action.

The goal of animation is to generate the post-snapshot(s) for
a particular instance of an action: an invocation of that action
on a particular object, in a particular snapshot of the system
state, and with particular substitutions for the arguments. In
developing an automated animation technique the two biggest
problems are: dealing with non-determinism and ensuring that
a sensible frame rule is applied. In the next section, we de-
scribe, by example, the basis for a technique that could provide
some automatic assistance for the animation of a model.

3. A Technique for Animating UML/OCL Mod-
els

Figure 5 shows the expected results of performing the
returnCopy action in a snapshot where there are two
reservations for the publication of the copy which is being
returned. After the application of the action, either of the two
snapshots indicated would be reasonable results: the only
difference between them is that the copy has been put on
hold for a different reservation. We would argue that no other
snapshots would be regarded as reasonable, by application of
a sensible frame rule.
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Figure 5. Animation of lib:returnCopy(c1)

We now examine more closely the steps that might be in-



volved in an algorithm that would ensure this result. We en-
visage three basic steps: calculating the post-condition execu-
tion paths, evaluating the effects of each OCL term in the var-
ious execution paths and checking the model against invari-
ants. Each is examined in detail below.

3.1. Processing the OCL Post-condition

Because the post-condition only states what is true after the
application of the action it contains no information about any
execution order. Animation however relies on some form of
ordering of the statements in an expression. To ensure that we
animate all possible combinations we must expand the post-
condition to express all possible execution paths.

Two clauses related by an and connective, e.g: A and B

may be animated as its permutations: A then B andB then A.
Two clauses related by an or connective, e.g: A or B may
be animated as its combinations: A then B, B then A, just A
or just B. The implies connective acts as a guard to a state-
ment, e.g: A implies B is animated as if A then B. Using
these rules the post-condition of returnCopy() (the anatomy
of which is shown in figure 6) may processed thus:

c.publication.reservation->select(pending=true)@pre->isEmpty()
implies

c.onShelf=true
A3DG

D1

and

implies

c.onHold=true

A1

A2BG

B2
B1

and

c.publication.reservation->select(pending=true)@pre->

c.loan->select(onGoing=true).returned=true

c.publication.reservation->select(pending=true)@pre->notEmpty()

and

exists     (r|r.waiting=true and r.held=c)

CQ    C1    C2

Figure 6. Anatomy of the Post-Condition of
returnCopy()

permute([A1; A2; A3])
A2 = BGjpermute([B1; B2])
B1 = CQ : (permute([C1; C2]))
A3 = DGj[D1]

This gives us 24 possible paths through the post-condition.
However some of these paths will result in identical results,
while others are guarded, e.g: BG is a guard to the paths
permute([B1; B2]). It is possible to reduce the size of the

possible paths by analysis of the post-condition - discussion
of this will not be undertaken here.

3.2. Evaluating the OCL Statements

Once we have identified the various paths through the post-
condition we can now generate the after-states for each path
in turn. For example, one path through the post-condition may
be:

[A1; BGj(CQ : (C1; C2); B2); DGjD1]

Using this path as our example, we can now calculate the ef-
fects on the snapshot. We have identified 5 basic operations
that can be performed on the snapshot: modify (attribute), link
(two objects), unlink (two objects), create (object), delete (ob-
ject). For each term in the list we identify a set of mappings
from the OCL to these operations on a snapshot [13].

Term A1 (c:loan ! select (onGoing = true ):returned =
true ) states that this resolves to c1:loan (object: l1),
from which those where the attribute onGoing is set to
true (object: l1). Of these the returned attribute will
be set to true. This produces the mapping (in this case)
of modify(l1; returned; true) which sets the returned at-
tribute of object l1 to the value true .

The next term is guarded by the expression BG - if this re-
solves to true then the terms (CQ : (C1; C2); B2) can be
evaluated. Examination of the before-state in figure 5 shows
that BG will resolve to true. CQ is a (existential) quantifica-
tion over the set of objects fr1 r2g. Existential quantification
has a minimal obligation such that one object in the given set
will satisfy the given expression, in this case (rjr:waiting =
true and r:held = c). If there does exist an object that sat-
isfies this then we may choose not to change any other can-
didate objects. In this example there are two objects which
are potential candidates. The animation system may offer the
user a choice over which object to continue with, however, it
is envisaged that the system should be able to continue with
both possibilities, including the possibility that both objects
are modified.

When evaluating the statement after the guardBG, expression
C1 is a modification of an attribute and behaves similarly as
before, but C2 is an assignment on a role: r:held = c1. In
this case a link from the object r is made via role held to the
object c1 using the operation link(held; r; c1). ExpressionB2

is a modification of an attribute, while the guard DG resolves
to false meaning that expression D1 is not evaluated.

This procedure is then performed over all possible execution



paths. The result of this is that from the 24 possible execution
paths, there are 72 after-states generated, the greater number
(24� 3) coming from the fact that the quantification CQ may
generate 3 different results. Although 72 after-states are gen-
erated, there are only three unique solutions as shown in figure
7.
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Figure 7. After-states from Animating
lib:returnCopy(c1)

3.3. Invariants and Multiplicity Constraints

Once the resultant set of after-states have been generated, it
is necessary to check those after-states against the invariants
and class diagram multiplicity constraints. To satisfy some in-
variants1 a change to the model may be required. We adopt a
heuristic, the ‘sacred post-condition,’ that we may not change
anything that has already been affected by the post-condition.

Each invariant is applied in turn to each of the after-states. For
example if we take the object c1 from any of the snapshots in
figure 7 we note that the attributes out, onShelf and onHold

are true, false and true respectively. There is an invariant
(see x2.1) that states that only one of these may be true at any
one time. In this case the out attribute has been set to true by
the post-condition and this may now not be changed which im-
plies that all the other attributes reference in the invariant will
be set to false. This process is similarly made for the other sim-
ilar invariants on the Loan and Reservation classes.

The ‘reservations held’ invariant states that only one reserva-
tion may be held at any one time per copy. This invariant is
satisfied by two of the snapshots in figure 7 but fails in the case
where c1 is associated to both the reservation objects r1 and
r2. If we try to modify the snapshot to conform to the invari-

1we use the term invariants here to include multiplicity constraints as well

ant but removing one of the links we break the sacred post-
condition heuristic. In this case the snapshot will never con-
form to the invariant and can be discarded as an invalid solu-
tion.

After applying the invariants it may be necessary to ensure that
no other invariants have been affected. This can be checked
by reapplying the invariants until no changes are made to the
model. If under some circumstance we find that we are con-
tinually applying the same invariants then it can be assumed
that some other inconsistency exists in the model as a whole.
If it is found that all invariants are satisfied then the finalised
after-states may be presented to the user as in figure 5.

4. Conclusion and Future Work

This paper has described a technique, using an example library
system senario, where a rigorously specified object-oriented
analysis model (written using UML/OCL) is animated. This
animation allows the user/customer of such models to investi-
gate the behavioural properties of the models at a much earlier
stage in the modelling process than facilitated by prototyping.

We have identified the overall animation process, that is, gen-
erating the possible execution paths, evaluating each OCL
term and finally applying invariants to the after-states to pro-
duce a set of ‘solutions’.

There are issues such as the number of possible after-states
generated, i.e: complexity issues, which we believe can be
controlled by the application of suitable heuristics. For exam-
ple we are investigating two heuristics we know as ‘minimal
obligation’ and ‘least interference’ in which the former con-
trols the scope of the animation of an OCL operator and the
latter sorts the resultant snapshots in order of the amount of
interference the operation has made to the model. We are cur-
rently working with a ‘default’ ordering such that linking ob-
jects is less interfering than creating intermediates and linking
those as may be seen in the case of includes with long navi-
gation expressions

Future work is concentrating on finalising the relationship be-
tween the OCL operators (includes , exists etc), the oper-
ations on a snapshot (modify, link etc) and controlling the
scope of an OCL operator. For example the excludes oper-
ator may be able to remove an object from a navigation ex-
pression by unlinking that object, deleting that object or even
unlinking/deleting intervening objects.
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