
Architecting Self-Adaptive 
Critical Systems: 
Contradiction or Panacea?
Invited Talk at WADS 2009, 29.06.2009

Holger Giese
System Analysis & Modeling Group, Hasso Plattner
Institute for Software Systems Engineering at the 
University of Potsdam, Germany
holger.giese@hpi.uni-potsdam.de



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

2

What are Critical 
Software Systems?

Characteristics:

large-scale, heterogeneous, distributed 

May include:

Server backends, embedded 
subsystems, wireless ad hoc networks, 
mobile devices

Require:

Safety, security, high reliability, high 
availability, …

Examples:

Transportation

Industrial automation

Medicine

Automotive

Avionics

Space missions

Enterprise Critical Systems
Critical System of Systems: RailCab



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

3

Cirtical Software 
Systems - Threats

safety
dependability security

Typical threats: hardware failure, not fulfilled context assumption, misuse, attacks, …
Sources for threats: system hardware (incl. computer), environment, software, …



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

4

Self-Adaptive Critical 
Software Systems

Adaptation to compensate threats (self-healing, self-configuring):

■ Absolute position: adaptation must guarantee that all threats are properly handled 
(this CANNOT be achieved)

■ Relative position: adaptation must guarantee that all relevant threats are properly 
handled (relevant = likelihood+ severity + …; CAN ONLY be achieved in rare cases)

Problem: Usually not all threats are known!

■ Practice: adaptation must guarantee that all known and relevant threats are 
properly handled (relevant = likelihood+ severity + …)

Adaptation

Software

Contextu
up yp

d

adapt

Context = system hardware + environment



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

5

Known and Unkown
Threats

Known threats

In principle
known threats

unknown threats

Known knowns

Known
unknowns

unknown unknowns

anticipated

unanticipated ?

safety
dependability security

System:

Developer:



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

6

Self-Adaptive Critical 
Systems: Pros & Cons

Pros (cliché):

■ Self-adaptive systems can handle unanticipated threats which 
classical system design do not cover

Cons (cliché):

■ For self-adaptive systems no guarantees can be given as they can 
change their behavior

Resulting Open Questions (Contradiction or Panacea?):

What kind of additional threats can self-adaptive systems cover?

Can we establish the required guarantees for self-adaptive systems?



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

7

Adaptation & Models

Adapt “without” models:

■ Still implicit design-time models are 
used to establish guarantees offline

■ Limitation: covers only threats 
included in one model of the software’
+ context (potentially including some 
parameters that can be observed)

Adapt with runtime models:

■ Explicit runtime models are used to 
establish guarantees online 

■ Limitation: covers only threats 
captured by the runtime models 
(multiple!); assume correct learning 
of them from the observations

Adaptation

Software’ Contextu
up yp

d



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

8

Adaptation & 
Guarantees

Bottom line: Self-adaptive systems must 
simply be “better” and not “worse”

Cases that must be covered offline:
(1) Execution of the adaptation: consistent update; timing, …

Additional cases that must be covered offline for runtime models:
(2) Adapting the model of the software‘: consistent; fast enough; …
(3) Adapting the model of the context: consistent; fast enough; accurate enough, …
(4) Model as reference: correct reference, complete, …

Cases that must be covered offline and/or online:
(5) Planning of the adaptation: does it really ensure the required guarantees?

Open Question: are the required guarantees possible/feasible? Some examples …



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

9 Operator-Controller Module (OCM) for 
self-optimizing mechatronic systems

Cognitive operator (CO): decoupled from the 
hard real-time processing (flexible)
Reflective operator (RO): Real-time 
coordination and reconfiguration (pre-planned)
Controller (C): Control via sensors and actuators 
in hard real-time

Modular formal verification (“RO part”):
Formal interface covers possible 
pre-planned configuration steps
Consistent configuration across 
complex hierarchies: correct timing

Example for (1) Execution of 
the adaptation

Holger Giese, Sven Burmester, Wilhelm Schäfer, and Oliver Oberschelp, 'Modular Design and 
Verification of Component-Based Mechatronic Systems with Online-Reconfiguration', in Proc. of 
12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004), Newport Beach, USA, 
pp. 179--188, ACM Press, November 2004. 



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

10

Example for (1) 
Execution of the 
adaptation (cont.)

Distributed Software Architecture + 
Context:

■ Supports system with flexibly changing 
structure (real-time clocks, linear variables)

■ Model all possible structural changes in 
the system and its environment in form of 
extended graphs and graph transformations

Verification:

■ Analyze whether structural changes can 
lead from safe to unsafe situations 
(inductive invariants; incremental check 
for changed transformations)

Basil Becker and Dirk Beyer and Holger Giese and Florian Klein and Daniela Schilling, Symbolic Invariant Verification for Systems with Dynamic Structural Adaptation, Proc. of the 28th International Conference on 
Software Engineering (ICSE), Shanghai, China, vol. , 2006, 

t:Track

s1:Shuttle s2:Shuttle

dc:Distance
Coordination

move

correct
system
graph

?



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

11

Example for (5) Planning 
of the adaptation

■ Distributed learning of a model of the track (environment)
■ Local learning of a model of the shuttle (system hardware)
■ Planning an adaptation in form of an optimal trajectory
■ Trajectory synthesis establishes required guarantees

Sven Burmester and Holger Giese and Eckehard Münch and Oliver Oberschelp and Florian Klein and Peter Scheideler,. Tool Support for the Design of Self-Optimizing
Mechatronic Multi-Agent Systems, International Journal on Software Tools for Technology Transfer (STTT) 10 (3), 207-222, 2008.



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

12

Example 2 for (5) Plan-
ning of the adaptation

■ Application: Monitoring 
and repair of complex 
architectures with
redundancy (self-repair)

■ Uses a model as reference
and to capture the state
of software’ + context 

■ The model as reference 
is used to compute the 
required repair (computed
solution ensures online 
the required guarantees)

■ Trade-off: speed of 
repair vs. quality of 
structural adaptation

Covers: arbitrary changes within the model of software’ + context 

Matthias Tichy and Holger Giese and Daniela Schilling and Wladimir Pauls, 
Computing Optimal Self-Repair Actions: Damage Minimization versus Repair
Time, Proc. of the ICSE 2005 Workshop on Architecting Dependable Systems, 
St. Louis, Missouri, USA, (Rog\'erio de Lemos and Alexander Romanovsky, 
ed.), vol. , ACM Press, 2005, p. 1–6, 



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

13

Conclusions

Open Questions (Contradiction or Panacea?):

What kind of additional threats can self-adaptive systems cover?

■ Self-adaptive systems allows in principle to cover more threats

□ Without runtime models coverage is restricted to what is covered by the 
design-time model

□ With runtime models coverage is restricted to what can be covered by the 
different possible forms of the runtime model

Can we establish the required guarantees for self-adaptive systems?

■ Some guarantees for self-adaptive solutions can be established offline

(1) Execution of the adaptation

(2) Adapting the model of the software

(3) Adapting the model of the context

(4) Model as reference

■ Some guarantees for self-adaptive solutions can be established online/offline

(5) Planning of the adaptation: does it really ensure the required guarantees?



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

14

Conclusions (Cont.)

■ Self-adaptive solutions only help when

□ Adaptation itself is guaranteed to work, 

□ Guarantees for the adaptation can be established
(offline or online) or

□ When cases are covered that are otherwise not covered.

■ Coverage not having a runtime model itself counts! 

Critical Self-adaptive software systems are thus

■ No contradiction but also 

■ No panacea as building them requires a lot of effort

ease building self-adaptive systems is key



29.06.2009 | Architecting Self-Adaptive Critical Systems: Contradiction or Panacea?

15

MDE for Runtime Models 
in Self-Adaptive Systems 

■ Supports feedback loop for models using 
“meta-models” and model transformation 
techniques for an EJB application server

■ Extract abstract runtime models for 
different autonomic managers as required

■ Synchronize runtime models 
incrementally between the autonomic 
manager and the managed element 
(faster as manual implementations) 

■ Adapt managed subsystem incrementally 
via model (just parameters yet)

Covers: arbitrary changes within the model 
of software’ (not context) 

Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: 
Model-Driven Architectural Monitoring and Adaptation for 
Autonomic Systems. In: Proc. of the 6th International 
Conference on Autonomic Computing and Communications 
(ICAC’09), Barcelona, Spain, ACM (15-19 June 2009) accepted 
paper.




