Identification of Authenticity Requirements in Systems of Systems by Functional Security Analysis

Andreas Fuchs and <u>Roland Rieke</u> {andreas.fuchs,roland.rieke}@sit.fraunhofer.de

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany

Jun 2009

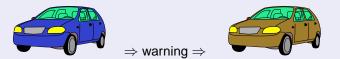
Overview

- Scenario cooperative reasoning in vehicular ad hoc communication
- Dependence of safety critical decisions raises security concerns

Objectives

- Systematic security requirements elicitation for novel architectures
- Avoid premature architecture constraints
- Functional Security Analysis
- 4 Results and Outlook

Why think about new vehicular Architecture using SoS reasoning


overall goal

reduce number and impact of accidents in Europe

difficulties

to improve safety measures in vehicles \leadsto improve infrastructure

cooperative approach

vehicular communication systems can be more effective in avoiding accidents and traffic congestion than current technologies where each vehicle tries to solve these problems individually

Use case: send danger warning

sense(ESP,SlipperyWheels)
positioning(GPS,position)

send(CU,danger(position,type))

receive(CU,danger(position,type)) positioning(GPS,position)

show(HMI,D,warn(relative-position))

イロト イポト イヨト イヨト

ESP - Electronic Stability Protection GPS - Global Positioning System CU - CommunicationUnit HMI - Human Machine Interface D - Driver

Roland Rieke (Fraunhofer SIT)

SoS - Functional Security Analysis

Jun 2009 4 / 16

Security is an enabling Technology for novel SoS Applications

Exposing vehicles to the Internet makes them vulnerable

- Attacks on safety
 - Unauthorized brake
 - Attack active brake function
 - Tamper with warning message

- Attacking E-Call
- On-Board Diagnostics (OBD) flashing attack

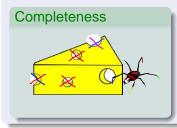
- Attacks on privacy
 - Trace vehicle movement
 - Compromise driver privacy

- Manipulate traffic flow
 - Simulate traffic jam for target vehicle
 - Force green lights ahead of attacker

- Manipulate speed limits
- Prevent driver from passing toll gate
 - Engine refuses to start
- Increase/Reduce driver's toll bill

Security Requirements Engineering Process

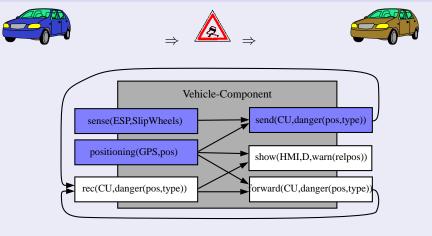
- the identification of the target of evaluation and the principal security goals and the elicitation of artifacts (e.g. use case and threat scenarios) as well as risk assessment
- the actual security requirements elicitation process
- a requirements categorisation and prioritisation, followed by requirements inspection


Further steps in Security Engineering

- security requirements (structural) refinement
- mapping of security requirements to security mechanisms

Methods to elicit security requirements

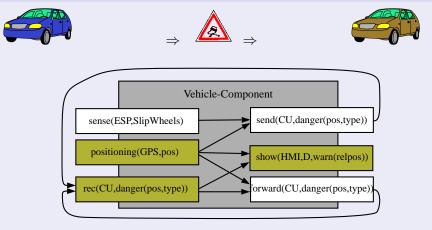
- misuse cases (attack analysis),
- anti-goals derived from negated security goals,
- use Jackson's problem diagrams,
- actor dependency analysis (*i** approach)


Why yet another approach ?

Avoid premature architecture constraints

- protocols SSL/TLS/VPN/IPv6
- trust anchor TPM
- infrastructure PKI, PDP/PEP
- end-to-end/hop-by-hop

Functional Component Model



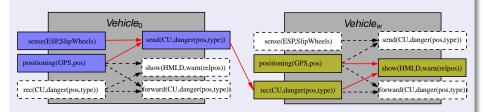
Security goal of the system at stake:

Whenever a certain output action happens, the input action that presumably led to it must actually have happened.

프 🖌 🔺 프

Functional Component Model

Security goal of the system at stake:


Whenever a certain output action happens, the input action that presumably led to it must actually have happened.

ъ

< ∃ >

< ロト < 同

Functional security requirement identification

Formally, the functional flow among actions can be interpreted as an ordering relation ζ_i on the set of actions Σ_i in a certain system instance *i*.

 $\begin{aligned} \zeta_1 &= \{ \ (\textit{positioning}(\textit{GPS}_w,\textit{pos}),\textit{show}(\textit{HMI}_w,\textit{D}_w,\textit{warn}(\textit{relpos}))), \\ &\quad (\textit{rec}(\textit{CU}_w,\textit{danger}(\textit{pos},\textit{type})),\textit{show}(\textit{HMI}_w,\textit{D}_w,\textit{warn}(\textit{relpos}))), \\ &\quad (\textit{send}(\textit{CU}_0,\textit{danger}(\textit{pos},\textit{type})),\textit{rec}(\textit{CU}_w,\textit{danger}(\textit{pos},\textit{type}))), \\ &\quad (\textit{sense}(\textit{ESP}_0,\textit{SlipWheels}),\textit{send}(\textit{CU}_0,\textit{danger}(\textit{pos},\textit{type}))), \\ &\quad (\textit{positioning}(\textit{GPS}_0,\textit{pos}),\textit{send}(\textit{CU}_0,\textit{danger}(\textit{pos},\textit{type}))) \\ \end{aligned}$

イロト イポト イヨト イヨト

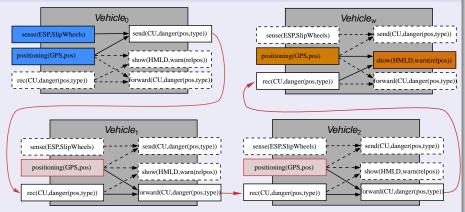
Functional security requirement identification

Restrict ζ_i^* to outgoing (*max_i*) and incoming boundary actions (*min_i*).

$$\chi_i = \{(x, y) \in \Sigma_i imes \Sigma_i \mid (x, y) \in \zeta_i^* \land x \in \textit{min}_i \land y \in \textit{max}_i\}$$

$$\begin{split} \chi_1 &= \{ \ (sense(ESP_0, SlipWheels), show(HMI_w, D_w, warn(relpos))), \\ (positioning(GPS_0, pos), show(HMI_w, D_w, warn(relpos))), \\ (positioning(GPS_w, pos), show(HMI_w, D_w, warn(relpos))) \} \end{split}$$

For all $x, y \in \Sigma_i$ with $(x, y) \in \chi_i$: auth(x, y, stakeholder(y)) is a requirement.


イロト イポト イヨト イヨト

Resulting Authenticity Requirements

For all possible SoS instances for the action $show(HMI_w, D_w, warn(relpos))$ it must be authentic for the driver that:

- auth(positioning(GPS_w, pos), show(HMI_w, D_w, warn(relpos)), D_w) the relative position of the danger she is warned about is based on correct position information of her vehicle
- auth(positioning(GPS₀, pos), show(HMI_w, D_w, warn(relpos)), D_w) the position of the danger she is warned about is based on correct position information of the vehicle issuing the warning
- auth(sense(ESP₀, SlipWheels), show(HMI_w, D_w, warn(relpos)), D_w) the danger she is warned about is based on correct sensor data

System of Systems Instances

An analysis for the second instance will result in:

 $\chi_2 = \chi_1 \cup \{(positioning(GPS_1, pos), show(HMI_w, D_w, warn(relpos)))\}$ And the third system of systems instance will result in:

$$\begin{split} \chi_{3} &= \chi_{2} \cup \{(\textit{positioning}(\textit{GPS}_{2},\textit{pos}),\textit{show}(\textit{HMI}_{w},\textit{D}_{w},\textit{warn}(\textit{relpos})))\} \\ \chi_{i} &= \chi_{i-1} \cup \{(\textit{positioning}(\textit{GPS}_{i-1},\textit{pos}),\textit{show}(\textit{HMI}_{w},\textit{D}_{w},\textit{warn}(\textit{relpos})))\} \end{split}$$

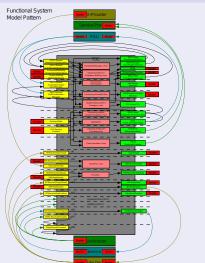
Resulting Authenticity Requirements

For all possible SoS instances for the action $show(HMI_w, D_w, warn(relpos))$ it must be authentic for the driver that:

- auth(positioning(GPS_w, pos), show(HMI_w, D_w, warn(relpos)), D_w) the relative position of the danger she is warned about is based on correct position information of her vehicle
- auth(positioning(GPS₀, pos), show(HMI_w, D_w, warn(relpos)), D_w) the position of the danger she is warned about is based on correct position information of the vehicle issuing the warning
- auth(sense(ESP₀, SlipWheels), show(HMI_w, D_w, warn(relpos)), D_w) the danger she is warned about is based on correct sensor data

∀ V_x ∈ V_{forward}: auth(positioning(GPS_x, pos), show(HMI_w, D_w, warn(relpos)), D_w) position of forwarding vehicles is authentic

- Breaking (4) would result in a smaller or larger broadcasting area.
- This cannot cause the warning of a driver that should not be warned.
- So it is NOT a safety related authenticity requirement.


Roland Rieke (Fraunhofer SIT)

EVITA (E-Safety Vehicle Intrusion Protected Applications)

In practice, the method has been applied in EVITA ^{*a*} to derive authenticity requirements for a new automotive on-board architecture

- 17 additional use cases, e.g.
 - safety reaction: active brake
 - traffic information
 - e-Tolling
 - eCall
 - remote car control
 - remote diagnosis/flashing
- 29 authenticity requirements elicited
- system model comprising 38 component boundary actions
- 16 system boundary actions (9 max, 7 min elements)

ahttp://www.evita-project.org/Deliverables/EVITAD2.3.pdf

evita

Contribution of proposed approach

Identification of a consistent and complete set of authenticity requirements

For every safety critical action in a system of systems all information that is used in the reasonig process that leads to this action has to be authentic

Security mechanism independence

avoid to break down the overall security requirements to requirements for specific components or communication channels prematurely ~ requirements are independent of decisions on concrete security enforcement mechanisms and structure (e.g. hop-by-hop, end-to-end)

Formal base approach fits to formal definition of security requirements

Authenticity: A set of actions Γ ⊆ Σ is authentic for P ∈ P after a sequence of actions ω ∈ S with respect to W_P if alph(x) ∩ Γ ≠ Ø for all x ∈ λ_P⁻¹(λ_P(ω)) ∩ W_P.

Future work

- derivation of confidentiality requirements in a similar way (privacy)
- non-repudiation (relevant security goals from law)
- refinement throughout the design process (paper submitted to STM'09)
- mapping to adequate architectural structure and mechanisms to implement security measures (within EVITA context)

Thank you

(http://www.evita-project.org) being co-funded by the European Commission within the Seventh Framework Programme.

(日)